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Abstract

BACKGROUND: Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) are mainly related to their
texture. Different raw and cooked RTBs were physiochemically characterized to determine the effect of biochemical compo-
nents on their cooking properties.

RESULTS: Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was
observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted
by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural
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properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively,
respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect
evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes
and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly
reduced GalA.

CONCLUSION: The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and
major components (i.e. starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on
the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+.
© 2023 Bill andMelinda Gates Foundation. Journal of The Science of Food and Agriculture published by JohnWiley & Sons Ltd on
behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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INTRODUCTION
Roots, tubers and bananas (RTB) play an essential role as staple
foods in the tropics and subtropics, particularly in Africa. As a
result of their adaptability in different ecosystems and high yields
compared to local cereals, they are a primary and reliable source
of calories.1 Breeding programmes for RTB crops initially gave pri-
ority to yield and disease/pest resistance, but now end-product
quality traits and processor and consumer preferences must be
considered for improving varietal adoption.2

Themain characteristics preferred by RTB consumers have been
described recently.1 Generally, important RTB quality traits for
consumers are texture attributes such as rapid softening and/or
the development of friability or mealiness and/or short cooking
time for boiled products3,4; smooth and stretchy dough for
pounded products (matooke, pounded yam, eba)5; softness and
texture in the mouth for cassava-derived products6; and softness
of cooked plantain.7,8 However, reliable means of phenotyping
textural properties and an understanding of the biochemical
and genetic basis of textural variation are not available for
most RTB.
Progress has been made in understanding the molecular basis

of cooking time in some RTB crops. In potato (Solanum tuberosum)
Ducreux et al.9 showed that tubers from the Phureja Group have
much shorter cooking time than those from the Tuberosum
Group.10 Expression profiles in tubers from Tuberosum and Phur-
eja types were significantly different for genes involved in cell wall
modification, which could contribute to textural differences.9 In
particular, the differentially expressed genes included a pectin
methyl esterase gene (PME; EC 3.1.1.11) involved in the modifica-
tion of pectin structure. PME activity was significantly lower in
Phureja genotypes and transgenic experiments demonstrated a
linkage between PME gene expression and tuber texture and
cooking time.11,12 PME may extend cooking time in Tuberosum
group tubers by strengthening of cell walls through the removal
of methyl esters from pectin in a blockwise fashion.13 These
demethylated pectin chains can then chelate calcium ions to form
egg box structures that strengthen the cell wall.14

The textural properties of sweetpotato are complex but not
directly linked to total starch and amylose contents.3 The joint
effects of starch and pectin breakdown during cooking appear
to be themajor factors in cooking time andmay explain the soggy
texture of cooked roots15 of some genotypes. Sweetpotato
⊎-amylase catalyzes the hydrolysis of starch to oligomers during
cooking and contributes to the mealy texture of cooked roots.16

A negative correlation between ⊎-amylase activity and firmness

for boiled roots has been reported.3 In addition, an increase in cell
wall thickness has been observed in cooked roots, particularly in
precooked roots at 70 °C.15 This may be linked to PME activity,
which can modify the cell wall during cooking at 100 °C and at
70 °C.17 Precooking sweetpotato root has been recommended
to reduce enzymatic pectin hydrolysis.15

Preparation of each type of yam product requires specific qual-
ity attributes, but texture attributes are always important. For
boiled yam, friability is the most important,4 whereas pounded
yam must be stretchable, mouldable, smooth, fairly firm, soft
and sticky,4,5,18 and ‘amala’ should be elastic, soft and non-
sticky.19 Several studies have shown a link between starch con-
tent, starch structure or composition and the texture of the
desired products. ‘Amala’ stickiness was associated with soluble
amylose, starch gelatinization temperature and enthalpy
changes,20 whereas pounded yam firmness was associated with
DM, soluble starch and amylose content.21 Several studies found
correlation between yam cooking properties with intrinsic starch
properties.22-25 In addition, the structure of cell walls must play a
role in texture. The extent of cell disintegration appears to be
linked to firmness,25 as well as the thickness of cell walls.21 Also,
studies with chelating agents (phytates) indicate the possible
importance of pectins and the level of lignins have also been
implicated.26

The texture and cooking quality of boiled cassava is highly
variable depending on cultivar,27-29 age at harvest and environ-
mental conditions.30 Although sensory-based phenotyping is
available, limitations exist.31 No clear link between starch and tex-
ture of cooked cassava roots has been found,28 but several studies
have indicated possible effects of intercellular adhesion, cell wall
components and pectins.32 Moreover, a recent genome-wide
association study provided the first insights into understanding
the underlying genetic basis of boiled cassava roots texture and
pointed to the putative role of ⊍-amylase and PME inhibitors,
which impact the structure and properties of starch and pectins,
respectively.31

The texture and cooking behaviour of cooking and dessert
bananas depend on variety, ripening stage and cooking
method.7,33-35 For boiled banana and plantain, Gibert et al.34

established a correlation between the initial DM content of raw
crops (positively correlated to starch content) and firmness, as
well as a strong contribution of starch gelatinization to thermal
softening. Thermal softening in the early stages of boiling has also
been related to middle lamella dissolution causing cell wall sepa-
ration.33 However, to our knowledge, no data has been published

www.soci.org C Mestres et al.

wileyonlinelibrary.com/jsfa © 2023 Bill and Melinda Gates Foundation.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

J Sci Food Agric 2023

2

 10970010, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jsfa.12914 by Inrae - D

ipso, W
iley O

nline L
ibrary on [28/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


on relationships between polysaccharides and fried plantain tex-
tural characteristics.
Robust standard operating procedures for assessing biochemi-

cal components and their relationship with textural characteristics
of boiled or fried pieces for whole RTBs are described in the pre-
sent study. Investigations across a broad spectrum of RTB prod-
ucts would provide novel insights possibly suggesting that a
diversity of biochemical traits is important for textural traits in
RTB crops. Robust phenotyping methods and the development
of genetic markers will accelerate breeding efforts to develop
varieties with improved traits that are important to the consumer.

MATERIALS AND METHODS
Sweetpotato
Seventeen sweetpotato genotypes were grown in replicated field
trials in Uganda in 2019 using standard agronomic practices.
Roots were harvested and firmness were measured after cooking
cubes of 2.5 cm3 at 85 °C for 15 min,3 with 300 g of sample
cooked in 2 L of water. Fresh samples were freeze-dried for
48–72 h for further analyses: DM was assessed by weight differ-
ence after freeze-drying3; free sugars were measured by HPLC36;
starch was predicted by near infrared spectroscopy; amylose con-
tent, starch gelatinization temperature and enthalpy were deter-
mined by DSC,20,37 PME38 and ⊎-amylase (BETAMYL-3® METHOD)
activities; and temperature, peak and final viscosities for 7% flour
dry basis (db) suspension were evaluated with a Rapid Visco
Analyser (RVA) (PerkinElmer, Waltham,MA, USA) in 25 mL of water
with or without inhibitor.39 In addition, cell walls were prepared
after starch hydrolysis and protein solubilization40 and monosac-
charide analysis of cell walls was carried out according to
McDougall et al., (2021).41 Fourier transform infrared (FT-IR) spec-
troscopy was used to investigate the degree of esterification of
pectin, a major cell wall component, McDougall et al.42

Yam
Yam tubers were harvested in 2021 and 2022 at INRAE and CIRAD
stations (five and six genotypes, respectively) in Guadeloupe
(France) and others collected from different markets in 2022 in
Benin (three cultivars). Each cultivar (three tubers) was washed
and peeled; proximal, central and distal parts were analyzed sep-
arately.43 Hardness and DM were determined on fresh and stored
yams,43,44 whereas starch and galacturonic acid (GalA) contents
were determined on freeze dried samples.45,46

Cassava
Two populations of cassava roots were evaluated. Firstly, a panel
of 200 cassava genotypes from a NaCRRI population was evalu-
ated at Namulonge and Serere (Central and Eastern Uganda,
respectively). Second, a panel of 29 cassava landraces with good
to poor cooking behaviour were grown and harvested from the
same field at CIAT (Palmira, Colombia) at three different ages:
9, 10 and 12 months after planting (MAP). DM of fresh roots was
determined by NIRS (at both NaCRRI and CIAT47) and confirmed
by oven drying (105 °C overnight). Texture of boiled roots
(18 min) was determined using the same standard operating pro-
cedure (SOP) at NaCCRI and CIAT48; and maximum force (g), area
(g × mm) and initial gradient (g/mm, after 1 mm of extrusion)
were calculated. For the NaCRRI population, amylose content also
was determined using a colorimetric assay,49 and, for the CIAT
population, water absorption (WA) after 30 min boiling29,50 and
total pectin content (as GalA equivalent46) were determined in

triplicate. Calcium content of freeze-dried cassava roots from CIAT
was determined by X-ray fluorescence spectrometry51,52 on dupli-
cates (harvests at 9 and 12 MAP). To test the effect of calcium on
cooking behaviour, fresh cassava root pieces were marinated in
solutions of calcium chloride (CaCl2, concentrations from 0 to
8 g Ca2+ L−1) at room temperature for 24 h, then boiled in the
marinating CaCl2 solutions for 30 min and WA measured.

Fried plantain
Seven plantain varieties (Corne 1, Saci, Bita 3, Pita 3, Zakoi, FHIA
21) were grown under conventional growing conditions. Fruits
were harvested at commercial maturity corresponding to the
appearance of the first yellow finger on the bunch and kept to
ripen at room temperature. They were sampled at four ripening
stages: green (G), yellow tip green (GT), yellow (Y), and yellow tiger
(YT). Aloco was prepared as described before53 and the sensory
analysis performed by a trained panel. Three texture attributes
were evaluated directly on a scale of 1 (very weak) to 10 (very
strong) for firmness and stickiness. For chewiness, the chew count
varies greatly from one panellist to another. Therefore, the num-
ber of chews was previously computed in a non-dimensionalized
form for each panellist and then converted to a scale value
between 1 and 10 (1 being the lowest dimensionless value of all
products and all panellists and 10 being the highest). DM and
starch were determined in the raw samples as described45

and on alcohol insoluble solids using the total starch enzymatic
assay kit (K-TSTA Megazyme, Wicklow, Ireland), respectively. Pec-
tin content in Gal A equivalents was determined in both raw
and fried form as described by Mestres et al.46 Measurements
were performed in triplicate.

Statistical analysis
Analysis of variance, mean comparison tests (Tukey), and one way
or two ways correlations tests (using Pearson's test) were
performed.

RESULTS
Boiled sweetpotato
Roots exhibited a wide range of firmness (from 1.1 to 3.5 kg) (see
Supporting information, Table S1) with a significant effect of culti-
var. Several physico-chemical properties of sweetpotato did not
vary much between cultivars (e.g. starch characteristics and past-
ing properties with inhibitor), whereas others displayed very wide
variation such as ⊎-amylase (from 0.09 to 2.87 μmol s−1 g−1) or
PME (0.51–2.92 pmol s−1 g−1 db) activities (see Supporting infor-
mation, Table S2). The cell walls (CW) from the different genotypes
(approximately 10% db) all yielded similar main monosaccharide
products, with arabinose and galactose as major constituents
(more than 50% of CW). The amount of GalA is indicative of pectin
content; and it varied considerably from 0.9 to 10.1% of CW
(i.e. 0.03–0.47% of root db). The ratio of FT-IR signals at
1730/1625 cm−1 and 1415/1235 cm−1 of CW preparations can
be used to assess the relative level of pectin methylation and
the intensity of these signals varied considerably between the dif-
ferent genotypes (see Supporting information, Fig. S1).
Among the 17 cultivars, the roots exhibited a wide range of

pasting properties measured by RVA, with or without inhibitor
(see Supporting information, Table S1). As expected, we observed
a negative correlation between starch content and free sugars
(r = −0.83); and positive correlations between starch content
and pasting viscosities (particularly with inhibitor; see Supporting
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information, Table S3); and also between DSC gelatinization tem-
perature and pasting peak temperature. There was a dramatic
decrease of pasting viscosities when inhibitor was omitted, which
was surely linked to amylase activity. CW yield was negatively cor-
related with pasting viscosities with inhibitor (see Supporting
information, Table S3), although there was no significant correla-
tion between PME activity, or FTIR ratio with peak viscosities or
flour pasting behaviour.
No evidence of a direct correlation between biophysical charac-

teristics and firmness was observed (see Supporting information,
Table S3). However, amultiple regressionperformedon15 samples
(because some data were lacking for two samples) identified two
characteristics that can be used to predict firmness (Fig. 1), with
firmness increased with sugars and amylose contents. On the
other hand, no significant correlation between firmness and
beta-amylase activity was found (see Supporting information,
Table S3), as already noted for sweetpotato,3 and/or with PME
activity and pectinmethylation as already observed for potato.11,12

Boiled yam
DM content varied between 25.7% and 40.5% and starch content,
between 55.9 and 82.5 g per 100 g db (see Supporting informa-
tion, Table S4). Both ranges similar to those previously pub-
lished.21,25,54 GalA content varied widely from 0.62 up to 3.18 g
per 100 g db (see Supporting information, Table S4), which was
higher than reported earlier55 (i.e. 0.11–0.29 g GalA per 100 g for
cell walls from Dioscorea rotundata and Dioscorea dumetorum).
Hardness after boiling varied between 1.5 and 14.5 N.
DM and starch contents were not significantly different

between the different tuber sections (see Supporting information,
Table S4). However, GalA levels were significantly higher in the
proximal sections for most cultivars. In parallel, a significant
section effect was observed for the hardness for two cultivars
(61F and 74F) with the proximal section always the hardest.
Considering the results obtained from all tubers, hardness of

boiled yam was found to be related to DM and GalA (Table 1).
However, it is important to note that correlations were not signif-
icant when hardness was low (between 1.5 and 5.9 N, 80% of total
dataset). This led to the conclusion that 20% of the dataset, with

hardness > 6 N, made the correlation significant. Hence, further
work is required with samples of more contrasting hardness to
confirm or rule out this tendency.
Nevertheless, considering DM and GaIA contents as predictive

variables, a model for hardness was developed by linear regres-
sion (Fig. 2). This model satisfactorily predicts hardness
(r2 = 0.76 and root mean square error = 0.37) for this particular
set. Again, such a model must be tested and adjusted using a
larger set of samples exhibiting larger differences in terms of
hardness after cooking.

Boiled cassava
Significant differences were observed among cassava genotypes
for DM, amylose, and total pectins), and cooking quality traits
(force, area, and gradient; WA). Among the NaCRRI breeding pop-
ulation, the average DM (28% wb) (Fig. 3) was lower than the CIAT
population (average 36.4%) (Fig. 4). The amylose content of
NaCRRI genotypes ranged from 20% to 30% (db), which is slightly
higher than typical literature values,56 possibly because the per-
chloric acid extraction procedure could overestimate amylose
content as already observed with potato starch.49

DM was not directly correlated with cooking quality of boiled
cassava, as determined by WA and texture measurements of both
NaCRRI and CIAT populations (Figs 3 and 4, respectively), which
confirmed previous observations.28,29 A significant negative rela-
tionship was observed between amylose content and textural

Table 1. Pearson correlation between hardness, dry matter, starch
and GalA contents measured for 24 yam samples

Variables DM Starch GalA

Starch 0.223 (0.30) 1
GalA −0.082 (0.70) −0.524 (0.01) 1
Hardness 0.694 (0.00) −0.265 (0.21) 0.464 (0.02)

Note: Probability levels are shown within parenthesis. Bold value rep-
resent the correlation is significant.
Abbreviations: DM, dry matter; GalA, galacturonic acid.

Source Value Standard
error Pr > |t|

Constant –3.19 1.93 0.12
Free sugars (%, db) 0.10 0.04 0.028
Amylose (%, db) 0.28 0.13 0.050

db: dry basis
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Figure 1. Model parameters for predicting firmness of sweetpotato and plot of predicted versus observed firmness.
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properties of boiled roots (Fig. 3). A higher total pectin content
was related to harder texture after boiling and lower WA (Fig. 4).
However, the coefficients of determination between gradient,
for example, were low with amylose and pectins (r2 = 0.20 and
0.38, respectively), indicating that other factors may be at play in
determining cooking quality.
Ca2+ content appeared highly correlated with texture (r2 = 0.53,

gradient = 0.81 × Ca2+ + 0.81), possibly because of pectin and
Ca2+ complexation resulting in a stiffer pectin network.14 The
increased WA of root pieces marinated and then boiled in CaCl2
solutions provided additional indirect evidence that pectins are
involved in determining cooking quality (see Supporting informa-
tion, Fig. S2). As the Ca2+ concentration increased and strengthened
the pectin network through complexation,14 WA30 decreased
towards the same lower limit (2–3%) across several genotypes of
contrasting cooking quality. That lower limit may correspond to
the point when the pectin network became saturated with Ca2+

ions. Additionally, higher pectin content appeared related to lower
DM and higher calcium content in fresh cassava roots (r2 = 0.25
and 0.47, respectively), which may reflect both the water retention
properties of pectins and their chelation of calcium ions.

Fried plantain
For raw plantains and regardless of ripening stage, DM varied
from 18.6 to 40.4 g per 100 g WW and total pectin fr0m 0.65 to
3.38 g of GalA per 100 g DW (see Supporting information,
Table S5). At the yellow stage (the favoured consumption stage),
starch content in fried plantain varied from 17.2 to 55.7 g per
100 g dry solid and GalA between 1.99 and 2.81 g per 100 g dry
solid. A large increase of pectin content was observed during rip-
ening of four varieties (Fig. 5a), combined with a slight decrease of
DM (Fig. 5b). DM and starch contents agreed with previous values
in the literature33,34,57 whereas total pectin contents were signifi-
cantly higher than values in the literature,33,57 possibly as a result
of differences in the extraction methods used.
In parallel, three texture attributes (firmness, chewiness, and

stickiness) of fried plantain were evaluated. The overall analysis
of the data set, regardless of variety and harvest stage, indicated
a correlation between DM and two sensorial attributes (positive
with firmness and negative with stickiness). However, no correla-
tion between sensorial attributes and pectin content was
observed (Table 2; see also Supporting information, Fig. S3).

DISCUSSION
The RTB samples in the present study represent the broadest
range of textural properties of cooked products previously exam-
ined, and the relationships with physicochemical parameters (DM,
starch, amylose, cell wall, pectin and Ca2+ content, and PME activ-
ity) (Table 3) provide an opportunity to test hypotheses about the
biochemical parameters that control such textural variation.

Impact of dry matter, starch, and amylose on cooking
properties
Theoretically, hardness should increase with DM of RTB samples
because water can plasticize the system. It is largely observed in
pasty products, such as in pounded yam,21 but positive correla-
tions were only found between DM of raw samples and the hard-
ness of boiled yam (as already reported58,59) and fried (see
Supporting information, Fig. S3) and boiled plantain.34 No signifi-
cant correlation was however observed between DM and texture
of boiled sweetpotato or cassava; and direct correlation between
texture of boiled cassava and DM is indeed rarely observed.27,60

Figure 3. Distribution of amylose (% db), DM (% wb), force (g), area (g.
mm), and initial gradient (g mm−1) among 200 genotypes of cassava
(NaCRRI population), and correlation analysis. Values indicate the coeffi-
cients of correlation (r). Asterisks (***) indicate statistically significant cor-
relations (P < 0.05).

Source Value
Standard 

error
Pr > |t|

Constant –14.3 2.5 < 0,0001

Dry matter (g/g wb) 0.51 0.07 < 0,0001

Galacturonic Acid (g/100 g db) 3.41 0.70 < 0,0001
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Figure 2. Model parameters for predicting hardness of boiled yam and plot of predicted versus observed hardness.
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Starch is the major component of most fresh RTBs, except for
ripe plantain (Table 3), but no clear correlation was found
between DM and starch or amylose contents for sweetpotato,

yam (Table 1) or cassava (Fig. 3), as already reported.60-62 However,
there was a positive correlation between starch content and DM for
plantain at the yellow ripening stage (r2 = 0.87, n = 7), as already

Figure 4. Effect of dry matter and total pectin content of fresh cassava roots on cooking quality parameters water absorption and gradient among
29 genotypes of cassava (CIAT population). Each point represents the average of each genotype across three MAPs (9, 10, and 12 months), or two MAPs
(9 and 12 months) when Ca2+ is measured.
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noted.63 Although starch or amylose were not directly correlated
with the texture of boiled sweetpotato (see Supporting information,
Table S3) or yam (Table 1), amylose content was negatively corre-
lated with hardness of boiled cassava (Fig. 3). This negative correla-
tion between amylose content and hardness cannot be explained
by lower cassava starch swelling with amylose.64 The role of starch
or amylose on the texture of boiled RTB may also be masked by
the more prominent role of other components and, indeed for
sweepotato, amylose was a variable for predicting texture within a
two-variables model (Fig. 1).
Starch-degrading enzymes can modulate the role of starch. For

example, ⊎-amylase plays a key role in starch degradation during
plantain ripening65 and may also be active during plantain cook-
ing lowering firmness through reducing starch-swelling potential.
In fried plantain, ⊎-amylase is rapidly inactivated by the high tem-
peratures reached during frying, but may have a greater impact
on texture when cooking at lower temperatures.3,16 ⊎-amylase
activity appeared to influence pasting properties of sweetpotato
flours through hydrolysis of starch chains (see Supporting infor-
mation, Table S3), but no effect on firmness of boiled sweetpotato
was found in this set of samples. Because ⊎-amylase primarily cat-
alyzes the hydrolysis of linear glucan chains of starch66 such as in
amylose, the relationship between amylose content and firmness
may also bemodulated by differential ⊎-amylase activity and pref-
erential hydrolysis of amylose during sweetpotato cooking.
Indeed, the positive impact of amylose on the firmness of cooked

sweetpotato may be related to lower cell separation as a result of
lower starch swelling, in turn caused by lower amylose content.

Impact of pectin on cooking properties
A direct correlation between pectin content and textural proper-
ties was found for boiled yam and cassava. For the latter, the
Ca2+ content of raw roots was he most significant variable for pre-
dicting texture after boiling, and boiling with added calcium ions
reduced WA (see Supporting information, Fig. S2), which clearly
implicates pectins in determining cooking properties. In plantain,
some biochemical traits linked to pectin structure, such as levels
of PME activity (Table 3), were also correlated with textural prop-
erties. Sweetpotato, yam, and plantain exhibited various levels
of PME activity (Table 3). Sweetpotato firmness was not predicted
by PME activity in the investigated genotypes, probably because
of the very low activity, whereas the high level of PME in plantain
suggested that it could have a greater impact on cooking behav-
iour. This would be in line with the positive relationship previously
observed between PME activity and optimal cooking time of
potatoes.11,12

Overall, this indicated that different mechanisms of pectin mod-
ification during cooking were at play in these different crops. In
yam, the mechanism of texture development (and thickening of
cell walls) during cooking21 is unlikely to be connected with
endogenous enzymatic activities during cooking because no
PME activity was detected. PME, however, could play a role during

Table 3. Overall biochemical characteristics of studied raw crops

Raw crop CW (% db) GalA (% db) Starch (% db) DM (% wb) Amylose content (%) PME activity (pmol s−1 g−1 db)

Sweet potato 7–14 0.2–4.8 56–72 30–42 11–14 0.51–2.92
Yam 3–13 0.6–3.2 45–83 26–45 2–3567,68 0
Cassava 2–532,69 0.7–1.2 (0.5669) 69–8070 20–45 0–40 NA
Plantain
(yellow stage)

5–11 1.5–2.4 17–56 20–40 20–2739,65 2.4–5.6 × 105

Note: For seven yams and plantain, cell walls were extracted using the corresponding SOP71 and PME activity were determined as described
previously.72

Abbreviations: CW, cell wall content; DM, dry matter; GalA, galacturonic acid content; NA, not available; PME, pectin methylesterase.

Table 2. Pearson correlation between texture attributes and biochemical parameters (n = 17 samples) in fried plantain

Texture attributes and
chemical analysis results

Texture attributes of fried plantain Total pectin (GalA g per 100 g db)

Firmness Stickiness Chewiness DM Fresh plantain Fried plantain

Firmness_fried plantain 1 (0.00)
Stickiness_ fried plantain −0.465 (0.60) 1 (0.00)
Chewiness_fried plantain 0.617 (0.00) 0.068 (0.00) 1 (0.00)
DM (% wb) 0.898 (0.00) −0.554 (0.02) 0.341 (0.18) 1 (0.00)
Total pectin_fresh plantain
(GalA g per 100 g db)

−0.349 (0.20) −0.216 (0.48) −0.521 (0.07) −0.561 (0.01) 1 (0.00)

Total pectin_ fried plantain
(GalA g per 100 g db)

−0.088 (0.78) −0.342 (0.28) −0.212 (0.51) −0.213 (0.51 0.685 (0.04) 1 (0.00)

Note: Values in bold are statistically significant (P < 0.05) and the probability levels are given in parenthesis. Data usedwere collected from 17 samples
of fried plantain (aloco) obtained from seven varieties including Bi-gt and Bi-yt: Aloco from Bita 3 variety taken at the yellow tip green and yellow tiger
stage; Co-y and Co-yt: Aloco from Corne 1 variety taken at the yellow and yellow tiger stages; Fh-y and Fh-yt: Aloco from FHIA 21 variety taken at the
yellow and yellow tiger stages; Sh-gt, Sh-y and Sh-yt: Aloco from SH3640 variety taken at the yellow tip green, yellow and yellow tiger stages; Pi-gt,
Pi-y and Pi-yt: Aloco from Pita 3 variety taken at the yellow tip green, yellow and yellow tiger stages; Sa-gt and Sa-y: Aloco from Saci variety taken at
the yellow tip green and yellow stage; Za-y, Za-gt and Za-yt: Aloco from Zakoi variety taken at the yellow and yellow tiger stages.
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boiling of plantain by demethylating pectins, which could then
strengthen the cell–cell adhesion in the middle lamella through
cross-linking with calcium ions, resulting in cell wall thickening
and a firmer texture.
Moreover, the loss of pectin content observed after plantain fry-

ing, possibly related to the decrease of firmness, may be the result
of ⊎-elimination reaction. This reaction occurs on methylated pec-
tin at pH higher than 4.5 and is increased at temperatures> 80 °C.
Such pectin degradation during cooking would agree with the
middle lamellae dissolution observed during boiling.33 This non-
enzymatic hydrolysis of pectin could therefore be a driver of soft-
ening in fried plantain.

Interaction between starch, pectins, and water absorption
Starch is a major contributor to DM of raw samples in major RTBs
(see above) but pectins could also contribute to textural differ-
ences as they have a higher water retention capacity than non-
gelatinized starch (maximum native starch water content of
approximately 45% wb) and raw RTB had a moisture content
of 55–80% (Table 3). A negative correlation was observed
between pectins and DM content of fresh samples for raw plan-
tain and cassava, but not for yam and sweetpotato. Interactions
with other compounds, such as amylose, cell walls, lignins and sol-
uble sugars (or a different pectin structure) may explain this dis-
crepancy between RTB crops.
In the present study, the hardness of cooked samples increased

with the DM of raw samples for yam and plantains only (see
above). This common behaviour could be explained by different
mechanisms. The DM of raw plantain is the main driver of firm-
ness after cooking (Table 2; see also Supporting information,
Fig. S3) with starch playing a major role in increasing firmness
(see above) and pectin content influencing texture in a opposite
fashion by increasingwater content (Fig. 5). In yam, however, both
pectin and DM content seemed to increase hardness in cooked
tubers independently of starch content (Fig. 2 and Table 1). More-
over, hard cooking yam varieties absorb more water and release
less soluble DM after cooking compared to mealy yam varieties.27

This behaviour may be a result of the higher content of low-
methylated pectin in hard cooking yam varieties leading to a pref-
erential WA by pectins (rather than pectin solubilization) and
strengthening cell walls through calcium bridges. Kouadio
et al.27 showed that WA is the main parameter determining cook-
ing quality (hard versus mealy cooking) of cassava and yam, even
though they exhibit different behaviours. The lower WA observed
for hard cooking cassava (Fig. 4; see also Supporting information,
Fig. S2) was influenced by higher calcium fixation, which is also
known to increase firmness. Despite the particularly high starch
and low CW content in cassava (Table 3), pectins played a major
role through their WA capacities. By contrast, sweetpotato cook-
ing behaviour appeared also to be driven by WA capacity but
mainly through its starch/amylose swelling properties (see
above).
Furthermore, the observed decrease of firmness and stickiness

of fried plantain after ripening (see Supporting information,
Table S5) may be linked to both pectin solubilization and starch
degradation commonly observed during ripening.57 These phe-
nomena may underly the acceptability of fried plantain as prelim-
inary studies have identified the optimum consumption at the
yellow ripening stage.53

The development of new SOPs and access to diverse RTB sam-
ples with wide ranges of cooking properties and biochemical
characteristics has allowed the present study to confirm

tendencies previously suggested and identified new and specific
relations between biochemical characteristics and cooking
behaviour. Nevertheless, additional studies are necessary to
unravel the combined and synergistic impact of starch and pectin
metabolism on the cooking properties of RTB crops. Also, obtain-
ing genotypes with highly contrasting compositions and textural/
cooking behaviours could lead to a better understanding of the
determinants and main reactions in play during cooking. Finally,
this would help the breeders to target traits for the development
of new RTB varieties with good consumer acceptability.
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