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Abstract: The aim of the present study was to evaluate the potential of handheld near-infrared (NIR)
and benchtop mid-infrared (MIR) spectroscopy for the rapid prediction of antioxidant capacity, dry
matter, and total phenolic contents in cayenne pepper (Capsicum annuum ‘Cayenne’). Using NIR
spectroscopy, the best-performing model for dry matter had an R2

pred = 0.74, RMSEP = 0.38%, and
RPD of 2.02, exceeding the best results previously reported in the literature. This was also the first
study to predict dry matter content from the mid-infrared spectra, although with lower accuracy
(R2

pred = 0.54; RMSEP = 0.51%, RPD 1.51). The models for antioxidant capacity and total phenolic
content did not perform well using NIR or MIR spectroscopy (RPD values < 1.5), indicating that
further optimization is required in this area. Application of support vector regression (SVR) generally
gave poorer results compared to partial least squares regression (PLSR). NIR spectroscopy may be
useful for in-field measurement of dry matter in the chili crop as a proxy measure for fruit maturity.
However, the lower accuracy of MIR spectroscopy is likely to limit its use in this crop.

Keywords: FTIR spectroscopy; dry matter; antioxidant; phenolics; near-infrared (NIR) spectroscopy;
NIRS; PLSR; SVR

1. Introduction

Chilies (Capsicum spp.), also known as peppers, are well known for their pungent
flavor and are used to season a wide variety of foods. In addition, chilies contain high
levels of ascorbic acid (vitamin C), vitamin A and other micronutrients including zinc,
iodine and iron [1]. More details are shown in Table 1. The principal pungent compound
present—capsaicin—is an activator of the transient receptor potential ion channel of the
vanilloid type (TRPV1) and hence has been investigated for treating pain and other neuro-
logical conditions [2]. In addition, the capsaicinoids, phenolics and flavonoids found in the
fruit provide antioxidant activity with further potential health benefits [3–5].

Table 1. The typical content of key beneficial nutrients found in chilies.

Parameter Typical Content % RDI in 1 Serve (75 g) Reference

Total phenolic content 919–1803 mg
GAE/100 g n/a [6]

Vitamin C 80.6 mg/100 g 67% [1]
Niacin (Vit B3) 0.48 mg/100 g 2% [1]

Vitamin E (α-tocopherol) 0.37 mg/100 g 2% [1]
Vitamin B6 0.224 mg/100 g 13% [1]

Pantothenic acid (Vit B5) 0.099 mg/100 g 1% [1]
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Table 1. Cont.

Parameter Typical Content % RDI in 1 Serve (75 g) Reference

Thiamin (Vit B1) 0.057 mg/100 g 4% [1]
Riboflavin (Vit B2) 0.028 mg/100 g 2% [1]

Vitamin A 18 µg RAE/100 g 2% [1]
Folate 10 µg/100 g 2% [1]

Vitamin K 7.4 µg/100 g 5% [1]
GAE = gallic acid equivalents; n/a = not applicable; RAE = retinoic acid equivalents; RDI = recommended dietary
intake (calculated for an adult male).

In 2014, the worldwide production of chili pepper (Capsicum annuum) was estimated at
409,000 tons, with the majority grown in Asian countries [1]. In Australia, the chili industry
is a relatively minor player, with around 2500 tons produced in the 2013–2014 season [7].
However, the industry is worth over $21 million p.a. (2013–2014 figures) and is rapidly
expanding [7]. Farmgate prices average approximately $9.50 per kg, with a 244% increase
in value over the preceding five years [7]. Research and development efforts continue in
the Australian chili sector, with interest in improving yield, developing high-capsaicin
varieties, and developing new processing methods.

In this study, we investigate the potential use of rapidly assessing quality parameters
associated with chili fruit—specifically dry matter and total phenolic content—in the
Australian Cayenne pepper crop. Dry matter (DM) content is often linked to maturity
and eating quality across many crops [8,9] and has also been used as an index of fruit
maturity in chilies [10]. Indeed, Niklis et al. [11] and Kasampalis et al. [12] found that the
DM content of C. annuum consistently increased during maturation, although the exact
trends were dependent on the variety. Hence if calibrated for a specific chili variety, the
rapid estimation of DM content could be used to inform optimum harvest times.

As previously mentioned, the phenolic content and antioxidant capacity of chilies are
also of interest due to the potential health benefits associated with these compounds [13,14].
Rapid estimation of phenolic content in chilies could be used for grading fruit quality or
finding applications in breeding programs attempting to develop high phenolic content
chili varieties.

Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have been used for the
assessment of a wide range of quality parameters in dried chili powder [15–19], principally
the capsaicinoid content. The main difference between these two instrument types is
the wavelength used: NIR operates between wavelengths of 750–2500 nm, while MIR
spectroscopy uses wavelengths of 2500–25,000 nm (4000–400 cm−1). NIR spectroscopy
has benefits, including cheaper cost, portability, and greater penetration depth into the
sample—but at the expense of lower resolution and sensitivity for chemical moieties. A
number of studies have used NIR spectroscopy for the prediction of dry matter and soluble
solids [20,21], as well as vitamin C, total chlorophyll, and/or carotenoid contents in fresh
fruit [10,12,20,22]. These studies have highlighted the benefits of rapid NIR spectroscopy
as an in situ preliminary screening technique but noted that further work is required to
develop robust models which can be applied to external populations.

The prediction of antioxidant capacity appears to have only been considered by one
previous author [23], and there are very few studies outside of our laboratory attempting
the prediction of total phenolic content [6,12]. In addition, many of these studies have been
performed on bell peppers rather than cayenne peppers, which are more widely grown in
Australia. Hence the aim of this study was to compare the use of NIR and MIR spectroscopy
for the analysis of cayenne pepper (Capsicum annuum ‘Cayenne’) quality, including the
prediction of DM content, total phenolic content, and antioxidant capacity.
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2. Materials and Methods
2.1. Chilli Samples

One hundred samples (individual chilies) of green cayenne pepper (“Blade” variety)
were provided by Austchili (Bundaberg, Queensland), the largest supplier of fresh chili
in Australia. These were hand-selected from plants across two field sites to ensure that a
wide range of environmental variability was incorporated into the samples chosen. The
majority of samples selected were at the mature stage, and all were a uniform dark green
color. Across all of the samples, the average length was 117 ± 7 mm (range 92–133 mm),
while the average fresh weight was 12.4 ± 1.9 g (range 7.5–16.2 g). The dry matter ranged
from 8.4–12.6% w/w (mean of 10.5 ± 0.9% w/w).

The samples were shipped to the laboratory overnight on ice before the NIR spectra
were collected and the samples subsequently dried. The MIR spectra were collected after
the drying process.

2.2. Collection of NIR Spectra

Near-infrared (NIR) spectra were collected from the samples using a MicroNIR OnSite
handheld spectrometer (Viavi; Santa Rosa, CA, USA), operating between 908–1676 nm
(6 nm resolution). This instrument uses a linear variable filter as the dispersing element
coupled to a linear detector array (128-pixel uncooled InGaAs photodiode array) [24]. The
spectra integration time of the instrument was set to 100 ms.

Two spectra were collected from two opposing sides of each individual chili, for a total
of four spectra per chili sample (n = 400 spectra in total). In order to ensure consistency
in the spectral acquisition location and minimize the prospect of background interference,
chili samples were laid on a ceramic plate, and all spectra were collected approximately
3 cm down from the stem of the chili. In addition, reference black and white spectra were
obtained to calibrate the instrument for every 10 samples. Spectra were exported in ASCII
(*.csv) format.

2.3. Dry Matter Content and Total Phenolic Content

Following the collection of the NIR spectra, the dry matter content of the chili samples
was determined gravimetrically by drying the whole chilies (approx. 5–10 g) in a forced
air oven (Sunbean Food Lab Dehydrator) at 50 ◦C until reaching a constant mass. The DM
content was expressed on a % fresh weight basis.

The dried chili samples were subsequently ground using a Retsch ZM1000 centrifugal
grinding mill (Sydney, Australia) with a 1.0 mm mesh size. Polar phenolic compounds
were extracted from this dried powder using 90% methanol, following previously de-
scribed protocols [25]. The total phenolic content (TPC) and antioxidant activity—measured
as ferric-reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity
(CUPRAC)—of the extracts were determined as previously reported [26], with the results
expressed in terms of gallic acid equivalents (GAE) per 100 g and Trolox equivalents (TE)
per 100 g, respectively. All three (TPC, FRAP, and CUPRAC) were expressed on a dry
weight basis.

2.4. Collection of MIR Spectra

Mid-infrared spectra were collected from the dried, ground chili powder using a
Bruker Alpha Fourier transform infrared (FTIR) spectrophotometer (Ettlingen, Germany).
A single-reflection diamond crystal attenuated total reflectance (ATR) module was used
to ensure firm contact between the sample and the infrared beam. The spectra were
recorded between 4000–400 cm−1 in triplicate for each sample (n = 300 spectra), with each
spectra being the average of 24 scans at 4 cm−1 resolution. Spectra were exported in Opus
(*.0) format.
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2.5. Data Processing and Analysis

Chemometric analysis of the NIR and MIR spectra was conducted using the Unscram-
bler X software (Camo Analytics; Oslo, Norway). Figures were drawn in the Unscrambler
X and in R Studio running R 4.0.2 [27].

For the development of the predictive chemometric models, the data set was split
into a calibration set and a validation set, comprising 80% and 20% of the sample set,
respectively. Two regression methods were trialed—partial least squares regression (PLS-R)
and support vector regression (SVR). PLS-R is a linear quantitative modeling algorithm that
has been extensively used in spectral analysis and particularly in the infrared wavelength
range (NIR and MIR). It is always used to avoid multiple collinearities by reducing a large
number of independent variables into a new set of unrelated variables called latent variables
(LVs). In our case, the X matrix containing the MIR and NIR spectra was used to build
the PLS2 models. The response matrix Y contains four variables to be predicted, namely
DM, TPC, FRAP, and CUPRAC. The number of latent variables chosen in this study is
based on cross-validation using the leave-one-out cross-validation procedure [28]. Support
vector analysis (SVR) is oriented from SVM (support vector machine). This method is very
interesting because it can solve practical problems such as a small sample, nonlinearity, and
high dimension. In this study, the SVM method was applied using linear kernel algorithms
applied using nu-SVM.

Before calculating regression models, the NIR and MIR spectra were subjected to
different methods of pre-processing, including standard normal variate (SNV), multiplicate
scatter correction (MSC), and the 1st and 2nd derivatives using a Savitzky-Golay algorithm
(10 pts/side). Both SNV and MSC are generally applied to spectral data to decrease the
influence of light scattering and the baseline shift. The purpose of the derivatives was to
reduce the influence of random noise, highlight the subtle frequency band shape, maintain
relative frequency band intensity information, and improve the resolution of overlapping
frequency bands (Jie et al. [29]). The Savitzky-Golay derivative uses a smoothing procedure
that is useful to decrease random noise and increase the signal-to-noise ratio.

The accuracy of the models was evaluated by root mean square error of prediction
(RMSEP), cross-validation (RMSECV), calibration (RMSEC), determination coefficients
calibration (R2

cal), cross-validation (R2
CV) and prediction (R2

pred) and the ratio of prediction
to deviation (RPD). RPD was calculated by dividing the standard deviation of the sample set
by the RMSEP. Nicolaï et al. [30] considered that an RPD of 3 indicated an excellent model;
between 2.5–3 indicated a good model; between 2–2.5 indicated that coarse quantitative
predictions are possible; while an RPD of 1.5–2 suggested that the model could discriminate
between low and high values of the analyte.

3. Results
3.1. Dry Matter, TPC, and FRAP Content

The mean, SD (standard deviation), minimum, maximum, and CV (coefficient of
variation) of the DM, TPC, FRAP, and CUPRAC of the pepper fruit are presented in Table 2.
As shown in Table 2, the DM content of the chili samples ranged from 8.39–12.64%, with a
mean DM content of 10.52%. As shown by the CV of 4.8%, the range of DM contents was
not as wide as that reported by previous researchers [20,21]; however, it represented the
typical range of DM content found in pepper fruits around the point of harvest [11].

The TPC ranged from 898–2617 mg GAE/100 g, a slightly larger range than that
obtained by Toledo-Martín et al. [6] (919–1803 mg GAE/100 g), with a much higher
CV (20.5%). The FRAP and CUPRAC showed a similarly wide variation, with CVs of
23.7 and 19.8%, respectively. The mean FRAP (296 mg TE/100 g) was slightly higher than
that previously found in green pepper pulp by Sora et al. [31] (107 mg TE/100 g), although
lower than the value of ~425 mg TE/100 g found by Qiao et al. [32]. The mean CUPRAC
(1917 mg TE/100 g) was also higher than the range of CUPRAC values (882–1280 mg
TE/100 g) found by Parnea et al. [33] in a range of pepper varieties.
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Table 2. Range, mean standard deviation, and coefficient of variation for the DM, TP, FRAP, and
CUPRAC datasets.

DM Content (%) TPC
(mg GAE/100 g)

FRAP
(mg TE/100 g)

CUPRAC
(mg TE/100 g)

Minimum 8.39 898 168 1256
Maximum 12.64 2617 615 3138

Mean 10.52 1300 296 1917
SD 0.86 267 70 379

CV (%) 4.82 20.54 23.65 19.77
SD = Standard deviation; CV = coefficient of variation.

3.2. NIR and MIR Spectra

Figure 1 shows the unprocessed NIR spectra of the chili samples. Peaks were located
at approximately 1450, 1190, and 970 nm, similar to that reported by Penchaiya et al. [20].
These absorption bands can be attributed primarily to the OH 1st overtone, CH 2nd
overtone stretch, and OH 2nd overtone, respectively [34,35].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 14 
 

previously found in green pepper pulp by Sora et al. [31] (107 mg TE/100 g), although 

lower than the value of ~425 mg TE/100 g found by Qiao et al. [32]. The mean CUPRAC 

(1917 mg TE/100 g) was also higher than the range of CUPRAC values (882–1280 mg 

TE/100 g) found by Parnea et al. [33] in a range of pepper varieties. 

Table 2. Range, mean standard deviation, and coefficient of variation for the DM, TP, FRAP, and 

CUPRAC datasets. 

 
DM Content 

(%) 

TPC  

(mg GAE/100 g) 

FRAP  

(mg TE/100 g) 

CUPRAC  

(mg TE/100 g) 

Minimum 8.39 898 168 1256 

Maximum 12.64 2617 615 3138 

Mean 10.52 1300 296 1917 

SD 0.86 267 70 379 

CV (%) 4.82 20.54 23.65 19.77 

SD = Standard deviation; CV = coefficient of variation. 

3.2. NIR and MIR Spectra 

Figure 1 shows the unprocessed NIR spectra of the chili samples. Peaks were located 

at approximately 1450, 1190, and 970 nm, similar to that reported by Penchaiya et al. [20]. 

These absorption bands can be attributed primarily to the OH 1st overtone, CH 2nd 

overtone stretch, and OH 2nd overtone, respectively [34,35]. 

 

Figure 1. The NIR spectra of the chili samples, between 908–1676 nm were obtained using the 

handheld microNIR probe. 

The MIR spectra of the dried chili powder showed a greater number of peaks (Figure 

2), with major peaks corresponding to OH from moisture (approx. 3300 cm−1), CH3, and 

CH2 groups such as those found in fatty acids (3000–2800 cm−1), C=O (1750 cm−1), amide 

and cellulose groups (1000 cm−1) [36,37]. 

Figure 1. The NIR spectra of the chili samples, between 908–1676 nm were obtained using the
handheld microNIR probe.

The MIR spectra of the dried chili powder showed a greater number of peaks (Figure 2),
with major peaks corresponding to OH from moisture (approx. 3300 cm−1), CH3, and CH2
groups such as those found in fatty acids (3000–2800 cm−1), C=O (1750 cm−1), amide and
cellulose groups (1000 cm−1) [36,37].
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3.3. Prediction of DM, TPC, FRAP, and CUPRAC Using NIR Spectroscopy

Table 3 summarizes the results obtained for the prediction of the four parameters of
interest using NIR spectroscopy combined with PLS-R or SVR. As can be seen in this table,
the pre-processing methods used had a significant impact on the quality of the PLS-R and
SVR models.

Using the PLSR algorithm, NIR spectroscopy showed good results for the predic-
tion of dry matter content, with most of the R2 values ranging between 0.67–0.79 and
0.27–0.74 (0.60–0.74 excluding the SG1 pre-processing) respectively for the calibration and
prediction datasets, respectively. The relative error obtained varied between
0.40–0.51% and 0.38–0.48% for calibration and validation, respectively. The pre-processing
method had a strong influence on the model quality, with the best model constructed
using no pre-processing. In contrast, quite poor results were found using PLS regression
for the prediction of TPC, FRAP, and CUPRAC contents, with RPD values <1.5 for all of
these analytes.

On the other hand, the application of the SVR algorithm showed satisfactory results for
the prediction of the four analytes of interest. The best predictive results for TPC exhibited
an R2

pred of 0.65 and an RMSEP of 464 mg/100 g, using the first derivative Savitsky-Golay
pre-processing. For FRAP, the best model presented an R2

pred of 0.71 and an RMSEP of
70 mg/100 g. For CUPRAC, the best predictive model gave an R2

pred of 0.73 and RMSEP
of 512 mg/100 g, while the best model for DM showed an R2

pred of 0.96 and RMSEP of
0.63% (Figure 3). Those models were calculated after applying the second derivative with
the Savitsky-Golay algorithm to the spectral data (Table 3).

As has been noted for PLSR, the application of spectral pre-processing had a significant
effect on the prediction results obtained by SVR. Furthermore, the optimal pre-processing
method differed depending on the targeted analyte.
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Table 3. Statistical parameters were obtained from the application of the PLSR and SVR algorithms
on the NIR spectra dataset using different pre-processing methods.

Pre-Processing Analyte LVs (PLS)
R2

cal RMSEC R2
pred RMSEP RPD

PLS SVR PLS SVR PLS SVR PLS SVR PLS SVR

None DM 16 0.79 0.26 0.403 0.77 0.74 0.00 0.384 0.748 2.020 1.037
TPC 14 0.33 0.17 134.704 150.012 0.00 0.00 466.55 478.457 0.974 0.950

FRAP 9 0.47 0.44 47.095 48.219 0.00 0.58 65.669 68.365 0.825 0.793
CUPRAC 12 0.51 0.3 227.701 272.766 0.11 0.00 397.912 408.715 1.088 1.059

SG1 DM 16 0.67 0.84 0.506 0.356 0.27 0.00 0.646 0.407 1.200 1.905
TPC 16 0.57 0.53 107.029 116.674 0.00 0.65 451.12 463.816 1.008 0.980

FRAP 7 0.48 0.58 46.485 41.599 0.00 0.62 66.396 72.911 0.816 0.743
CUPRAC 8 0.52 0.64 225.74 196.814 0.1 0.00 410.437 421.314 1.055 1.028

SG2 DM 14 0.74 0.96 0.451 0.178 0.70 0.53 0.411 0.737 1.887 1.052
TPC 14 0.33 0.85 133.998 64.145 0.00 0.00 458.849 498.795 0.991 0.911

FRAP 14 0.54 0.78 43.612 30.317 0.00 0.18 69.897 109.985 0.775 0.493
CUPRAC 16 0.55 0.94 217.4 81.961 0.16 0.73 387.086 512.456 1.118 0.845

SNV DM 14 0.74 0.57 0.45 0.592 0.60 0.00 0.477 0.695 1.626 1.116
TPC 13 0.33 0.29 134.351 142.789 0.00 0.00 463.32 483.741 0.981 0.940

FRAP 12 0.52 0.46 44.619 47.303 0.00 0.00 66.706 68.768 1.064 1.065
CUPRAC 11 0.51 0.42 227.34 247.69 0.1 0.68 406.903 406.541 0.812 0.133

SNV Detrend 1 DM 13 0.73 0.65 0.453 0.548 0.68 0.86 0.428 0.618 1.812 1.255
TPC 12 0.31 0.27 136.107 141.195 0.00 0.00 467.973 480.962 0.971 0.945

FRAP 12 0.53 0.5 44.401 37.4 0.00 0.19 68.356 137.117 0.793 0.395
CUPRAC 11 0.51 0.45 226.828 241.311 0.1 0.00 403.157 398.094 1.074 1.087

SNV Detrend 2 DM 15 0.77 0.56 0.42 0.606 0.65 0.96 0.449 0.627 1.727 1.237
TPC 11 0.35 0.28 131.832 142.285 0.00 0.00 456.291 478.666 0.996 0.950

FRAP 10 0.52 0.47 44.591 46.796 0.00 0.71 66.036 69.674 0.821 0.778
CUPRAC 5 0.44 0.41 48.316 250.391 0.1 0.00 410.62 401.767 1.054 1.078

MSC DM 14 0.76 0.58 0.433 0.586 0.69 0.92 0.421 0.603 1.842 1.286
TPC 10 0.31 0.26 136.506 142.963 0.00 0.00 466.013 478.457 0.975 0.950

FRAP 11 0.51 0.46 45.229 47.476 0.00 0.59 66.642 71.41 0.813 0.759
CUPRAC 11 0.52 0.4 226.31 251.503 0.1 0.00 403.342 400.865 1.073 1.080
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 CUPRAC 12 0.51 0.3 227.701 272.766 0.11 0.00 397.912 408.715 1.088 1.059 

SG1 DM 16 0.67 0.84 0.506 0.356 0.27 0.00 0.646 0.407 1.200 1.905 

 TPC 16 0.57 0.53 107.029 116.674 0.00 0.65 451.12 463.816 1.008 0.980 

 FRAP 7 0.48 0.58 46.485 41.599 0.00 0.62 66.396 72.911 0.816 0.743 

 CUPRAC 8 0.52 0.64 225.74 196.814 0.1 0.00 410.437 421.314 1.055 1.028 

SG2 DM 14 0.74 0.96 0.451 0.178 0.70 0.53 0.411 0.737 1.887 1.052 

 TPC 14 0.33 0.85 133.998 64.145 0.00 0.00 458.849 498.795 0.991 0.911 

 FRAP 14 0.54 0.78 43.612 30.317 0.00 0.18 69.897 109.985 0.775 0.493 

 CUPRAC 16 0.55 0.94 217.4 81.961 0.16 0.73 387.086 512.456 1.118 0.845 

SNV DM 14 0.74 0.57 0.45 0.592 0.60 0.00 0.477 0.695 1.626 1.116 

 TPC 13 0.33 0.29 134.351 142.789 0.00 0.00 463.32 483.741 0.981 0.940 

 FRAP 12 0.52 0.46 44.619 47.303 0.00 0.00 66.706 68.768 1.064 1.065 

 CUPRAC 11 0.51 0.42 227.34 247.69 0.1 0.68 406.903 406.541 0.812 0.133 

SNV Detrend 1 DM 13 0.73 0.65 0.453 0.548 0.68 0.86 0.428 0.618 1.812 1.255 

 TPC 12 0.31 0.27 136.107 141.195 0.00 0.00 467.973 480.962 0.971 0.945 

 FRAP 12 0.53 0.5 44.401 37.4 0.00 0.19 68.356 137.117 0.793 0.395 

 CUPRAC 11 0.51 0.45 226.828 241.311 0.1 0.00 403.157 398.094 1.074 1.087 

SNV Detrend 2 DM 15 0.77 0.56 0.42 0.606 0.65 0.96 0.449 0.627 1.727 1.237 

 TPC 11 0.35 0.28 131.832 142.285 0.00 0.00 456.291 478.666 0.996 0.950 

Figure 3. Predicted vs. reference results for the application of NIR spectroscopy for the prediction of
dry matter, TPC, FRAP, and CUPRAC contents.
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3.4. Prediction of DM, TPC, FRAP, and CUPRAC Using MIR Spectroscopy

The investigation of the MIR spectral data by PLS regression revealed good calibration
results for the four parameters of interest but poor predictive ability when applied to the
validation dataset (Figure 4; Table 4). The best-performing model was for DM content, with
an R2

pred of 0.54, RMSEP of 0.51%, and RPD of 1.51. The other models showed R2
pred of

≤0.2 and RPD values below 1.5. Again, the pre-processing method had a moderate impact
on model accuracy.
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Table 4. Statistical parameters were obtained from the application of the PLSR and SVR algorithms
on the MIR spectra dataset using different pre-processing methods.

Pre-Processing Analyte LVs (PLS)
R2

cal RMSEC R2
pred RMSEP RPD

PLS SVR PLS SVR PLS SVR PLS SVR PLS SVR

None DM 12 0.51 0.56 0.613 0.863 0.54 0.08 0.513 1.232 1.512 0.629
TPC 12 0.58 0.84 113.289 75.956 0.00 0.77 482.832 499.78 0.942 0.910

FRAP 12 0.65 0.89 42.962 26.14 0.00 0.17 128.45 180.553 0.422 0.300
CUPRAC 12 0.88 0.84 120.36 148.391 0.00 0.37 519.759 618.733 0.833 0.700

SG1 DM 12 0.52 0.99 0.613 16.043 0.40 0.84 0.585 0.815 1.326 0.952
TPC 12 0.71 0.99 93.607 3.431 0.00 0.80 471.339 533.946 0.964 0.851

FRAP 12 0.59 0.99 46.706 9.691 0.00 0.68 65.721 70.712 0.824 0.766
CUPRAC 12 0.82 0.99 116.077 0.006 0.00 0.79 491.5 671.999 0.881 0.644

SG2 DM 11 0.58 0.99 0.569 0.001 0.38 0.67 0.595 1.048 1.303 0.740
TPC 11 0.83 0.99 72.582 0.204 0.00 0.79 474.649 483.197 0.958 0.941

FRAP 10 0.66 0.99 42.248 0.078 0.20 0.96 46.323 95.737 1.170 0.566
CUPRAC 4 0.87 0.99 126.191 0.372 0.10 0.99 404.672 477.769 1.070 0.906

SNV DM 3 0.49 0.99 0.631 0.102 0.32 0.88 0.624 0.685 1.243 1.132
TPC 14 0.86 0.98 66.217 23.542 0.01 0.86 440.574 433.142 1.032 1.050

FRAP 9 0.43 0.99 54.637 4.162 0.00 0.57 56.479 77.343 0.959 0.701
CUPRAC 5 0.57 0.99 232.55 35.394 0.10 0.52 405.221 505.185 1.068 0.857

SNV Detrend 1 DM 12 0.5 0.98 0.623 0.126 0.30 0.87 0.633 0.742 1.225 1.045
TPC 15 0.86 0.98 65.913 42.887 0.02 0.85 438.021 458.281 1.038 0.992

FRAP 3 0.17 0.99 70.496 8.293 0.00 0.59 54.036 82.396 1.003 0.658
CUPRAC 5 0.55 0.98 241.938 44.334 0.10 0.50 401.332 503.293 1.079 0.860
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Table 4. Cont.

Pre-Processing Analyte LVs (PLS)
R2

cal RMSEC R2
pred RMSEP RPD

PLS SVR PLS SVR PLS SVR PLS SVR PLS SVR

SNV Detrend 2 DM 12 0.49 0.98 0.629 0.127 0.29 0.87 0.635 0.718 1.221 1.080
TPC 15 0.88 0.99 61.821 18.8 0.04 0.86 435.235 446.348 1.044 1.018

FRAP 6 0.25 0.99 62.869 6.942 0.00 0.66 55.665 70.199 0.973 0.772
CUPRAC 5 0.57 0.98 233.641 48.374 0.10 0.88 406.149 522.235 1.066 0.829

MSC DM 12 0.52 0.99 0.613 0.062 0.37 0.88 0.601 0.664 1.290 1.168
TPC 14 0.85 0.99 85.685 13.029 0.00 0.85 449.565 446.884 1.011 1.017

FRAP 6 0.25 0.99 63.098 4.671 0.00 0.58 54.328 76.234 0.997 0.711
CUPRAC 5 0.57 0.97 233.596 63.031 0.10 0.42 407.824 504.007 1.062 0.859

The use of the SVR method showed strong potential for the estimation of the four
parameters of interest, as shown by the high R2 values ranging from 0.86 to 0.99 for both
calibration and validation. The best prediction for CUPRAC and FRAP was obtained by
applying the second derivative Savitzky-Golay pre-processing method, with an R2

pred of
0.99 and 0.96 and RMSEP of 478 and 96 mg/100 g, respectively. For TPC and DM,
the best prediction results were obtained using SNV and MSC pre-processing, respec-
tively. The R2

pred was >0.86 for both analytes, with an RMSEP of 433 mg TE/100 g
and 0.66%, respectively.

3.5. Prediction of DM, TPC, FRAP, and CUPRAC Contents Using Data Fusion of NIR and
MIR Spectroscopy

Finally, data fusion of MIR and NIR spectra was investigated for the prediction of the
four parameters of interest (Figure 5). The application of PLS regression showed a good
ability for the prediction of DM, with an R2

pred of 0.66 and RMSEP of just 0.47% (Table 5).
This was found using no pre-processing, similar to the results previously observed for both
the NIR and MIR models for this analyte. For the other parameters, the application of PLS
regression did not allow the prediction of TPC, FRAP, and CUPRAC with suitable accuracy
(RPD < 1.5 for all).
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Table 5. Statistical parameters were obtained from the application of the PLSR and SVR algorithms
on the combined NIR and MIR spectra datasets, using different pre-processing methods.

Pre-Processing Analyte LVs (PLS)
R2

cal RMSEC R2
pred RMSEP RPD

PLS SVR PLS SVR PLS SVR PLS SVR PLS SVR

None DM 16 0.69 0.93 0.492 0.245 0.60 0.12 0.467 0.734 1.661 1.057
TPC 9 0.38 0.8 138.715 89.122 0.00 0.00 444.826 504.43 1.022 0.901

FRAP 8 0.46 0.72 53.613 48.173 0.00 0.10 72.669 155 0.746 0.350
CUPRAC 4 0.44 0.94 264.692 93.514 0.20 0.10 377.131 463.964 1.148 0.933

SG1 DM 12 0.63 0.99 0.54 0.005 0.40 0.46 0.58 0.806 1.337 0.962
TPC 10 0.38 0.99 138.302 0.638 0.02 0.00 442.631 519.086 1.027 0.876

FRAP 11 0.45 0.99 53.811 3.966 0.00 0.02 68.738 71.269 0.788 0.760
CUPRAC 2 0.49 0.99 253.393 9.41 0.10 0.35 378.035 576.296 1.145 0.751

SG2 DM 12 0.61 0.98 0.549 0.138 0.49 0.22 0.539 0.96 1.439 0.808
TPC 11 0.46 0.98 128.641 23.998 0.03 0.00 437.273 482.028 1.040 0.943

FRAP 9 0.38 0.96 216.228 14.408 0.00 0.10 65.005 79.026 0.834 0.686
CUPRAC 5 0.63 0.94 0.576 85.739 0.10 0.51 400.408 517.878 1.081 0.836

SNV DM 11 0.57 0.82 131.945 0.467 0.48 0.23 0.546 1.173 1.420 0.661
TPC 10 0.44 0.57 60.258 138.805 0.02 0.00 437.747 451.948 1.038 1.006

FRAP 7 0.31 0.77 202.685 36.318 0.00 0.77 69.791 67.445 0.776 0.803
CUPRAC 10 0.67 0.84 0.521 147.952 0.10 0.55 404.968 466.772 1.069 0.927

SNV Detrend 1 DM 12 0.65 0.92 132.309 0.267 0.55 0.27 0.505 0.949 1.536 0.817
TPC 10 0.43 0.74 46.033 95.437 0.03 0.69 436.035 424.868 1.043 1.070

FRAP 14 0.6 0.86 204.903 29.065 0.00 0.35 68.737 73.335 0.788 0.739
CUPRAC 10 0.67 0.84 0.514 164.865 0.10 0.14 406.269 379.48 1.141 1.066

SNV Detrend 2 DM 12 0.66 0.94 131.038 0.215 0.61 0.36 0.471 0.835 1.646 0.929
TPC 10 0.44 0.74 60.769 95.629 0.04 0.52 433.938 433.212 1.048 1.049

FRAP 7 0.44 0.81 203.345 35.055 0.00 0.1 69.287 66.516 0.782 0.815
CUPRAC 10 0.67 0.86 0.574 138.588 0.10 0.22 400.107 435.655 1.082 0.994

MSC DM 10 0.58 0.82 132.535 0.452 0.48 0.21 0.544 1.098 1.426 0.706
TPC 10 0.43 0.81 60.288 79.788 0.02 0.00 438.065 440.913 1.038 1.031

FRAP 7 0.31 0.74 203.178 39.967 0.00 0.56 69.613 65.96 0.778 0.821
CUPRAC 10 0.67 0.86 203.178 142.06 0.10 0.00 406.983 453.391 1.064 0.955

Application of SVR showed good results for all calibration models and moderately
high R2

pred values for the validation models, although interestingly poorer results for
the prediction of DM content. Again, SNV pre-processing showed optimal results for
the prediction of FRAP and CUPRAC, with R2

pred of 0.77 and 0.55 and an RMSEP of
67 & 467 mg/100 g, respectively. The best model for TPC prediction gave an R2

pred of
0.69 and RMSEP of 425 mg/100 g. However, the RPD values remained low for the applica-
tion of SVR to the prediction set.

4. Discussion

The best-performing results for the prediction of DM content found in this study
(R2

pred = 0.74; RMSEP = 0.38%; RPD = 2.02) were considerably better than the corresponding
cross-validation statistics reported by Sánchez et al. [21] for the prediction of DM in fresh
bell pepper fruit (R2

CV = 0.62; RSECV = 0.66%; RPD = 1.64). As accurate prediction results
are more difficult to obtain than accurate cross-validation results (because the samples
being predicted do not comprise part of the test set, the model has not encountered these
spectra before), this indicates considerably better accuracy and robustness of the model. A
comparison with the results of other studies is provided in Table 6.

A lower accuracy was found for the prediction of DM content using MIR spectroscopy
(R2

pred = 0.54; RMSEP = 0.51%; RPD = 1.51). As the MIR spectra were collected from the
dried chili powder, this method could not have been predicting the DM content directly
from the water in the sample. Rather, this prediction is more likely to be an indirect
correlation between the water content and other matrix constituents (e.g., cellulose) that is
intrinsic to the chili samples.

The best model for total phenolic content had an R2
pred of 0.69, RMSEP of 425 mg/100 g,

and RPD of 1.07 (using SVR on the combined NIR and MIR dataset). This was much poorer
than the cross-validation results reported by Toledo-Martín et al. [6], who found a cross-
validation (DW basis) for the prediction of total phenolics in 14 different pepper types.
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However, Toledo-Martín et al. [6] used a high-resolution laboratory-based NIR instrument
(FOSS NIRSystems; 400–2500 nm) with the spectra collected from freeze-dried chili powder.
Furthermore, an external validation set was used in the present study rather than just
cross-validation against the calibration samples. This likely contributes further to the lack
of predictive power for TP content and highlights the challenges of detecting phenolics in
fresh chilies. It is likely that high levels of moisture content could interfere with and obscure
the absorption bands of this analyte. In addition, Toledo-Martín et al. [6] found minimal
loading of peaks in the short-wave NIR region in their TP content model, indicating that
phenolic compounds may not show strong absorption across the range of wavelengths
included in this study (908–1676 nm).

Table 6. Summary of the results for the prediction of DM, TP, FRAP, and CUPRAC content in green
cayenne pepper and their comparison to previous studies on other chili varieties. Note: R2

pred and
RMSEP values are provided where reported; R2

CV and RMSECV values are provided where a test set
was not analyzed.

Study Chili Type DM Content TPC FRAP CUPRAC

NIR spectroscopy

Present study Green cayenne R2
pred = 0.74,

RMSEP = 0.38%

R2
pred = 0.65,

RMSEP = 464
mg/100 g

R2
pred = 0.71

RMSEP = 70
mg/100 g

R2
pred = 0.73,

RMSEP = 512
mg/100 g

Sánchez, et al. [21] Bell pepper
(various)

R2
CV = 0.62,

RMSECV = 0.66%

Toledo-Martín, et al. [6] Bell pepper
(various)

R2
CV = 0.71,

RMSECV = 104
mg/100 g

Ignat, et al. [10] Bell pepper
(various)

R2
CV = 0.93,

RMSECV = 0.4

Kasampalis, et al. [12] Bell pepper
(various)

R2
CV = 0.53,

RMSECV = 0.63%

R2
CV = 0.67,

RMSECV = 44
mg/100 g

Johnson, et al. [38] Habanero R2
CV = 0.65,

RMSECV = 0.50%

R2
CV = 0.21,

RMSECV = 162
mg/100 g

R2
CV = 0.27,

RMSECV = 38
mg/100 g

Kusumiyati, et al. [39] Green cayenne R2
pred = 0.85,

RMSEP = 0.61%

MIR spectroscopy

Present study Green cayenne R2
pred = 0.54,

RMSEP = 0.51%

R2
pred = 0.86,

RMSEP = 433 mg
TE/100 g

R2
pred = 0.96,

RMSEP = 96
mg/100 g

R2
pred = 0.99,

RMSEP = 478
mg/100 g

Johnson, et al. [38] Habanero R2
CV = 0.28,

RMSECV = 0.86%

R2
CV = 0.37,

RMSECV = 145
mg/100 g

R2
CV = 0.40,

RMSECV = 35
mg/100 g

Domínguez-Martínez,
et al. [19] 1 Serrano

R2
CV = 0.94,

SEP = 0.02 mg
GAE/100 g

1 Study was performed on the ground, freeze-dried powder.

Similarly, the best models for FRAP and CUPRAC had an RMSEP of 46 mg/100 g
(RPD = 1.17) and an RMSEP of 379 mg/100 g (RPD = 1.07), respectively. This indicated
that the infrared spectroscopy methods used in this study were unable to accurately
discriminate between high or low levels of antioxidant capacity of chili samples. Prediction
of antioxidant capacity (as measured by either of these methods) does not appear to have
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been previously attempted in this crop in the literature; however, the DPPH method has
been used [23]. While these authors reported some success, the results are not directly
comparable to either the FRAP or CUPRAC assays.

5. Conclusions

As demonstrated in this study, the use of rapid handheld NIR instrumentation shows
promise for the prediction of dry matter content in cayenne peppers. This could potentially
be useful for measuring the ripeness of fruit in the field while the fruit is still on the plant. In
turn, this could guide decisions on harvesting times, staffing requirements, and irrigation
requirements. The model for predicting total phenolic content did not perform well,
suggesting that further research in this field is required. Furthermore, the optimal spectra
pre-processing strategy differed between various analytes, suggesting that it is difficult to
know beforehand which pre-processing would lead to the most accurate predictive models.
On the other hand, MIR spectroscopy showed limited accuracy in this crop, which is likely
to limit its use—particularly as it also is confined to benchtop operation at present.
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