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Jean-Michel Roger1,2
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Multispectral image time-series have been promising for some years; yet, the substantial
advance of the technology involved, with unprecedented combinations of spatial,
temporal, and spectral capabilities for remote sensing applications, raises new
challenges, in particular, the need for methodologies that can process the different
dimensions of satellite information. Considering that the multi-collinearity problem is
present in remote sensing time-series, regression models are widespread tools to
model multi-way data. This paper presents the results of the analysis of a high order
data of Sentinel-2-time series, conducted in the framework of extreme weather event. A
feature extraction method for multi-way data, N-CovSel was used to identify the most
relevant features explaining the loss of yield in Mediterranean vineyards during the 2019
heatwave. Different regression models (uni-way and multi-way) from features extracted
from the N-CovSel algorithm were calibrated based on available heat wave impact data for
107 vineyard blocks in the Languedoc-Roussillon region and multispectral time-series
predictor data for the period May to August. The performance of the models was evaluated
by the r2 and the root mean square of error (RMSE) as follows: for the temporal N-PLS
model (r2 = 0.62—RMSE = 11%), for the spatial N-PLS model (r2 = 0.61—RMSE = 12%)
and the temporal-spectral PLS model (r2 = 0.63—RMSE = 11%). The results validated the
effectiveness of the proposed N-CovSel algorithm in order to reduce the number of total
variables and restricting it to the most significant ones. The N-CovSel algorithm seems to
be a suitable choice to interpret complex multispectral imagery by temporally
discriminating the most appropriate spectral information.

Keywords: feature extraction, multi-way, covariance selection, remote sensing, times-series, grapevine

1 INTRODUCTION

From the point of view of data visualisation and interpretation, multi-way analysis allows
simplification of the results, providing more adequate and robust models using relatively few
parameters (Salvatore et al., 2013). According to Henrion (1994), as information becomes more
complex, i.e., extremely diverse in terms of information, size and behaviour, the concept of a “data
set” naturally expands from traditional tables, such as matrices, to higher-dimensional arrays. In fact,
the use of multi-way analysis allows connected pieces of information to reflect variation spread across
components, events or sources that are represented differently and, yet, complement each other in
the simultaneously analysed data (de Juan and Tauler, 2019). Multispectral imaging (MSI) is a well-
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known imaging techniques that has its origins in remote sensing.
In practice, regardless of the applications, different approaches to
deal with the increasing data volumes and variability of the data
from satellite based time-series imaging, such as Sentinel-2 (A/B),
can be found in the remote sensing literature (Picoli et al., 2020).
In recent years, spatial-spectral feature extraction has been a
developing field of research managing high-dimensional data
(Hong et al., 2020). However, in addition to spatial
information, the Sentinel-2 satellites contain spectral
information with 5-day revisit time, which provides a detailed
overview of land and vegetation.

Multispectral imaging techniques applied to temporal series
represent an important research tool to assess the impacts of
Climate Change (CC) on agricultural systems as it allows spatially
and temporally continuous phenomenon to be monitored. The
main abiotic factors in the life cycle of crops, especially during the
growing period, are weather conditions, which determine the
quantity and quality of agricultural production (Raza et al., 2019).
One of the most measurable effects of CC is the gradual rise in
temperature, which leads to an increase in the frequency and
severity of extreme weather events (Droulia and
Charalampopoulos, 2021). According to Venios et al. (2020)
fluctuations in environmental conditions, particularly ambient
temperature, strongly influence plant growth and development
processes. As a result, remote sensing has the potential ability to
assess the impact of an extreme weather effect, e.g., a heatwave, as
the reflectance spectrum changes depending on growth
circumstances and the time of measurement relative to the
stage of crop development (Filella et al., 1995; Cogato et al.,
2019). However due to the complexity of combining spatial,
spectral, and temporal information derived from remote
sensing, there are still challenges in dealing with increased
data volumes and variability of these data (Bishop, 2013).
Making the most of multispectral image time-series is a
promising but still relatively underexplored research direction
in the context of life sciences.

The use of multi-way analysis in remote sensing, such as N-way
partial least squares (N-PLS) regression, shares all the advantages of
latent-based regression and discrimination methods, i.e., data
visualisation and interpretation (Favilla et al., 2013; Lopez-
Fornieles et al., 2022). In addition, it allows the representation of
data patterns, feature correlation and covariance structure
characteristic over time-series images (Coppi, 1994; Favilla et al.,
2013). When a two-dimensional signal characterizes each sample, as
generated by MSI, such as wavelength/time information, it is often
needed to define which are the most relevant features to predict the
studied dependent properties. When it comes to deal with complex
datasets, a generalised option is the selection of variables (or feature
extraction) (Trevino and Falciani, 2006) as these methods allow to:
1) select relatively small number of total variables and restrict it to the
most significant ones, i.e., for subsequent application in regression/
classification models and 2) to understand which variable
contributes the most to the investigated system, i.e., interpretative
purposes (Biancolillo et al., 2021). Several variable selection
methodologies have been proposed in the literature (Mehmood
et al., 2012), and yet most of variable selection methods refer to
contexts in which data is collected in a matrix rather than a in

higher-order structure, thus loosing the multi-way analysis
advantage (Favilla et al., 2013). However, Biancolillo et al. (2022)
proposed an alternative variable selection approach for multi-way
data, N-way Covariance Selection (N-CovSel). The N-CovSel
algorithm is based on the same main principle as the covariance
selection algorithm (CovSel) introduced by Roger et al. (2011) for
data collected in data matrices. The latter approach is designed to
select variables in regression and discrimination contexts, and to
assess the relevance of variables based on their covariance with the
response(s). Iteratively, the predictor with the highest covariance is
selected and the datamatrix (X) and the variable of interest to predict
(y) are orthogonalised with respect to this variable (Biancolillo et al.,
2022). By providing filter selection based on model parameters and
integrating them into the model construction, the N-CovSel
algorithm opens the possibility to select information in a
complex dataset as a multi-directional structure.

Regarding agricultural systems and CC impact with time-
series of multispectral images, such a variable selection approach
for high order data arrays, could bring a better understanding of
how crop growth dynamic is affected by the occurrence of an
extreme weather event. Therefore, the objectives of this study are
to 1) propose a formalism to apply the N-CovSel approach to a
time-series of images at the regional scale in order to predict a
small variable of interest, 2) to show the value of methods
originally developed in the analytical chemistry domain to be
applied to larger scales and life sciences domains and 3) to
identify the possible limitations of the approach when dealing
with time series of satellite images.

The work is organized as follows: Section 2 introduces the
proposed N-CovSel algorithm and the development of the model
as well as the description of the case study that the methodology is
applied to. The results are showed in Section 3, with the
discussion in Section 4.

2 MATERIALS AND METHODS

2.1 Notations
Upper case bold and underlined characters will be used for N-way
arrays, e.g., X (I,J,K) indicates a 3-way array with I samples
described by J times at K wavelengths. Upper case bold characters
will be used for matrices, e.g., X and lower case bold characters
will be used for column vectors, e.g., y. Non-bold italics will be
used for scalars. Upper case characters for fixed values, e.g., the
number of samples I and lower case characters will be used for
running indexes, e.g., a slice k from the third mode of X. A
column of X will be noted x. jk and a slice of X will be noted X. j.

or X. k..

The N-CovSel method allows the selection of the best set of
predictors (features) in an N-way array (X) on the basis of its
covariance with a response vector (y) or a response matrix (Y)
(Biancolillo et al., 2022).

2.1.1 Definition of Features
When selecting features in a N-way array, different solutions are
possible. In fact, it is possible to define different features
depending on the number of way arrays of the input data
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structure. As determined by Biancolillo et al. (2022), for a 3-way
data, i.e., a cube, two distinct options are possible: 1) a 2-D feature
(Figures 1A,B), i.e., a variable in one mode without discarding
any variable in the other (e.g., a slice Xj or a slice Xk) and 2) a 1-D
feature (Figure 1C), i.e., a single variable in each mode, e.g., the
column (xjk).

2.1.2 Algorithm
N-CovSel algorithm is an extension of the above mentioned
CovSel feature selection approach by Roger et al. (2011) to
high-order data. To assess the relevance of features in a 3-way
array (X) context to predict a response vector y relying on
covariance, Biancolillo et al. (2022) defined the N-CovSel
algorithm as follows:

1) Determine the structure of the features to be selected,
i.e., columns or slices.

2) Define the number of features to be selected.
3) Select the feature of X with the highest squared covariance

with y.
4) Deflate X of the information present in the selected feature.
5) Continue from Step 3 until the value defined in step 2 is

reached.

2.2 Case-Study
The Languedoc-Roussillon (LR) wine-growing area experienced a
heatwave from the 23rd of June to the 8th July of 2019, with
temperatures reaching 45°C on 28th June 2019. Extreme weather

events, such as a heatwave, occurring on very rapid time scales
during crucial periods of vine plant development (e.g., growing
stage) will induce symptoms that may lead to stalled
development, leaf burn and leaf drop (Schymanski et al., 2013;
Lopez-Fornieles et al., 2022). According to Cogato et al., 2019,
remote sensing data could provide valuable information from
spectral-temporal dimensions to characterise the impact of
heatwaves on perennial crops by providing a detailed time
series of data on the physiological and physical properties
changes of the cultivation (Plant et al., 2000).

The N-CovSel algorithm should therefore constitute a relevant
approach to create a model on a reduced set of information
highlighting the extreme weather phenomenon taking into
account its spectral-temporal evolution.

2.2.1 Ground Truth Data
Ground truth data were selected from 107 non-irrigated vineyard
blocks in the northern part of the LR region that all showed some
effects related to the heatwave (Figure 2A). The severity of this
effect was assessed by winegrowers and advisors on each of the
107 vineyard blocks by estimating the percentage of yield loss
several weeks after 28th June 2019 corresponding to the peak of
the extreme weather event. Severity was assessed several weeks
later by estimating the percentage yield loss based on heat wave-
related effects such as stalled development, scorching and leaf
drop. It was acknowledged that it was sometimes difficult to
attribute losses exclusively to the heatwave. Figure 2B
summarises the distribution of the 107 blocks according to
yield loss.

2.2.2 Remote Sensing Data
Satellite images were selected via the Google Earth Engine (GEE)
platform that provides Sentinel-2 L2A products. Sentinel-2 (A/B)
satellites, with a revisit frequency of 10 days (5 days with the twin
satellites together), provide 13 spectral bands from visible (Vis) to
shortwave infrared (SWIR) with a spatial resolution of 10, 20 and
60 m depending on the spectral band (Table 1) (Lopez-Fornieles
et al., 2022). Spectral band 10at 1,380 nm was not used in this
study as it is designed for the detection of visible and sub-visible
cirrus clouds (Hollstein et al., 2016).

Images containing the study vineyards (Section 2.3.1) were
selected and processed via Google Earth Engine (GEE) (Lopez-
Fornieles et al., 2022). Images were selected over a period
encompassing the heatwave event; from 13th May to the 20th
August 2019. Before calculating the average pixel values for each
block, each date and each waveband, in order to avoid mixed
pixels: 1) blocks boundary were extracted from the graphical
parcel register of France (RPG) and 2) a 10 m inner-buffer was
imposed over the boundary of each block (Lopez-Fornieles et al.,
2022).

For the time period considered for the study (from May to
August), defined as the most relevant period for monitoring vine
growth vegetation in LR region (Devaux et al., 2019), 25 images
should have been potentially available on each block. However,
the number of images per block varied according to the local
atmospheric conditions over each block for each acquisition date
(Lopez-Fornieles et al., 2022). The number of available images for

FIGURE 1 | Features in a 3-way array represented in (A) J-axis slice, (B)
K-axis slice and (C) J,K-column (Biancolillo et al., 2022).
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each block was 11 on average, being eight the standard deviation
of the set of values.

2.2.3 Modelling
2.2.3.1 Data Array Construction
To overcome the challenge of heterogeneity in the number of images
per block, an interpolationwas performed to obtain a continuous data
cube X (I × J × K). The interpolation at a date t was done wavelength
by wavelength, by a convolution of the chronology measured with a
Gaussian filter (Alam et al., 2008) in order to have a consistent time
step dimension (J) between the 13th May and 20th August 2019. The
parameters involved in the interpolation setting were fixed to the
Gaussian filter width (P) = 30 and date interval (N) = 5.

At the end of the interpolation step, the data set was
meaningfully arranged in a three-way array X of
dimensionality 107 (samples, I) × 19 (times, J) × 12
(wavelengths, K) and a vector y (107), corresponding to the
yield loss rates of the 107 blocks.

2.2.3.2 Model Calibration and Validation
A calibration and validation subset were created to build and evaluate
themodel. Considering the samples from the variable to be predicted,

a calibration set (3/4) and a test set (1/4) have been defined by its
distribution (Figure 2B), as follows Lopez-Fornieles et al. (2022):

1) The vector y was sorted in ascending order.
2) After sorting, every fourth individual was placed in the

validation set and the others were kept in the calibration set.

At the end of this step, the data were therefore: 1) a calibration
set Xc (I = 80, J = 19, K = 12) and 2) a test set Xt (I = 27, J =
19, K = 12).

2.2.3.3 Regression Model Application
As explained in Section 2.1, when selecting features in a 3-way
array, different outcomes of N-CovSel were obtained. Thus, the
structure of the initial data was reduced in either time or
wavelengths slices (2-D features) or in columns (1-D features),
i.e., date-wavelength coupling.

For the structure features (F) in 2-D, the number of best
features in the calibration set was defined as follows:

1) For the temporal slices (Figure 1A), the number of features
defined was F = 15. Thus the F = 15 dates were sorted in

FIGURE 2 | (A) Map of the 107 ground truthed blocks with known estimated percentage of yield loss after the heatwave and (B), percentage of yield losses
observed by winegrowers and advisors on 107 vine blocks in southern France (Lopez-Fornieles et al., 2022).

TABLE 1 | Spectral bands for the Sentinel-2 satellite considered by the analysis.

Sentinel-2 band Central wavelength (nm) Bandwidth (nm) Spatial resolution (m)

Band 1—Aerosol 442.7 21 60
Band 2—Blue 492.4 66 10
Band 3—Green 559.8 36 10
Band 4—Red 664.6 31 10
Band 5—Vegetation Red Edge 704.1 15 20
Band 6—Vegetation Red Edge 740.5 15 20
Band 7—Vegetation Red Edge 782.8 20 20
Band 8—NIR 842.8 106 10
Band 8A—Vegetation Red Edge 864.1 21 20
Band 9—VNIR 945.1 20 60
Band 11—SWIR 1,613.1 91 20
Band 12—SWIR 2,202.4 175 20
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decreasing order of interest, providing a list of indices {j1,
j2, . . ., jF}.

2) For the spectral slices (Figure 1B), as the total number of
Sentinel-2 satellites wavelengths is 12, the number of features
defined was F = 12. Thus, the F = 12 wavelengths were sorted
in decreasing order of interest, providing a list of indices {k1,
k2, . . ., kF}.

3) For the structure features in 1-D (Figure 1C), the number
features defined was F = 15. Thus, the F = 15 date-
wavelength coupling were sorted in decreasing order of
interest, providing a list of pairs of indices {(j1,k1), (j2,k2),
. . ., (jF,kF)}.

Once the N-CovSel algorithm had selected the variables’
relevancy on the basis of their covariance with the response(s)
(Biancolillo et al., 2022), a regression model adapted to the
reduced data set was applied. Depending on the structure of
the selected features, different data analysis strategies can be
applied. In the case of 2-D, as the feature selection is of higher
order, features have been analysed using multi-way approach,
whereas in the case of 1-D the most intuitive option was combine
them into a matrix, and then applying a traditional chemometric
approach (Biancolillo et al., 2022), as follows:

1) For the temporal slices, F = 15 N-way Partial Least Squares
(N-PLS) models (Bro, 1996) were then calculated on the
calibration set, using the slices {j1}, {j1, j2}, . . ., {j1, j2, . . ., jF}.

2) For the spectral slices, F = 12 N- PLS models (Bro, 1996) were
then calculated on the calibration set, using the slices {k1}, {k1,
k2}, . . ., {k1, k2, . . ., kF}.

3) For the columns (date-wavelength), F = 15 Partial Least
Squares (PLS) models (Wold et al., 2001) were then
calculated on the calibration set, using the columns
{(j1,k1)}, {(j1,k1), (j2,k2)}, . . ., {(j1,k1), (j2,k2),. . ., (jF,kF)}.

Figure 3 summarises the workflow of the N-CovSel model
calibration, and its implementation for a regression model
according to the structure of its outcomes (slice or column).

2.2.3.4 Model Evaluation
For each regression model calculated (N-PLS and PLS), a
Standard Error of Calibration (SEC) was calculated, using the
maximum number of latent variables (LV). In addition, a cross-
validation of eight random blocks repeated 20 times, provided a
Standard Error of Cross-Validation (SECV), using the same
number of LVs. The joint analysis of SEC and SECV,
according to the specific features (F) of the models, either
according of the number of slices used (2-D) or the number
of date-wavelength couplings used (1-D) was considered for the
selection of optimal N-PLS and PLS models, respectively.

These three different PLS models (two multi-way and one uni-
way) were then applied to the test set. Bias and Standard Error of
Prediction (SEP) were calculated on this prediction. Thus, the
predictive performance of the regression models was quantified

FIGURE 3 | Workflow diagram of the N-CovSel model calibration and the suitable choice of the regression method according to the structure of the features
selected by the algorithm.
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by the square of the correlation coefficient r2, the bias and the
standard error parameters in the calibration and test subsets.

3 RESULTS

3.1 Three-Way Data Array Over the Study
Case
The remote sensing data were organised in a three-way array (X)
without temporal data gaps due to clouds and inconsistent number
of available satellite images. Figure 4 shows the interpolated spectra
on the J = 19 dates, for the I = 107 plots (Section 2.3.3).

Figure 4 shows typical properties of a time series that should
not be neglected in satellite-based studies and applications. A
high correlation between wavelengths was observed for nearby
dates, which can be explained by the following factors: 1) remote
sensing data sets themselves tend to be data structures with high
covariance and redundancy (Lopez-Fornieles et al., 2022) and, 2)
by interpolating missing data, the correlation within the
multivariate data structure was increased. Moreover, other

potential sources of uncertainties such as multiplicative and
additive effects may have affected the reflectance measurement
values for the interpolated spectra (Richter et al., 2012).
According to Liu et al. (2006), the combination of factors such
as varying atmospheric conditions, varying sun-target-satellite
geometry and sensor degradation could influence the final
measurement value on time-series images by causing the
above-mentioned effects.

3.2 Quality of the Regression Models
Figure 5 shows the evolution of the SEC and SECV of an N-PLS
for a cross-validation of eight blocks repeated 20 times of a N-PLS
calibrated on the temporal (Figure 5A) and the spectral
(Figure 5B) slices selected by N-CovSel algorithm. It should
be noted that the selected features, either dates or wavelengths,
were ordered by the N-CovSel algorithm from highest to lowest
covariance between the calibration set (Xc) and the y-vector
(ground truth data).

This figure highlights a classical phenomenon for both graphs:
a phase of decrease of the SEC, which corresponds to an

FIGURE 4 | Interpolated spectra on the J = 19 dates, for the I = 107 plots.
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improvement of the explanatory value of features, then a phase of
increase of the SECV (while the SEC keeps on decreasing), which
corresponded to the overlearning phase. On the basis of this joint
analysis, the appropriate number of features for the two different
N-PLS models were six temporal slices (Figure 5A) and seven
spectral slices (Figure 5B).

Figure 6 presents the evolution of the SEC and SECV criteria
for a cross-validation of eight blocks repeated 20 times of a PLS
calibrated on the date-wavelength columns selected and sorted by

N-CovSel algorithm. On the basis of this joint analysis, the
suitable number of features for the PLS model were nine date-
wavelength columns.

The quality and performance of the temporal and spectral
N-PLS models and of the date-wavelength-pair PLS model are
presented in terms of the standard error of calibration (SEC), the
standard error of cross-validation (SECV) in the calibration set,
the standard error of prediction of losses (SEP) in the test set, r2

and the bias (Table 2).

FIGURE 5 | Evolution of the SEC and the SECV criteria for an 8-block, 20-fold cross-validation of a N-PLS between (A) the temporal features (slices) selected by
N-CovSel and the y losses and (B) the spectral features (slices) selected by N-CovSel and the y losses. The black frame indicates the optimal number of (A) temporal
features (F = 6) and (B) spectral features (F = 7) selected.

FIGURE 6 | Evolution of the SEC and the SECV criteria for an 8-block, 20-fold cross-validation of a PLS between the date-wavelength features (columns) selected
by N-CovSel algorithm and the y losses. The black frame indicates the optimal number of columns (F = 9) selected.
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A SEP over the predictions set between 11 and 13% (Table 2)
was consistent with the initial variability of the ground truth data
(Section 2.3.1) due to the information required by the
winegrowers to correctly characterise the level of the heatwave
impact on a vineyard block.

3.3 Interpretation of the selected features
3.3.1 Extraction of 2-D Features
3.3.3.1 Temporal Slices
Figure 7 illustrates the operation of the N-CovSel algorithm,
searching for 2-D features along temporal mode. Each sub-figure
corresponds to the selection of a 2-D feature, i.e., a date. Each
subplot represents cov2(Xj, y) as a function of the temporal
dimension; the maximum of each curve corresponds to the
selected features of X in the second dimension with the
highest squared covariance with y.

Each subplot (round) shows clear peaks, allowing the
identification of dates involved in the prediction of yield
losses. It should be noted that, for each round, the algorithm
highlighted a different date of the time-series. Indeed, each curve
showed a low value area around the previously selected variable
and the overall amplitude of the curves for each round decreased
as the features were extracted. These two particularities ensured
that the selected features were at most complementary, i.e., at
least correlated.

The first round showed three local peaks (5th June, 30th June
and 20th July) which did not appear in the subsequent rounds
until the fifth one (5th June), meaning that the peaks, as well as
their information, were correlated with each other. Thus, the
information retained for the 20th (the global maximum peak) of
July translated the information of a continuous spectral
phenomenon from the beginning of June to the end of July

TABLE 2 | (a) N-PLS yield loss prediction results using the first six slices (temporal) selected by N-CovSel algorithm on individuals in the calibration set, with 80 vineyard
blocks and in the test set, with 27 vineyard blocks. (b) N-PLS yield loss prediction results using the first seven slices (spectral) selected by N-CovSel algorithm on
individuals in the calibration set, with 80 vineyard blocks and in the test set, with 21 vineyard blocks. (c) PLS yield loss prediction results using the first nine pairs (date-
wavelegth) selected by N-CovSel algorithm on individuals in the calibration set, with 80 vineyard blocks and in the test set, with 27 vineyard blocks.

Features F optimal SEC (%) SECV (%) r2 (%) Bias (%) SEP (%)

(a) Temporal slices 6 12.1 14.2 0.62 −1.1 11.4
(b) Spectral slices 7 11.3 14.2 0.61 −1.4 13.0
(c) Date-wavelength columns 9 1.3 13.1 0.63 −2.3 11.7

FIGURE 7 | Evolution curves of cov2(Xj , y) as the first six temporal slices were selected by N-CovSel. The selected feature corresponds to the maximum of each
curve; the corresponding dates are shown in red.
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that conditioned the final yield losses of the vineyard blocks,
i.e., round one showed a phenomenon independent of heat stress.
The second round represented the first available date of the study
period and the third round (15th June) highlighted a date prior to
heat stress. This indicated that the initial conditions of the
vineyard blocks (before the extreme weather event) were also
related to the observed final yield losses. The sixth round was the
most indicative of the heatwave that occurred between 23rd June
and 8th July 2019 in view of their time frame. The fourth round
showed two local peaks, on 14th August and 5th June and the fifth
round showed the global peak on one same date, the 5th of June.
This implied that as these were two consecutive rounds, the
information contained in the 14th August (round 4) was
independent from the 5th June round (round 5) in terms of
final yield losses, i.e., the two dates were not correlated.

3.3.3.2 Spectral Slices
Figure 8 illustrates the operation of the N-CovSel algorithm,
searching for 2-D features along spectral mode. Each sub-plot
corresponds to the selection of a 2-D feature, i.e., a wavelength.

Each subplot represents cov2(Xk, y) as a function of the spectral
dimension; the maximum of each curve corresponds to the
selected features of X in the third dimension with the highest
squared covariance with y.

Each subplot (round) showed clear peaks, allowing the
identification of wavelengths involved in the prediction of
yield losses. It should be noted that, for each round, the
N-CovSel algorithm highlighted a different wavelength of the
spectrum. As mentioned for Figure 7, the particularities also
shown in Figure 8 ensure at most complementarity.

It was noted that in round 1 (945 nm), the spectrum shown
was the average spectrum of the vegetation. Although Clevers
et al. (2008) determined that when looking through the
atmosphere, the water band absorptions in the 940 nm region
should be considered to obtain information on the canopy water
content, the shape of the displayed spectrum suggests that the
945 nm spectral band represents more of a multiplicative effect in
the data. The 945 nm wavelength region had the highest
covariance, i.e., the highest overall reflectance intensity, and
this is the reason why the algorithm selected and sorted it in

FIGURE 8 | Evolution curves of cov2(Xk , y) as the first seven spectral slices were selected by N-CovSel algorithm. The selected feature corresponds to the
maximum of each curve; the corresponding wavelengths are shown in red.
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the first round. Regarding the spectral slices selected in the second
and third rounds, with the range between 1,600 and 2,500 nm,
i.e., in the shortwave infrared (SWIR) domain, it is well-known
that the reflectance in this region of the spectrum is strongly
correlated with vegetation water content (Jopia et al., 2020;
Holzman et al., 2021). However, the second round (2,190 nm)
showed a baseline additive-type trend profile that reveals, as the
first round, possible effects derived from the remote sensing
spectral measurement. It should be noted that these
determinations of possible effects do not mean that the two
rounds cannot provide information that could explain the
changes in water concentration in the vineyard blocks. The
following rounds highlighted spectral slices including the red-
edge band at 705 nm (round 4) and the near-infrared (NIR) band
at 842 and 865 nm (rounds 5 and 7) with round six determining
the 490 nmwavelength, known as the blue band. Red-Edge region
is related to leaf chlorophyll concentration (Laroche-Pinel et al.,
2021) and the reflectance in the NIR region is mainly affected by
leaf and canopy structure (Slaton et al., 2001). The higher
reflectance at 490 nm may be due to a strong reflection from
dead biomass (Lorenzen and Jensen, 1988).

3.3.2 Extraction of 1-D Features
3.3.2.1 Date-Wavelength Columns
Figure 9 shows the operation of the N-CovSel algorithm
searching for 1-D features, i.e., pairs of dates-wavelengths.
Each sub-plot represents the map of cov2(xjk, y) as a function
of the temporal and spectral domains; the global maximum in
each sub-map corresponds to the selected features of X in the

second and third dimension with the highest squared covariance
with y.

Each subplot (round) highlighted a different region of the
temporal-spectral domain, allowing the identification of date-
wavelength pairs involved in predicting yield losses. As for the 2-
D extraction, for each round, the information correlated with the
previous selected variables was removed, thus significantly
decreasing the variance of the neighbouring variables in the
following steps (Biancolillo et al., 2022).

The first round, unlike the others, indicates a spectral region as
well as consecutive dates, thus determining an overall reflectance
effect. It was observed that both the temporal and spectral
dimensions had a low frequency, i.e., the N-CovSel algorithm
highlighted the entire study period containing the spectral region
from 783 to 1,610 nm (yellow). This result indicates that the overall
effect of the reflectance, i.e., all-season vegetative profile that was
related to the estimation of yield losses observed by the wine growers
and advisors by means of maximum values of covariance. The
remaining rounds showed high frequencies but in two of the
different ways: 1) the second and third rounds showed high
frequencies but which were prolonged either in the temporal
dimension (round 2) or in the spectral dimension (round 3), For
example, focusing on the second round, it should be noticed that the
yellow colour appears from the 30th of June, with a maximum peak
on the 30th of July but lengthening the high frequency until the 9th
of August, at the wavelength 2,190 nm; 2) the remaining rounds
from the fourth to the ninth, showed high local frequencies,
i.e., covariance peaks, which highlighted more clearly a single
date paired to a single wavelength.

FIGURE 9 | Evolution map of cov2(xjk , y) as the first nine pairs (date-wavelength) selected by N-CovSel. For each of the nine rounds, the date-wavelength selected
columns are highlighted by a red square. Dates and wavelengths are texted in pink. The colour gradient represents from yellow to blue, the highest and the lowest values
of covariance between the date-wavelength pair (column) and the y-vector respectively.
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Regarding the 1-D feature specificity of each round, the
second, sixth and eighth rounds highlighted the wavelength
2,190 nm, but with different dates, 30th July (round 2), 5th
June (round 6) and 21st May (round 8). Laroche-Pinel et al.
(2021) demonstrated that the wavelength 2,190 nmwas one of the
most discriminating for vine water status monitoring on a large
scale. The three widely temporally spaced rounds may have been
indicative of different responses of the various vine growth stages
to water variation. The SWIR region is known to be sensitive to
cell structure and water vegetation content (Huo et al., 2021). The
date of 21st May, which also contained the wavelength in the
SWIR region, was previously selected by the algorithm in the
fourth and seventh rounds with the wavelengths 945 and 705 nm
respectively. From the different wavelengths selected for the same
date, it was determined that the initial vineyard blocks conditions
related to the water status (2,910 nm) as well as their chlorophyll
concentration (705 nm) were related to the final yield losses.
Besides the above, on this same date (21st May) the wavelength of
945 nm was highlighted. As shown in Figure 8, this wavelength
could be representative of a multiplicative effect of the database
and not represent agronomic information of interest. Just as the
initial conditions of the set study period (May) were selected by
the algorithm, so were the conditions at the end of the study
period (August). The ninth round highlighted the pair on 19th
August and the wavelength 865 nm. Reflectance between 685 and
700 nm has been established as one of the most sensitive for
detecting plant stress (Gitelson et al., 1996). The third and fifth
rounds were the closest in time to the heat episode that occurred
between the 23rd June and the 3rd July 2019. The selected date-
wavelength pairs were as follows: 10th June—842 nm (round 3)
and 10th July—1,610 nm (round 5). Reflectance at 842 nm is
mainly related to leaf internal structure (Raddi et al., 2021). The
high reflectance at this wavelength may have indicated a relevant
change in morphology and canopy structure. As demonstrated by
Raddi et al. (2021), the reflectance around 850 nm increases with
season and severe stress factors. Regarding reflectance at
1,610 nm, many studies reported the strong correlation of leaf
water content with reflectance at wavelengths ranging from 1,400
to 1900 nm (Champagne et al., 2003; Das et al., 2018). Thus,
round 3 (10th June—842 nm) could represent the water
restriction (in the absence of irrigation) just before the heat
stress during a period of high plant growth in the LR zone.
This indicates that water stress in vineyard blocks before an
extreme heat episode could have been an aggravating factor for
yield loss. Meanwhile, round 5 (10th July—1,610 nm) could
represent the subsequent effect of a sudden and strong
heatwave on the water status of the vines.

4 DISCUSSION

A generic example of the application of N-CovSel algorithm for
variable selection was provided in the form of a time-series study
in multispectral images. This paper showed the potential of
methods originally developed in the analytical chemistry
domain when applied to larger scales, e.g., in the life science
domain. The application demonstrated the value of considering

the feature reduction approach in the temporal and spectral
dimensions for interpretation purposes in order to understand
which variables contributed the most in the life science context
presented.

In order to predict and estimate yield losses caused by a heat
wave on vineyards fields, the N-CovSel algorithm was used. Based
on a variable selection procedure according to their global
covariance, the contributions of the temporal and spatial parts
and their joint effect in the prediction of yield losses were
characterised through three regression models. The
performance of the models are as follows: for the temporal
N-PLS model (r2 = 0.62—RMSE = 11%), for the spatial N-PLS
model (r2 = 0.61—RMSE = 12%) and the temporal-spectral PLS
model (r2 = 0.63—RMSE = 11%).

From a predictive point of view, Lopez-Fornieles et al. (2022)
already demonstrated that the application of the multidirectional
regression method such as the N-PLS algorithm is appropiate to
characterise and estimate the impact of an extreme event on
grapevine. However, the interpretability offered by N-CovSel
proved to be a very useful tool for understanding the
agronomic processes underlying the spectral response of the
crops over the time. It is well documented in the scientific
literature that satellite monitoring of interactions between
plants and light reflectance, in situations where crops interact
with any aspect of their environment (e.g., extreme weather
events), results in changes in plant signal (Knipling, 1970;
Segarra et al., 2020). The variable selection approach identified
the most significant features in a multidirectional environment,
i.e., in a 3-way array, by selecting 2-D features (temporal and
spectral slices) or 1-D features (date-wavelength columns) to be
implemented within the model construction. Previous studies
have shown similar results regarding the effects of heat stress
from reflectance data in viticulture (Cogato et al., 2019; Lopez-
Fornieles et al., 2022), but notably, in the presented approach, the
subset of features was selected simultaneously in two dimensions
of the satellite information, i.e., temporal and spectral (Lopez-
Fornieles et al., 2022). This selection procedure allows not only to
identify the most significant wavelengths of the extreme weather
episode but also knowledge on its a priori and a posteriori impact
by integrating the temporal analysis from the N-way feature
selection algorithm.

Since N-CovSel algorithm eliminates the correlation between
variables by projecting the data orthogonally to the selected
variable for the neighbouring variables in the following steps
(Biancolillo et al., 2022), it is ensured that all selected features are
at most complementary to each other. Furthermore, it is possible
to sort the selected variables from the highest to the lowest
covariance related to observed yield losses. From the temporal
slices (2-D features) selected and sorted, three important periods
were observed that defined the data to be predicted 1) the initial
dates of the study period, centred on 21 May, 2) the dates close to
the heatwave that occurred between the 23 June and 8 July and 3)
the end of period dates, centred on 14–19 August. For the spectral
slices (2-D features), the most important wavelengths (maximum
covariance values) that were selected are known to be related to
water absorption (Segarra et al., 2020) which may be indicative of
the water status as the main factor affecting vine development.
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Wavelengths corresponding to the SWIR domain were observed
from the date-wavelength columns (1-D feature) for the following
dates ordered from highest to lowest covariance: 30th
July—2,190 nm, 10th July—1,610 nm, 5th June—2,190 nm,
21st May—2,190 nm. As reflectance at 2,190 nm is known to
be relevant for monitoring vine water status at large spatial scale
(Laroche-Pinel et al., 2021), its selection at different dates
throughout the study period shows the inconsistency of
considering that yield loss is only due heat stress. Indeed, the
initial conditions (21st May) of water stress (2,190 nm) (Laroche-
Pinel et al., 2021) as well as the information on the characteristics
of the plant physiology in the Red Edge (700 nm) (Lopez-
Fornieles et al., 2022) were already decisive for the final
prediction. Given the proximity of the dates to the extreme
weather event and that the detection of severe drought stress
is centred at the wavelength 1,610 nm (Cogato et al., 2019), the
date-wavelength pair of 10th July—1,610 nm was considered by
the N-CovSel algorithm concerning the heatwave episode. The
theory that the spectral response of the canopy representing the
physiological behaviour of the grapevine, is affected by stress
conditions due to fluctuations in ambient temperature, is well
demonstrated in scientific literature (Cogato et al., 2021). In the
final period of the study (still in full production), although after
the collection of ground truth data on the condition of the
vineyard blocks after the heatwave, the N-CovSel algorithm
emphasised the 19 August—865 nm pair. The reflectance in
the Vegetation Red-Edge region (865 nm) is known in the
literature as one of the most discriminating bands for water
status (Laroche-Pinel et al., 2021). The results of the present
analysis confirm, with a variable selection approach, that a
combination of SWIR (1,610–2,190 nm) (Das et al., 2018),
Red-Edge (705 nm) (Ballester et al., 2018) and Red-edge
Vegetation (865 nm) (Maimaitiyiming et al., 2017), is a
valuable indicator for monitoring water status (Laroche-Pinel
et al., 2021).

The main advantage of using the N-CovSel algorithm for the
remote sensing images is that being a methodology adapted for
N-way arrays, the temporality and the spectral information are
considered simultaneously. In the context of the life science case
study, this allowed to establish that the heatwave was not the only
explanatory factor of the final yield losses observed by the
winegrowers and advisors. By temporally discriminating the
most appropriate spectral information to characterise the
beginning or end of the development season, as well as
extreme events, it was observed that these were the integrating
result of a series of factors that were mainly related to water
restriction in key periods for plant development.

It is essential to place the results presented in this paper within
the reality of multitemporal satellite data as they are sensors that
measure reflected energy within several specific bands of the
electromagnetic spectrum (Pettorelli et al., 2014). This implies
that, as for the field of NIR spectroscopy (Isaksson and Næs,
1988), effects related to the reflectance of the spectrum are present
in the analysis. The N-CovSel algorithm allowed the identification
of multiplicative and additive effects in the selection of 2-D
features. The choice retain the observed effects was taken, as

they could be important information in the interpretation of the
model (e.g., wavelength 2019 nm). However, their removal at an
early stage could have prevented the occurrence of effects in the
covariance-based selection, e.g., wavelength 945 nm, mainly
dedicated to atmospheric features detection (Verrelst et al.,
2012). It should be noted that, due to the type of approach,
the model should only be suitable for the year (2019) and the
region (LR) considered. Thus, subsequent models remain specific
to the learning base used for the calibration and their
generalisation to other crops and/or other agricultural regions
is rather limited.

Further applications are required before confirming the
operational reliability of the N-CovSel method, in particular
to provide spectral-temporal features to identify areas with
different water restriction dynamics. For this, it will be
necessary to complete the results of this study by extending
the variable selection analysis to other types of phenomena,
both those with a strong temporal evolution (e.g., extreme
weather event such as hail) and those without (e.g., water
scarcity in summer season), in order to better determine the
dynamics of crop development and thus the reasons for its
main cause-effects. As it appears that N-Covsel could be an
efficient method addressing multiple response cases, an
application study-case to be studied would be its direct
application to multispectral images, thus taking into
account the spatial dimension.
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