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Abstract

Motivations: Gene Regulatory Networks (GRN) are traditionnally inferred from gene expression profiles

monitoring a specific condition or treatment. In the last decade, integrative strategies have successfully

emerged to guide GRN inference from gene expression with complementary prior data. However, datasets

used as prior information and validation gold standards are often related and limited to a subset of genes.

This lack of complete and independent evaluation calls for new criteria to robustly estimate the optimal

intensity of prior data integration in the inference process.

Results: We address this issue for two common regression-based GRN inference models, an integrative

Random Forest (weigthedRF) and a generalized linear model with stability selection estimated under a

weighted LASSO penalty (weightedLASSO). These approaches are applied to data from the root response

to nitrate induction in Arabidopsis thaliana. For each gene, we measure how the integration of transcription

factor binding motifs influences model prediction. We propose a new approach, DIOgene, that uses model

prediction error and a simulated null hypothesis for optimizing data integration strength in a hypothesis-

driven, gene-specific manner. The resulting integration scheme reveals a strong diversity of optimal integration

intensities between genes. In addition, it provides a good trade-off between prediction error minimization

and validation on experimental interactions, while master regulators of nitrate induction can be accurately

retrieved.

Availability and implementation The R code and notebooks demonstrating the use of the proposed

approaches are available in the repository https://github.com/OceaneCsn/integrative_GRN_N_

induction.

Key words: Integrative regression-based Gene Regulatory Network inference, data integration optimization, simulated

null hypothesis, weighted Random Forests, weighted LASSO, Arabidopsis thaliana

Introduction

Gene Regulatory Network (GRN) inference has the objective

of deciphering the relationships between genes in the context

of transcription, which can provide invaluable insight into

environmental adaptation or developmental processes in living

organisms. Statistical inference methods usually leverage high-

throughput genomics to reconstruct those networks, in which

nodes represent genes, and edges represent a relation of regulation

between those genes. Because transcriptomic data are increasingly

common and less costly, they are the input of choice for most

statistical approaches to GRN inference.

Regression-based techniques mainly differ in their choice of

regression function to link the expression of a target gene to

the expression of its regulators. For example, TIGRESS [25],

MERLIN [49] or The INFERELATOR [10, 38, 22] techniques

implement linear parametric models for this task, while GENIE3

[27] and inspired works [21, 45, 17, 13] model non-linear relations

via Random Forests (RFs) or, more broadly, ensembles of trees.

Once regression models are fit, they allow the extraction of the

influence of each regulator over each gene, and the strongest pairs

are assembled to form a final sparse GRN.

Given the under-determined nature of GRN inference from

expression alone, using additional sources of data can guide

the choice between several regulators explaining expression data

equally well. Complementary omics have already been used in

addition to gene expression to enhance GRN inference, such as TF

binding experiments (mostly ChIP-Seq) or Transcription Factor

Binding Motifs (TFBM) [32, 39, 1, 18, 46, 17, 22], knock-outs and

protein-protein interactions [45] or chromatin accessibility [18, 42].

In a linear context, prior information can be integrated to

GRN inference by modulating the penalty strength for each TF

during the estimation of regularized models with a weighted

version [9] of the LASSO [57] and many variations (e.g. ElasticNet
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[63]) [16, 24, 56, 42, 22] or by making use of a Bayesian prior

[24, 53, 22]. An in-depth approach explored a resolutive range

of data integration strengths with a weighted ElasticNet, and

then choose a value maximizing effective data integration [24].

More recently, the StARS approach proposing to increase the

stability of non-oriented GRN inference in Gaussian Graphical

Models [36] was adapted for the LASSO in order to select a small

subset of robust regulators for each gene in oriented GRN inference

[42]. In that work, the integrated priors are TFBMs in accessible

chromatin, and three values of prior reinforcement modulating

penalty strength are investigated. The moderate one is chosen to

maximise the area under the precision and recall curve against a

CHIP-Seq gold standard.

Regarding non-linear regression, iRafNet [45] proposed a

Random Forest (RF) based procedure. It consists in weighting

the random sub-sampling of regulators during trees elongation so

that the chance of regulators supported by prior knowledge to

get chosen at decision nodes is increased. This has the effect of

inflating the importance metric of interactions supported by the

chosen prior [45]. The weights controlling the contribution of prior

data to expression is provided by a predefined function, specific to

each type of prior, but without specific tuning. This strategy was

further adapted to time series expression data in the OutPredict

method [17] as an extension of both a dynamic version of GENIE3

[21] and iRafNet.

Existing integrative regression models have a great potential to

predict GRN from several types of omics. However, fine tuning the

contribution of prior data to expression is rarely explored. When

it is, the choice of prior integration strength is set using of a gold

standard that is either identical to the integrated prior [24], or of

a related nature [42] (in that latter paper, the prior information

of binding motifs is necessarily correlated to ChIP-seq validation

data).

In this work, we propose DIOgene (Data Integration

Optimization for gene networks) for a more robust and

independent calibration of prior data integration strength, based

on effective data integration, gene expression prediction accuracy,

and a simulated null hypothesis. Moreover, to reflect the

specificities of gene regulation, we propose to tune data integration

strength specifically for each gene, in contrast to previous works

that traditionally enforce the same integration intensity for all

genes [53, 24, 45, 42, 17, 22].

In order to represent the most common methods in the field of

integrative GRN inference both in the linear and non-linear cases,

we illustrate our results using a weightedLASSO and weightedRF

model. The proposed approaches are applied to the modelling of

the transcriptomic response to nitrate induction in the roots of

Arabidopsis thaliana [59] using TFBM in gene promoters. as prior

information. With this study, we hope to open a reflection about

data integration and evaluation practices in the field.

Material and Methods

We present in the following sections weightedLASSO and

weightedRF, two integrative GRN inference procedures based on

TFBM prior information (Figure 1). The TFBM prior matrix Π

gives, for each regulator-target pair (r, t) a prior value Πr,t ∈ [0, 1]

defined as:

Πr,t =

{ 0 : if the motif of r is not in the promoter of t

1 : if the motif of r is in the promoter of t
1
2

: if the motif of r is unknown

(1)

Throughout this study, the parameter α will be used to tune

data integration strength in GRN inference : its value ∈ [0, 1]

controls the contribution of TFBM information to expression data.

When α = 0, expression alone is used, while at α = 1, gene

expression is used to chose only between regulators possessing

a TFBM in the target gene. The integration of α in the two

inference algorithms is detailed below, as well as our original

permutation based-procedure to determine the optimal α, in

a gene-specific manner. The Implementation of this integration

tuning in weightedLASSO and weightedRF is detailed below.

Generalized Linear Model with Weighted LASSO

(weightedLASSO)

As RNA-Seq experiments generate count data, we model the

expression of a target gene t in the condition i as a Poisson-

distributed variable Yt,i ∼ P(µt,i). The parameter of the

Poisson distribution µt,i is estimated on the log scale as a linear

combination of the expression values of the regulator genes, with

xr,i the expression level of regulator r in condition i:

ln(µt,i) = βt,0 + ΣR
r=1βt,rxr,i (2)

We employ a LASSO penalty in order to overcome the high-

dimensional setting and to select the most predictive regulators. In

addition, we propose to use differential shrinkage in order to favor

the selection of TFBM-supported variables. Differential shrinkage

for the LASSO (weighted LASSO) allows to modulate the penalty

strength of each variable individually, in a way that regulators with

a binding motif in the target’s promoter are less penalized during

model adjustment. We model differential shrinkage using specific

penalty coefficients wt,r ∈ [0, 1] defined as a linear function of the

TFBM prior Πt,r and α (Figure 2a):

wLASSO
t,r = 1 − Πt,rα (3)

For each target gene t, the function to minimize for model

estimation is thus:

argminβt

{
−logL(βt;X,Yt) + λΣR

r=1w
LASSO
t,r |βt,r|

}
, (4)

where

λ controls the overall strength of the penalty,

R is the total number of regulator genes,

N is the total number of expression measurements for t

logL(βt;X,Yt) is the log-likelihood function.

The value of λ is learned from 5-fold cross validation. We

relied on the glmnet [19] implementation of the LASSO, with

the penalty.factor argument specifying differential shrinkage

weights. In practice, for genes with a number P of TFBM-

supported regulators exceeding the total number of experiments

considered N , the model cannot be estimated at α = 1. We thus

set α to 1 − ϵ instead of 1, with ϵ = 10−4.

To further reduce over-fitting problems and improve robustness,

we also included a bootstrap procedure to the LASSO [6, 41, 37],

as already used in some GRN inference approaches using a linear
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Fig. 1: Overview of weightedRF and weightedLASSO integrative GRN inference procedures. Input data for a given target

gene is the vector of expression of this gene Y , an expression matrix for the regulators X, and a TFBM scoring matrix Π. Π contains

information about the presence or absence of the regulators PWM in target gene’s promoter. α is a parameter controlling the force of

TFBM integration to expression. For each target gene, a regression model is fit to Y with weightedRF or weightedLASSO using X as

predictive variables, and favoring the attribution of high influences to regulators with high values in Π. For weightedRF, this prioritization

is executed by a weighted subsampling of the regulators space when elongating the regression trees, while it is achieved by differential

shrinkage combined to stability selection is weightedLASSO. Once all regulator-gene pairs have been ranked based on their influence in

the regression models, final GRN are built by selecting the number of strongest interactions providing a desired network density.

model [25, 42]. Hence, instead of fitting a single generalized linear

model, S models are adjusted on a bootstrapped version of the

data as follows:

1. N observations are sampled with replacement from the N

available experimental conditions (bootstrapping).

2. The N bootstrapped observations are randomly partitioned

into 5-cross validation folds. We ensure that duplicated

observations during bootstrapping are grouped within the

same fold.

3. A model is fitted by minimizing Equation (4) during cross-

validation, allowing to learn the value of the sparsity, λ1se.

λ1se is the largest value of λ in the λ grid less than one

standard deviation away from the value of λ minimising

prediction error on the cross-validation test folds.

In this study, results are presented for S = 50.

Weighted Random Forests (weightedRF)

Non-linear regressors such as ensembles of regression trees model

combinatorics of regulators and complex relations between a target

gene and the expression of its regulators. As inspired by iRafNet

[45], we model data integration in RF by increasing the use of

regulators supported by a binding motif in the decision nodes

of the regression trees. A weightedRF is inferred for each target

gene t. At each decision node, the most discriminating regulator is

chosen among a subset of
√
R regulators. This subset, traditionally

equiprobably sampled from all the regulators, is submitted here

to a weighted sampling where the weights encode prior knowledge

about the regulators, growing with data integration strength α and

prior value Πr,t. Regulators with a high prior value are more likely

to get chosen among the
√
R regulators tested to create a decision

node. More formally, we define that the chance of a regulator r to

get picked in the decision node for the target gene t is proportional

to the weight wRF
r,t (Figure 2b):

wRF
r,t =

{ −
√

1 − (α− 1)2 + 1 if Πr,t = 0

1 − α if Πr,t = 1
2√

1 − (α− 1)2 + 1 if Πr,t = 1

(5)

In practice, these functions allow that in both cases, when α =

1, variable selection is performed among regulators with Πrt =

1 only (Figure S1). One weighted tree is learned for each of S

bootstrapped samples. In this study, results are presented for S =

2000. The S trees are then aggregated into one RF per target

gene. We implemented the new weight function upon the iRafNet

R and C++ code, along with the possibility to restrict variables

to regulators in regressions, which was not permitted initially, and
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a. weightedLASSO b. weightedRF
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Fig. 2: Functions linking prior TFBM scores (Πrt)

to regulator-specific weights during model estimation,

depending on integration strength α. a. In weightedLASSO,

the penalty strength of the LASSO decreases with α when Πrt > 0

(Equation 3). b. In weightedRF, the sampling weight at regression

tree nodes increases with α when Πrt = 1, and decreases otherwise

(Equation 5). Weights are normalized between 0 and 1. In practice,

these functions allow that in both cases, when α = 1, variable

selection is performed among regulators with Πrt = 1 only (Figure

S1).

with the addition of a new feature importance metric (Equation

8).

Error in predicting gene expression (MSE)

We assess the ability of weightedRF and weightedLASSO to

accurately predict gene expression via the Mean Squared Error

(MSE) metric. It is measured on Out Of Bag conditions (OOB)

that were left out of the bootstrapped samples (and consequently

not used in weightedRF and weightedLASSO models training).

For weightedLASSO, the MSE for a target gene t, and a given α

is

MSEtα =
1

S
ΣS

m=1

1

NOOBm

Σi∈OOBm
(ytiα − ŷmtiα)2 (6)

where

m corresponds to one of the S bootstrapped LASSO models,

OOBm refers to all conditions i that are OOB for m,

NOOBm
refers to the cardinal of OOBm,

ŷmtiα is the prediction of m on the condition i ∈ NOOBm
.

For weightedRF, the MSE for a target gene t and α is

MSEtα =
1

N
ΣN

i=1

1

SOOBi

Σm∈OOBi
(ytiα − ŷmtiα)2 (7)

where

i corresponds to one of the N experimental conditions,

OOBi refers to all trees m for which i is OOB,

SOOBi
refers to the cardinal of OOBi,

ŷmtiα is the prediction of m ∈ SOOBi
on the condition i.

Importance of a regulator

Previous RF-based models [27], including iRafNet [45] which

inspired weightedRF, used the traditional node purity metric.

However, it is tailored for tree-based approaches only, and was

shown to be not suitable to interpret variable importance in

RFs in the presence of dependencies and interactions [52, 43].

We therefore define a common importance metric for both

for weightedLASSO and weightedRF. This importance measure

between a regulator r and its target t is given by the relative

increase of MSE measured on the OOB (Equation 6 and 7),

induced by shuffling the expression values of r when making the

prediction ŷmtiα :

Importancertα =
MSEtα,shuffle(r) −MSEtα

MSEtα,shuffle(r)

. (8)

We normalize the MSE difference by MSEtα,shuffle(r) to ensure

that this statistic is comparable between different target genes and

is included in the [0, 1] interval as similarly proposed in previous

studies [24, 22].

Effective Data Integration (EDI)

In order to measure the direct consequence of modulating data

integration through α, we introduce the notion of Effective

Data Integration (EDI), that reflects the importance of TFBM-

supported regulators in the predictions of a regression model. For

a target gene t, regulators are ranked by increasing values of

importance, and the EDI is the average position in this ranking of

TFBM-supported regulators, i.e the regulators for which Πr,t = 1.

EDItα =
ΣΠr,t=1Rank(Importancertα)

#Πr,t=1

(9)

EDI is close to 1 (resp. R, the total number of regulators) when

all regulators with a motif have low (resp. high) importance. We

expect that increasing α will increase the importance values of

TFBM-supported regulators, and thus increase EDI.

Gene-specific optimisation of α (DIOgene)

Recall that both in linear and non linear models, α is the

parameter controlling the extent to which TFBM contribute to

model estimation relatively to gene expression, with possible

values between 0 and 1. Choosing the value of α and consequently

acting upon EDI is instrumental: it reflects strong modelling

assumptions and has tangible impacts on inferred GRN. Given

that enforcing data integration interferes with model estimation

based solely on the minimization of the error, we can expect that

this may also deteriorate the predictions accuracy. The foundation

of DIOgene is that we should integrate the prior information of

TFBM only if the prediction performance is not deteriorated too

much.

In order to define what is an acceptable loss of prediction

performance, we create a synthetic null hypothesis that will

provide a reference for comparison. In this simulated null dataset,

we break the link between gene expression and TFBM scores by

randomly unmatching the expression profiles between regulators.

A regulator then keeps its correct TFBM, but is attributed

the wrong expression profile. In such a synthetic baseline,

there is theoretically no joint information to be learned from

the combination of expression and TFBM, and increasing data

integration strength can only provide uninformative TF-gene

interactions.
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We can then assess prediction error (Equations 6, 7) on

true data relatively to this synthetic dataset at comparable EDI

(Equation 9) values for various value of integration strength α.

In order to identify the appropriate amount of TFBM knowledge

to inform GRN inference, we propose that the optimal value of

α for target t (hereafter denoted as αt,opt), is chosen where

true prediction error is most reduced as compared to the error

committed under the simulated null hypothesis. This corresponds

to a level of data integration where TFBM incorporation in the

model provides a sufficient improvement of prediction over the

shuffled baseline.

In order to build these curves, we run weightedRF and

weightedLASSO for values of α ranging from 0 to 1 with a step

of 0.1, and collect the variations of EDI and MSE depending on

α. In order to capture the whole range of possible variations in

the simulated null data but also the stochasticity inherent to the

models, we run a large number of repetitions of weightedRF and

weightedLASSO (resp. 100 and 50 repetitions) on both the true

and simulated datasets. The curves MSEt(α) and EDIt(α) can

then be assembled into one MSEt = ft(EDIt) curve to optimize α

(see several gene examples in Figure 3 for weightedRF, and Figure

S2 for weightedLASSO).

Formally, the normalized difference in MSE between true and

shuffled datasets for a value of α is measured by ∆tα

∆tα =
µMSE,shuffle(EDItα) − µMSE,true(EDItα)

σMSE,true(EDItα)
(10)

with

µMSE,true(EDItα) the mean MSE at EDItα,

σMSE,true(EDItα) the standard deviation of MSE at EDItα,

µMSE,shuffle(EDItα) the mean MSE on the null dataset

interpolated at EDItα,

αt,opt is then the value of α that maximizes ∆tα on a certain

condition:

αt,opt =


0 if max

α∈[0,1]
(∆tα) ≤ 1

argmax
α∈[0,1]

(∆tα) otherwise.
(11)

When max
α∈[0,1]

(∆tα) ≤ 1, no level of data integration seems

appropriate with regard to the shuffled null data, hence αt,opt

is set to 0. As an illustration, the vertical blue line in Figure 3

(c-f) indicates αt,opt in 4 gene examples.

Edges selection

For each target gene t, a regression model is learned with αt,opt

(Equation 11). Then, a final sparse GRN is built by selecting the

edges associated with the strongest regulator-target interactions

as given by the importance metric (Equation 8). Density is a

common topological descriptor of biological networks: the sparsity

of GRN confers them low density values, typically between 0.001

and 0.1 [33, 31, 12, 26]. A classical strategy in GRN inference

is to select edges satisfying a biologically relevant user-specified

network density defined as D = E
Etotal

, with E being the number

of edges in the inferred network, and Etotal = R(T − 1) being the

total number of edges in a complete oriented GRN containing R

regulators and T genes [13]. The number of top-ranked edges to

select in order to satisfy a density D is thus

E = DR(T − 1). (12)

Evaluation against experimental interactions

Let’s define G as the set of experimental regulatory interactions

(gold standard) restricted to interactions involving genes given

as input for GRN inference. E is the set of inferred oriented

interactions restricted to TFs studied in the gold standard. The

other inferred interactions can neither be confirmed nor falsified,

and are thus not taken into account here. Two standard metrics

for assessing the quality of a GRN are:

1. Precision, the fraction of edges in E present in G:

Precision =
|E ∩ G|
|E|

.

2. Recall, the fraction of edges in G retrieved by GRN inference:

Recall =
|E ∩ G|
|G|

.

Experimental data analysis in Arabidopsis

Gene expression dataset

As a case study for GRN inference, we chose the transcriptomic

root response to nitrate induction in the model plant Arabidopsis

thaliana [59]. This dynamic response has the advantage of

being already well characterized, and used in other previous

developments to chart regulatory networks [59, 11, 17]. Continuing

efforts to uncover these regulatory mechanisms is of great

agricultural interest, as nitrate is the main source of nitrogen

used by most plants. Gene expression was measured in seedling

roots at times 0, 5, 20, 30, 45, 60, 90, and 120 minutes after

nitrate or control treatments1. Each combination of time point and

treatment was measured in three replicates, resulting in a total of

N = 45 samples. The RNA-Seq raw counts were normalized via

the TMM method [48], and lowly expressed genes were removed

prior to differential expression analysis. We selected differentially

expressed genes responding to nitrate induction in time by testing

the interaction terms between nitrate treatment and time modelled

as natural splines, as proposed in the original article that produced

this dataset [47, 59]. A total of T = 1, 426 genes had FDR adjusted

p-values under 0.05. Among those 1,426 genes, R = 201 are

annotated as transcriptional regulators. These nitrate-responsive

genes and regulators are taken as input for GRN inference (Tables

S1 and S2).

TFBM dataset

We define a promoter sequence in Arabidopsis as the sequence

spanning -1,000 bp and +200 bp around gene start as defined in

TAIR10, because this interval has been estimated to contain 86%

of binding sites in plants [62]. TFBM information, encoded by

Position Weight Matrices (PWM), was retrieved from the JASPAR

database [14] and The Plant Cistrome Database [44].

Among the 201 nitrate-responsive regulators, 70 regulators

were associated with a known PWM in the union of these

databases. FIMO [23] was used to find occurences of these

70 PWMs with a significance threshold of 1e−4 in promoter

sequences. When several occurences were identified in one

promoter, the maximum score was kept.

The TFBM occurrences within nitrate-responsive gene

promoters form a prior TFBM network between TFs and targets

1 Although samples at 10 and 15 min were also available, we

discarded them, as they were clear outliers in the first dimension
of a Principal Component Analysis (PCA) (Figure S3).
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Fig. 3: Gene-specific data integration with DIOgene is tuned by monitoring model performance variation relatively to

a synthetic null hypothesis. For the target gene AT5G48970 : a. the EDI depending on α, b the MSE depending on α, c. the MSE

depending on EDI (from panels a and b). The proposed gene-specific αt,opt is the value for which the MSE is most reduced as compared

to the shuffled baseline, represented as a vertical blue line (Equations 10 and 11). d,e,f : the MSE depending on EDI for three other gene

examples, representing different scenarios of data integration and thus different values of αt,opt. The trends are shown for weightedRF

on true data (green) and shuffled datasets where TF expression profiles were randomly unmatched from their motif (grey). For each

value of α, 100 models were run and the standard deviation around the mean is represented. The MSE is normalized by the variance of

the target gene expression. Similar scenarios emerge in the linear model weightedLASSO (Figure S2).

in which a target promoter harbors in average 23 TFBMs (Figure

S4a) and a given TFBM is found in approximately 500 target

promoters in average (Figure S4b).

Results

Optimal TFBM integration strength differs strongly between

target genes

We ran weightedRF and weightedLASSO for values of α ranging

from 0 to 1. We first observe that both weightedRF and

weightedLASSO effectively incorporate TFBM information during

their estimation, attributing higher importance measures to

TFBM-supported variables as α increases. This is supported

by EDI curves smoothly increasing with α (Figure S5). When

applying a density threshold to build sparse GRN, we also observe

that increasing α leads to the selection of edges with more and

more TFBM support. At α = 1, TFBM support equals 1 meaning

that, at the maximal level of data integration, GRN are restricted

only to interactions supported by a TFBM (Figure S1).

An overview of the MSE profiles depending on α for

all nitrate-responsive genes reveals a lot of diversity in how

model performance can be driven by data integration strength,

foreshadowing the usefulness of a gene-level procedure (Figure 4a).

We thus applied DIOgene to optimize TFBM integration at the

gene level (Equations 10 and 11). This confirmed that depending

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.558791doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.558791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Optimizing data integration improves Gene Regulatory Network inference in Arabidopsis thaliana 7

on the target genes, enforcing data integration has different effects

on the predictive capabilities of the regression models, both in

absolute error and relatively to the simulated null hypothesis.

Very interestingly, for several genes like AT5G48970, increasing

the EDI leads to a reduced MSE on test samples (Figure 3c).

This illustrates that data integration can effectively guide the

choice of variables toward more robust and meaningful regulators,

allowing the model to better predict gene expression in unseen

conditions. In this case, data integration can often be pushed to

its maximal intensity, given that the maximal divergence from the

simulated null data occur at αt,opt = 1. For several other genes,

for example AT5G60670 (Figure 3d), the strongest improvement

over the shuffled baseline is achieved for an intermediate value of α

(0.5 in Figure 3d). For genes like AT3G20320, there is no reduction

of MSE due to data integration, however DIOgene sets αt,opt to 1

because the MSE reduction in comparison to the shuffled baseline

is sufficient (Figure 3e). Finally, the MSE of target genes can be

increased by TFBM incorporation while showing no improvement

over the simulated null data, like for instance AT1G30270, where

αt,opt is set to 0 by our procedure (Figure 3f).

The application of DIOgene to all nitrate-responsive genes led

to one αt,opt value per target gene. Among the 1,426 input genes,

the number of genes for which TFBM information is integrated

to expression, i.e αt,opt > 0, was 962 for weightedLASSO, and

760 for weightedRF. Overall, 572 genes have αt,opt > 0 in both

weightedLASSO and weightedRF. This significant intersection

(Figure S6) indicates that the two models mostly agree on a

group of genes for which data integration is beneficial, even

though specificities remain. The distribution of αt,opt for the

1,426 nitrate-responsive genes reveals that, similarly for the two

models, a large pool of genes do not benefit from data integration

according to our criterion (464 and 666 for weightedLASSO and

weightedRF, respectively, Figure 4b). This suggests that data

integration can often lead to a significant deterioration of model

predictive capabilities as compared to our permuted control : in

this case, our approach will leverage gene expression alone. These

genes are further studied in the Discussion.

Properties of GRN inferred with gene-specific optimisation of

data integration

Moving from the individual behavior of genes in response to

data integration, we now measure global properties of GRN

inferred using DIOgene. In order to evaluate the added value of

tuning TFBM contributions in a gene-specific manner, we compare

DIOgene GRN to GRN inferred with a parameter α identical for

all genes, as done in previous approaches [24, 45, 42, 22]. All GRN

were built with a target density of 0.005, resulting in a total of

1,432 edges (Equation 12).

DIOgene provides a trade-off between accurate gene

expression prediction and agreement with a DAP-Seq

experiments

We rely on three metrics to assess inferred GRN qualities: the

median MSE across the 1,426 nitrate-responsive genes together

with GRN precision and recall against an experimental gold

standard of in-vitro binding interactions (DAP-Seq) [44].

First, the median MSE of GRN optimized with a global

α displays a marked increase as the contribution of TFBM is

reinforced (Figure 5a). This is in agreement with the previous

observation that, for a majority of genes, TFBM deteriorate model

predictions (Figure 4). Second, reinforcing TFBM contributions

in GRN models equally for all genes increases both precision

and recall against DAP-Seq interactions (Figures 5b, S7 and S8).

Noteworthily, both models display a strong increase in precision

with α, especially between α = 0 and α = 0.1, and weightedRF

demonstrates a clear advantage over weightedLASSO, with a

precision as high as 0.45. Both models outperform the precision

of the prior PWM network for α > 0, indicating that using

expression data to choose relevant links from all TFBM-supported

interactions helps predicting actual TF binding, even in an in-

vitro context. Recall values between the two models exhibit no

clear differences. Thus, in globally optimised GRN, increasing data

integration strength improves precision and recall, but necessarily

comes with a deterioration of model predictions of the target gene

expression (Figure 5a).

In contrast, gene-specific optimization of α with DIOgene offers

a trade-off between these indicators. In fact, for both models, it

provides a median MSE lower than any median MSE obtained with

a global α (Figure 5a, blue). At the same time, GRN obtained with

DIOgene achieve near-optimal precision and recall, as compared

to global α curves. In this context, we actually argue that it is

desirable to tolerate sub-obtimal precision and recall results while

prioritizing low MSE, for three reasons: First, the MSE is specific

to the conditions and cell lines used for transcriptome collection,

which is not the case of DAP-Seq, that is agnostic of environmental

and cellular context. Second, it is important to note that precision

and recall also increase with α in shuffled datasets, where the

wrong expression profile are randomly attributed to TFs (Figures

S7 and S8). This illustrates that these statistics can be increased

simply by enforcing data integration, even when gene expression

data is uninformative. Finally, DAP-Seq and other external gold

standards are often scarce and costly. Unlike the MSE, that can

be measured for all genes, gold standards usually contain only

a fraction of all TFs present in an inferred GRN, making it

impossible to evaluate a large part of predicted interactions. We

thus think that, in the context of this study and similar ones,

precision and recall are unfit to properly tune, alone, the amount of

a complementary omic source to incorporate into GRN inference.

DIOgene outperforms the minimal MSE approach

Because our TFBM integration approach is based on the MSE

metric, we evaluated the benefit of optimising the MSE divergence

from a shuffled baseline, over a simpler approach that would

minimize the MSE directly.

First, the two approaches agree on setting α > 0 for a large

group of genes (790 and 611 for weightedLASSO and weightedRF,

respectively). They also both set α = 0 for 224 and 538 genes.

Thus, our scheme and the minimal MSE approach perform data

integration on globally similar sets of genes.

In contrast, some genes are set to α = 0 by our approach

but not by the minimal MSE (240 and 128): these genes reach

a minimal MSE for α > 0, but do not diverge sufficiently from

the synthetic null hypothesis, and are thus removed from the data

integration set by our approach (see two examples in Figure S9).

Other genes are set to α > 0 by our approach and to α =

0 by the minimal MSE (172 and 149). These genes typically

display an increasing MSE that remains sufficiently lower than

the shuffled control (see the example in Figure 3e). Our approach

thus considers them for TFBM integration, tolerating that their
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Fig. 4: Gene-specific tuning of TFBM integration in the 1,426 nitrate-responsive genes with DIOgene leads to diverse

MSE behaviors and integration intensities. a. Scaled MSE (z-score) in weightedLASSO and weightedRF on true data depending

on α for two types of genes: genes with αopt = 0 (grey) and genes with αopt > 0 (green). b. Distribution of αopt values for the 1,426

nitrate-responsive genes in weightedLASSO and weightedRF.

MSE increases as long as it remains reasonably lower than the

simulated control.

We then focused on the sets of genes for which we specifically

integrate TFBM in one approach but not the other, and computed

precision and recall curves of the corresponding sub-networks. The

results (Figures S10c and S10d) showed better performance of

our scheme, which suggests that the sets of genes considered for

data integration on the basis of a comparison to a null hypothesis

are more relevant than simply minimizing the MSE. Concordant

results were obtained when computing the global qualities of

inferred GRN. We observed a slight median MSE increase in our

approach as compared to the minimal MSE approach (Figure

S10a), while precision and recall against DAP-Seq are both

globally improved in the two models by our integration scheme,

especially recall (Figure S10b).

DIOgene improves the modelling of nitrate signalling

Finally, we assessed the ability of the inferred GRN to model

nitrate induction pathways in Arabidopsis roots by comparing

them to state of the art knowledge about this well documented

response [8, 60]. In order to identify the regulators predicted as

important players in nitrate response by our models, we ranked

regulators by out-degree in the inferred GRN. This was done for

both weightedLASSO and weightedRF, either in GRN inferred

with a global value of α = 0, α = 1, or with the proposed

gene-specific optimisation of α (Figure S11).

A first observation is that, regardless of the chosen model

or data integration strategy, the 25 TF with highest out-degree

contain previously known master regulators of nitrate response.

This includes DIV1 [15], TGA1 and TGA4 [2], as well as the

homologs HHO2 and HHO3, belonging to the NIGT family

and identified as repressing the expression of crucial nitrate

transport genes [29, 50]. Interestingly, we also uncover VRN1

and CRF4 as connectivity hubs in all inferred GRN. These

regulators were respectively proposed as candidate and validated

actors in nitrate signalling pathways in the studies that generated

the transcriptomic data used here [59, 11]. Overall, whole-GRN

measures of gene connectivity showed that genes involved in the

regulation of nitrate pathways, nitrate uptake, transport and

metabolism (Table S3) have a significantly higher total degree than

other genes, in both globally optimized (at α = 0 and α = 1) and

gene-specifically optimized GRN (Figure S12).

On another hand, we noticed that gene-specific calibration of

data integration uniquely retrieves important regulators of nitrate

nutrition, that were not present in the 25 most connected TF

of the inferred GRN with a global α (α = 0 or α = 1). In

the case of weightedLASSO, only the proposed gene-specific data

integration strategy retrieves NLP7, which has been intensively
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Fig. 5: Gene-specific integration of TFBM to gene expression with DIOgene optimises model performance and secures a

satisfying intersection with binding experiments. For increasing values of α (green) and for the proposed gene-specific optimisation

of α (blue), we show the median MSE (normalized by the variance of the target gene) of the nitrate-responsive genes (a) and precision

as a function of recall in the inferred GRN (1,432 edges, density = 0.005) against DAP-Seq interactions (b). The precision of the prior

TFBM network of nitrate-responsive genes (31956 edges, density = 0.32) is overlaid in orange. Its recall is not shown because fairly

comparing the recall of GRN requires that they have the same number of edges.

documented as one of the main orchestrator of the early nitrate

response [40, 3]. This is also the case of PHL1, a TF involved

in the links between nitrate and phosphate signalling via NIGT-

mediated regulations [58]. In the case of weightedRF, the proposed

gene-specific optimization of data integration puts forward new

TF as interesting candidates for nitrate response regulation.

This includes HHO6, a member of the NIGT family not yet

characterized for its role in the response to nitrate [29, 50], but

also BZIP53, a TF involved in the regulation of several facets

of metabolism [20] and JKD, a TF involved in shoot and root

morphogenesis [30]. Thus, this analysis reveals that this method

of inference, via the optimization of data integration in a gene-

specific manner, not only recovers the information previously

returned in the literature, but also brings to light new factors

likely to be involved in this response.
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Discussion

The helpfulness of data integration is very often taken as granted

in systems biology. Our work shows that it can in fact have

very diverse effects on the modelling of gene expression, and that

TFBM incorporation can be at the expense of model predictive

capabilities for a significant number of genes. We thus propose

to replace bulk data integration by a finely tuned hypothesis-

driven data integration, calibrated individually for each gene. Our

optimisation scheme, DIOgene, leverages TFBM in a way that

their joint use with gene expression improves the target gene

expression prediction over a simulated null hypothesis. On a plant

biology case study, GRN inferred with this approach retrieve more

DAP-Seq interactions through the use of TFBM and relevant

known nitrate players, while preserving a near-optimal predictive

performance on gene expression. Moreover, such conclusions hold

for both the linear and non-linear regression cases, showing some

general applicability to the most common models in the field. We

also outlined some specificities in the tuning of TFBM integration

between weightedLASSO and weightedRF (Figures S6, S11).

Exploring these differences and the structure of the corresponding

GRN would be a great way to test the impact of linearity and

parametric assumptions in the modelling of multi-omics GRN.

The reason why some genes do not benefit from TFBM

integration could stem from various factors, either technical or

biological. Mining the consensual lists of genes for which α = 0

or α > 0 in both models revealed that genes for which TFBM

are not integrated have in average a lower expression variance

and more TFBM in their promoter (Figure S13). Further work

would be needed to formulate hypotheses about the underlying

general regulatory mechanisms, and also to assess the role of

other forms of regulations like post-transcriptional and post-

translational modifications in these results.

Several limitations of this study should be reminded to the

reader. First of all, as in all works inferring GRN from expression

data alone, the expression of the regulators is taken as a

proxy for their activity. This assumption is not always valid,

which motivated the estimation of TF activities in other studies,

typically leveraging motifs or binding experiments combined to

gene expression [34, 5, 22]. Our form of data integration, where

TFBM-supported regulators have a stronger contribution in the

estimated model, is another way to move away from this limitation.

Even though this is a step toward more causality, challenges

remain. One of them is the lack of a significant number of PWM,

a problem amplified in non-model organisms. This limitation

should be further reduced as PWM databases are completed and

maintained by the community in the years to come, or as new

computational methods are developed to predict binding affinities

directly from DNA and protein sequences [7]. In the meantime,

almost two thirds of regulators are attributed a neutral prior value,
1
2

, in our study. The choice for this neutral prior could however

be different and reflect other modelling strategies that we did not

explore. Another limitation of the TFBM prior is the high chance

of false positives when scanning PWM: the presence of a binding

motif can occur by chance, or may not necessarily cause binding

nor regulation in a cellular context. In addition, TFBM with

low complexity in PWM databases can result in hits in almost

all the promoters of an organism (Figure S4b). In this analysis,

regulators with such a widespread PWM were included, but their

questionable biological relevance could lead to their exclusion or

to additional weighting based on PWM complexity during GRN

inference. Moreover, the PWM themselves may not be accurate

priors for TF binding, due to experimental and technical biases in

their identification. Finally, non canonical binding events driven

by features like DNA shape, structure or repeat sequences without

the need for a motif have been reported [51], but cannot be directly

modelled in our approach. Another limitation is the computation

time of the proposed optimization procedure. Because it requires

the estimation of a large number of models over a complete range of

α values, computation time could be reduced by several ways such

as a re-implementation in C++, or through analyses estimating

the minimal number of repetitions to properly assess the MSE and

EDI curves (Equations 6, 7, 9). Finally, strong levels of correlation

in the input data are still hindering accurate GRN inference. A

lot of pairs of regulators have correlated expression profiles. When

their TFBM are different, our integration scheme can identify the

relevant regulator; however when their TFBM are very similar or

both unknown, identifying the meaningful one is not guaranteed.

Correlation between variables also impacts the design of simulated

null datasets: in our study we randomly unmatched the expression

profiles of the regulators. This has the advantage of preserving

the correlation structure in the expression data, thus creating a

realistic null dataset. However, when many regulators have similar

expression profiles, which is, to some extent, true in our case study,

the simulated null data may sometimes partly resemble the original

data only by chance. Bringing more diverse expression profiles

into the simulated datasets, or constraining it so that it does not

contain similar versions of the true data could be envisioned.

In addition to the aforementioned perspectives, the application

of the proposed data integration strategy to other complex

organisms is a promising lead. In this work, TFBM influencing

gene expression were assumed to be located in the promoter

regions of their target genes because very few distal regulations

have been reported in Arabidopsis, and are still poorly understood

[35]. In organisms where regulation by distant enhancers is

well documented and responsible for tissue-specificity [4, 28],

delineating enhancer regions may be achieved through the use

of additional molecular layers such as chromatin accessibility,

chromatin contacts, or eQTLs. Enhancers and promoters could

then be scanned for TFBM, linked to their target genes and further

guide GRN inference.

In our case study, we favored the use of model prediction

performance as a quality metric because it is a condition specific

metric available for all genes and orthogonal to the integrated

TFBM priors, which is often not the case of current experimental

gold standards. Our results indicate that instead of directly

minimizing prediction error as a function of TFBM contribution,

the comparison to a shuffled baseline improved inferred GRN

(Figure S10). In essence, any inference method where data

integration is tuned by a parameter could be optimized based on

such a simulated null dataset. As a general guideline, we believe

that both the monitored quality metric and the simulated baseline

should be carefully designed in order to test a clear and relevant

hypothesis for the problem at hand. More generally, the concept

of synthetic null datasets for in silico negative controls is gaining

interest in genomic analyses. For example, scDEED [61] optimizes

2D single-cell embeddings by simulating a null data where cells

similarities are broken via permutations. Similarly, clusterDE

[54] reduces false discoveries in marker gene identification by

generating a realistic null single-cell data via scDesign3 [55], and

then contrasting pipeline outputs between true and null datasets.

Such synthetic controls, bearing similarities with the methodology
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proposed in this article, are likely to enhance rigor and causal

discoveries in the field.

Data and code availability

Below are the links to the data used in the course of this study.

• The RNA-Seq data for the response to nitrate induction was

downloaded from the GEO accession GSE97500

• The PWM used to build the TFBM dataset were retrieved

from JASPAR and the Plant Cistrome Database.

• To identify Arabidopsis TSSs and promoter regions, we relied

on the TAIR10 GFF3 file.

• The regulators of Arabidopsis used for GRN inference are the

union between PlnTFDB and AtTFDB

All results can be reproduced with the code available in the

github repository:

https://github.com/OceaneCsn/integrative_GRN_N_induction
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Gloria Coruzzi, Benôıt Lacombe, and Gabriel Krouk. GARP

transcription factors repress arabidopsis nitrogen starvation

response via ROS-dependent and -independent pathways.

Journal of Experimental Botany, 72(10):3881–3901, mar 2021.

51. Md. Abul Hassan Samee. Noncanonical binding of

transcription factors: time to revisit ispecificity/i? Molecular

Biology of the Cell, 34(9), August 2023.

52. Erwan Scornet. Trees, forests, and impurity-based variable

importance. arXiv preprint arXiv:2001.04295, 2020.

53. Alireza F. Siahpirani and Sushmita Roy. A prior-based

integrative framework for functional transcriptional regulatory

network inference. Nucleic Acids Research, 45(4):e21,

February 2017.

54. Dongyuan Song, Kexin Li, Xinzhou Ge, and Jingyi Jessica

Li. ClusterDE: a post-clustering differential expression (DE)

method robust to false-positive inflation caused by double

dipping. July 2023.

55. Dongyuan Song, Qingyang Wang, Guanao Yan, Tianyang Liu,

Tianyi Sun, and Jingyi Jessica Li. scDesign3 generates realistic

in silico data for multimodal single-cell and spatial omics.

Nature Biotechnology, May 2023.

56. Matthew E. Studham, Andreas Tjärnberg, Torbjörn E.M.

Nordling, Sven Nelander, and Erik L. L. Sonnhammer.

Functional association networks as priors for gene regulatory

network inference. Bioinformatics, 30(12):i130–i138, jun 2014.

57. Robert Tibshirani. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996.

58. Yoshiaki Ueda, Takatoshi Kiba, and Shuichi Yanagisawa.

Nitrate-inducible NIGT1 proteins modulate phosphate uptake

and starvation signalling via transcriptional regulation of

iSPX/i genes. The Plant Journal, 102(3):448–466, January

2020.

59. Kranthi Varala, Amy Marshall-Colón, Jacopo Cirrone,

Matthew D. Brooks, Angelo V. Pasquino, Sophie Léran, Shipra
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Supplementary figures

Table S1 : Normalized gene expression of the 1426 nitrate-

responsive genes in the different treatments and time points of

the experiment [59]. C: control. N: nitrate induction treatment.

Numbers represent time after treatment in minutes.

Table S2 : Gene identifier (AGI) of the 201 nitrate-responsive

regulators.

Table S3 : 56 genes involved in the uptake, transport,

metabolism and signalling (positive or negative) of nitrate in

the roots of Arabidopsis thaliana. Their AGI, gene name and

short description are shown. This list of nitrate-related genes was

compiled from the literature [8, 60, 15, 2, 29, 50, 59, 11, 40, 3, 58,

50, 20, 30].
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Fig. S1: TFBM support of inferred GRN. TFBM support is the average value of the inferred TF-target edges in the prior TFBM

matrix Π. It is shown for three network densities : 0.005 (1432 edges), 0.01 (2864 edges) and 0.05 (14322 edges). A TFBM of 1 means

that a GRN is composed only of edges supported by a TFBM. At maximal TFBM integration intensity (α = 1), GRN on both true and

shuffled data achieve a TFBM support of 1.
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Fig. S2: Different scenarios of data integration in weightedLASSO. For three gene examples in rows, the subplots show the EDI

depending on α, the MSE depending on α and MSE depending on EDI for all possible values of α on true data (green) and shuffled null

datasets (grey). The MSE is normalized by the variance of the target gene expression. For each value of α, 50 models were estimated and

one standard deviation around the mean is represented. The proposed gene-specific αopt is the value for which the MSE is most reduced

as compared to the shuffled baseline, represented as a vertical blue line.
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Fig. S3: PCA plot of the normalized counts from the RNA-Seq experiment of the dynamic root response to a nitrate

treatment [59]. The three first subplots show the correlation of each sample to the first 4 principal components. Each color represents an

experimental condition made of 3 replicates. C: control. N: nitrate treatment. Numbers represent time in minutes. The first component

highlights the samples at 10 and 15 minutes as different from the rest of the experiment, possibly due to a batch effect. The screeplot

represents the percentage of variance explained by the 4 first principal components.
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Fig. S4: Prior TFBM network of nitrate-responsive genes (1426 promoters and 70 regulators). a. Distributions of the number

of distinct PWM hits per promoter. b. Distribution of the number of distinct promoter hits per PWM restricted to nitrate-responsive

genes. The average value of each distribution is represented by the orange vertical line.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.558791doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.558791
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 Cassan et al. 2023

Fig. S5: EDI for the 1426 nitrate-responsive genes as a function of α. Values are averaged across 100 replicates for weightedRF and 50

for weightedLASSO.
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Fig. S6: Intersection between the genes with αt,opt > 0 in weightedLASSO and weightedRF with DIOgene. Enrichment

pvalue : 5.9e−12 (One-sided hypergoemetric test).
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Fig. S7: Precision and recall as a function of α in weightedLASSO, against a DAP-Seq gold standard. Precision and recall

are show on true data (green) and shuffled null datasets (grey) for three network densities : 0.005 (1432 edges), 0.01 (2864 edges) and

0.05 (14322 edges). The precision of the prior TFBM network of nitrate responsive genes (31956 edges, density = 0.32) is overlaid in

orange.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.09.29.558791doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.29.558791
http://creativecommons.org/licenses/by-nc-nd/4.0/


Optimizing data integration improves Gene Regulatory Network inference in Arabidopsis thaliana 21

D = 0.005 D = 0.01 D = 0.05

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.20

0.25

0.30

0.35

0.40

0.45

α

P
re

ci
si

on

dataset shuffled trueData

Precision against DAP−Seq

0.05

0.10

0.15

0.20

0.01

0.02

0.03

0.04

0.05

D = 0.005 D = 0.01 D = 0.05

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.01

0.02

α

R
ec

al
l

dataset shuffled trueData

Recall against DAPSeq

weightedRF

Fig. S8: Precision and recall as a function of α in weightedRF, against a DAP-Seq gold standard. Precision and recall are

show on true data (green) and shuffled null datasets (grey) for three network densities : 0.005 (1432 edges), 0.01 (2864 edges) and 0.05

(14322 edges). The precision of the prior TFBM network of nitrate responsive genes (31956 edges, density = 0.32) is overlaid in orange.
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Fig. S9: Example of two genes in weightedRF for which DIOgene sets αt,opt = 0, but the minimal MSE approach would set αt,opt > 0.

MSE depending on EDI for all possible values of α on true data (green) and shuffled null datasets (grey).The MSE is normalized by the

variance of the target gene expression.
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Fig. S10: Comparison of the proposed gene-specific data integration tuning approach, DIOgene (blue), to the simpler

minimal MSE approach (red). a. Median MSE, computed over all nitrate-responsive genes. The MSE is normalized by the variance

of the target gene expression. b. Precision and recall computed against DAP-Seq interactions, on two GRN densities : 0.005 (1432

edges), 0.01 (2864 edges). Globally, the proposed tuning approach provides GRN closer to the DAP-Seq network. Each dot is a replicate

of GRN inference, randomness stemming from different bootstrap sampling. c-d. Precision and recall curves for densities ranging from

0.001 to 1, computed on sub-GRN made of the edges concerning only target genes for which we integrate TFBM exclusively in one of

the compared methods. In red, the genes for which the minimal MSE sets αt,opt > 0 but not the proposed approach. In blue, the genes

for which our approach sets αt,opt > 0 but not the minimal MSE approach. This highlights the precision and recall gain from changing

the sets of genes for which TFBM are integrated between the two methods.
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Fig. S11: Most connected regulators depending on the model and TFBM integration strategy. In inferred GRN of a 0.005

density, regulators were ranked by their out-degree (number of regulated target genes or other regulators) for weightedLASSO and

weightedRF, and for a global value of α (0 or 1), or using the proposed gene-specific approach (DIOgene). The out degree is averaged

across the different runs of the same method to account for inherent stochasticity, and the top 25 TFs with the highest out-degree are

shown. Regulators already identified in previous studies as important (orange) or candidate (yellow) actors of nitrate signalling and

regulation are highlighted [8, 60, 15, 2, 29, 50, 59, 11, 40, 3, 58, 50, 20, 30]. TFs uniquely retrieved by the proposed gene-specific approach

as compared to a global optimization for a given model are reported in blue.
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Fig. S12: The overall degree (in-degree and out-degree) of nitrate-related genes is higher in inferred GRN as compared

to other genes. In inferred GRN (D = 0.005), the total degree of genes is shown for a global value of α (0 or 1), or using DIOgene

(specific). Total degree is reported on the log scale. Only genes with at least one connection in the inferred GRN were considered. The

list of nitrate-related genes (Table S3) was compiled from the literature [8, 60, 15, 2, 29, 50, 59, 11, 40, 3, 58, 50, 20, 30].
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Fig. S13: Functional comparison between genes for which TFBM are consensually integrated (αt,opt > 0, left, N = 572)

or not integrated (αt,opt = 0, right, N = 276) in weightedRF and weightedLASSO. Expression and expression variance are

reported on the log scale. The other characteristics are the number of motifs in the target gene promoter region, either among all

knwon PWM in Arabidopsis (nb motifs), or only in nitrate responsive regulators (nb motifs n tfs), the number of introns (nb introns),

the number of transcripts (nb transcripts). The two latter features were retrieved from the TAIR10 GFF annotation. On the last row,

proportions of TFs in each group of genes are shown along an enrichment p-value result (one-sided hypergeometric test).
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