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Abstract 

 

In a precision agriculture context, the spatialization of existing crop models by 

downscaling processes to simulate agronomic variables at a within-field scale is of 

interest to better adapt technical decisions at this scale. The evaluation of spatial crop 

models needs to be based on both aspatial and spatial pattern error. However, current 

aspatial model metrics and existing spatial metrics have known limitations to evaluate 

the performances of spatial crop models. To address these limitations, a new metric, the 

spatial balanced accuracy (SBA), is proposed. The SBA is a novel metric, based on 

connectivity analysis, that incorporates both aspatial and spatial aspects of model 

performance. The theory behind the metric development is presented here along with a 

comparison with existing model metrics applied to synthetic simulated data that covers 

a range of potential conditions. 
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Introduction 

 

The use of crop models is shifting from a long-term strategic application to a short-term 

site-specific tactical application. This is being driven by an ability to spatialize existing 

point-based crop models using data assimilation and spatial calibration approaches 

(Jones et al., 2017). The spatialization of point-based crop models results in spatialized 

crop models. Equally, true spatial crop models are likely to become more available in 

agriculture (see Pasquel et al. (2022a) for further discussion on these concepts). For 

spatialized or spatial crop models (denoted globally as SCMs), having accurate spatial 

results is important to set up within-field management and to make correct in-season 

management decisions. Spatialization is considered as being correct if the observed data 

and the crop model output maps exhibit the same patterning. 

To evaluate the performance of SCMs, particularly when applied at the within-field 

scale, metrics are needed to correctly assess the spatial pattern of the modelled 

agronomic variable (i.e. spatial organization of variable values) (Figure 1). A metric 

may have different goals: (i) to compare different modelling approaches to know which 

model is the best (e.g. when changing model scale or the size of calibration/validation 

data sets) or (ii) to analyse how well a model is performing (i.e. obtaining real 

information on the model performances). One important goal of using a metric to 

compare different modelling approaches is to quickly determine the effectiveness of a 

spatial or spatialization process and to identify the best performing SCM. Previously, 

classical aspatial metrics (e.g. root mean square error: RMSE) have been systematically 

used for model evaluation when models are applied spatially (see examples in Pasquel 

et al., 2022a). However, different spatial patterns in the model output can be achieved 

with a common RMSE (Pasquel et al., 2022a; 2022b). Thus, by themselves, existing 



aspatial metrics will not provide complete information of how well a SCM is 

performing. An evaluation of SCM performance needs to accounts for both (i) the 

aspatial relationship between the values of observed and modelled variable and (ii) the 

preservation of the spatial pattern of the observed variable within the modelled variable. 

To achieve this, new metrics are needed that account for both the aspatial and spatial 

pattern error between the observed and modelled data. 

In a precision agriculture (PA) context, the site-specific decision taken at a within-field 

scale will be directly based on the spatial pattern of the agronomic variable, but not 

directly on its spatial structure. The spatial pattern is a specific organization that derives 

from the spatial structure of the data, and multiple different spatial patterns can result 

from the same spatial structure (Figure 1). However, most geostatistical methodologies 

used in the PA community are based on the spatial structure (see examples in Leroux 

and Tisseyre, 2018), and for a given spatial structure will give the same result even if 

the agronomic variable shows differing spatial patterns. Therefore, any new proposed 

metric needs to be based on the spatial pattern error, i.e. the preservation of the variable 

spatial pattern, and resulting from an automated and robust approach. 

To date, to the authors’ knowledge, there has been no proposition of a metric in 

agronomic modelling that addresses both the aspatial and spatial pattern error. To 

address this gap, the proposition and theory behind a new metric for SCM evaluation, 

particularly aimed at downscaled PA applications, is the main objective of this paper. 

The novel metric is designed to directly evaluate the SCM outputs independently of any 

agronomic decision. The proposed metric will (i) allow a relevant evaluation of SCM by 

assessing both aspatial and spatial pattern error, (ii) be based on an automated and 

robust approach, (iii) be intended to be used to identify which modelling approach is the 

best (and not to understand why the modelled data diverge from the observed variable) 

and (iv) be able to be used regardless of the agronomic context and/or modelling scale. 

 

Figure 1. Difference between spatial structure and spatial pattern, the same spatial 

structure can result in different spatial patterns. Variogram parameters that are used to 

describe the spatial structure are C0: nugget, C1: partial sill, C0 + C1 = sill and the range. 

 

Material and Methods 
 

Several metrics could be used to evaluate SCM performances. In this study, the decision 

was made to use the RMSE as an aspatial reference metric, RMSEvario as a variogram-

based reference metric and RMSEcon as a spatial pattern-based reference metric. 

 

Aspatial metric: RMSE 



The RMSE (Equation 1) was chosen for the comparison as it is one of the most 

common aspatial metric used to evaluate SCMs (Pasquel et al., 2022a), by calculating 

the difference between observed and modelled data. 

      
 

 
         

 
             (1) 

 

where Oi = observed variable, Mi = modelled value and n is the number of observations. 

 

Metric based on variographic analysis: RMSEvario 

Within the PA community, the use of geostatistics, particularly variograms, to evaluate 

the spatial structure of an agronomic variable is a well-known and accepted tool (Taylor 

et al., 2019). Variographic analysis evaluates the spatial autocorrelation structure 

between data points by computing an experimental variogram of the semivariance of the 

variable of interest at different distances (lags) (Equation 2). 

 

     
 

        
                                      (2) 

 

where h = the distance separating points, N(h) = {(i,j) : |si – sj|= h}, |N(h)| = the number 

of distinct elements of N(h), x(si) and x(sj) represent the agronomic variable respectively 

at location si and sj. 

 

Koch et al. (2017) suggested an adaptation to Equation 2 to generate a metric that 

computes the difference between the semivariance of observed and modelled data at 

each lag (Equation 3). 
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where  (h)obs and  (h)mod are respectively the semivariance computed at the distance h 

for the observed and modelled data and Nlag = the number of lags in the variogram. 

 

As RMSEvario approaches 0, the spatial structure of the observed and modelled data 

tends to be the same. Therefore, the RMSEvario is of potential interest as a spatial or 

spatialized model metric as it integrates at least one aspect of performance, i.e. 

evaluation of spatial structure between observed and modelled data. However, it only 

addresses the spatial structure of the data, not the spatial pattern. 

 

Metric based on connectivity analysis: RMSEcon 

In PA, it is important to have SCM predictions that follow the real spatial distribution 

(pattern) of the variable of interest for management. Connectivity analysis is a method 

for assessing spatial pattern in hydrology modelling (Koch et al., 2017). It is adapted 

here to an agronomic context. Connectivity analysis is based on clustering neighbouring 

spatial model units of binary maps in order to compute the probability of connection 

according to Hovadik and Larue (2007) (Equation 4). 
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where Xt = the binary map obtained by thresholding a map X at threshold value t, 

Nclus(Xt) = the number of distinct clusters in Xt, and ntot (resp. ni) = the number of spatial 

model units within Xt (resp. within the i
th

 cluster of Xt). 

 

Several binary maps are considered in connectivity analysis by thresholding the initial 

data using the percentiles of the variable under study. To formalize Equation 4 into a 

metric, Koch et al. (2017) further proposed the RMSEcon to evaluate prediction 

performance by computing the difference between the probability of connection of 

observed and modelled data at each percentile (Equation 5). Computation of thresholds 

based on percentiles make this metric insensitive to numerical bias. 
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where O and M are respectively the observed and modelled maps, Ot(O,q) = the observed 

map binarized at threshold level t(O,q) defined relative to q
th

 percentile of O and Mt(M,q) = 

the modelled map binarized using threshold t(M,q) defined relative to q
th

 percentile of M. 

 

The closer RMSEcon is to 0, the better the agreement between the (connected) spatial 

pattern of the observed and modelled data. Like RMSEvario, RMSEcon also integrates a 

spatial aspect of performance of a SCM. However, it has the advantage of directly 

assessing the spatial pattern, rather than the spatial structure (as in RMSEvario). 

 

Spatial balanced accuracy (SBA): a novel spatial pattern-based performance metric 

In previous work (Pasquel et al., 2022b), the use of the balanced accuracy score (BA) 

(Equation 6) was proposed to assess the efficacy of decision-making with SCM outputs 

(relative to the correct decision based on observations). This is a form of map 

comparison. This approach required the SCM output to be carried forward into a 

decision system, i.e. it is not suitable for a rapid, robust, automated and direct 

assessment of the SCM performance. To overcome this requirement, an adaptation of 

the BA concept that incorporates part of the connectivity analysis methodology is 

proposed here. Neighbouring spatial modelling units are defined as in the connectivity 

analysis. Maps of observed and modelled data are used to generate several binary maps 

using a series of fixed thresholds. Considered thresholds are percentiles of the 

agronomic variable computed on values of observed and modelled data to be evaluated 

(Figure 2). For each percentile, the BA score is computed between the binary observed 

and modelled data to assess the spatial distribution and concordance of pixels below and 

above fixed threshold values for both maps. The different BA scores for all considered 

thresholds are averaged to generate the new metric, called the spatial balanced accuracy 

(SBA) (Equation 7). When SBA is equal to 0, binary maps of observed and modelled 

data are identical. 
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where TP = true positive, TN = true negative, FN = false negative and FP = false 

positive, when BA = 1 there is a perfect agreement between observed and modelled map 

(and complete disagreement between maps when BA = 0). 

 

    
 

   
                            

   
      (7) 

 

where O and M are respectively the observed and modelled maps, Ot(O,M,q) and Mt(O,M,q) 

are respectively the observed and modelled maps at threshold level t(O,M,q) defined 

relative to percentile q on the merging distribution of O and M. 

 

The BA approach was preferred to accuracy to avoid misinterpretations in the case of 

unbalanced datasets. It can also be shown that SBA = 0 induces RMSE = 0 (i.e. the 

same values for all localizations), which is not guaranteed with the RMSEvario and 

RMSEcon computation. In this sense, unlike RMSEvario and RMSEcon, SBA incorporates 

both aspatial and spatial pattern errors between observed and modelled data. 

 

Figure 2. Representation of spatial balanced accuracy (SBA) computation. (a.) Maps of 

an observed and modelled agronomic variable resulting from different spatialized crop 

models. (b.) Binary maps generated for observed and modelled maps computed for the 

10
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentile thresholds over the entire range of observed and 

modelled data. BA is computed for each considered percentile thresholds (subscript 

values) and SBA is computed for each different modelling approach (superscript 

values). 

 

Simulation study 

To assess the performance of the different metrics under controlled conditions, 

simulated data were generate for various scenarios considered relevant to PA 

applications. A virtual field (50 x 60 pixels) with a strong spatial structure of the 

simulated agronomic variable was generated using a spatialized Gaussian field with the 

gstat R package (Gräler et al., 2016; Pebesma, 2004) in R 4.2.0 (R Core Team, 2022). 

The variogram parameters were chosen as follows: nugget = 1, partial sill = 100 and 

range = 20. The agronomic variable mean was fixed to 50. This field was then trimmed 

to 50 x 50 pixels to form the reference simulated observed field (Figure 3).  



Five simulated SCM outputs were then generated. The first three were obtained by 

applying some form of error (or noise) distribution to the reference field. A constant 

normal distribution N(0,5) of error was generated and then applied (A) randomly, (B) 

with a positive relationship and (C) as for B with a constant bias added (Figure 3.A-C). 

These cases represented situations where the theoretical SCM was performing (A) 

poorly, (B) well and (C) well but with a bias. The fourth and fifth simulated SCM 

outputs were generated by (D) shifting the reference field 10 pixels horizontally within 

the original 50 x 60 field, to obtain a new field from the simulated observed data with 

an identical spatial structure but an offset spatial pattern, and (E) by randomly 

generating a second field with identical variogram parameters of the original reference 

field and completely different spatial pattern (Figure 3.D-E). Thus, Model E has the 

same spatial structure as the simulated observed data (i.e. same variogram parameters) 

but results in a different spatial pattern. These represented situations where the 

theoretical SCM was performing (D) quite well but with a spatial bias and (E) poorly. A 

well-performed metric should be able to identify Model B as the best theoretical SCM. 

 

Figure 3. Illustration of the simulated spatial agronomic variable maps used to evaluate 

theoretical spatialized crop models. Observed data were generated from a spatialized 

Gaussian field. Modelled data were simulated by adding or creating different error 

distributions to the simulated observed data: (A) random noise, (B) positively applied 

noise, (C) positively applied noise with a numerical bias, (D) spatial pattern translation 

of the simulated observed data and (E) same spatial structure but with a different spatial 

pattern. 

 

Results and discussion 

 

The results of the calculations for the five different simulated SCM outputs (Models A 

to E) relative to the simulated observed reference field are shown in Table 1. Using 

RMSE, Models A and B were identified as best and identical. The RMSE was unable to 

differentiate between them as the same error distribution was attributed in both models. 

RMSE is an aspatial metric thus only estimates the aspatial relationship between values 

of observed and modelled data. Model A should not be identified as equivalent to 

Model B as the spatial pattern is more distorted in Model A. This has previously been 

showed on other data sets (Pasquel et al., 2022a; 2022b). 

 

Table 1. Comparison of different metrics to identify the theoretical SCMs with the best 

performance. Each indicated value was computed between observed and modelled data. 



Data Model A Model B Model C Model D Model E 

RMSE 9.90 9.90 26.63 14.10 17.90 

RMSEvario 106.49 317.87 317.87 21.67 9.14 

RMSEcon 0.16 0.05 0.05 0.17 0.10 

SBA 0.18 0.04 0.17 0.37 0.50 

 

Using RMSEvario, Model E was identified as the best model, followed by Model D. The 

RMSEvario assesses spatial structure (with variogram parameters). Variograms of the 

reference observed data and Model E and D outputs were very close as they were 

generated from a spatial Gaussian field with the same variogram parameters, i.e. the 

same spatial structure. Given this, it was unsurprising that these models were identified 

as the best models by RMSEvario. In contrast, Models B and C were the worst performed 

according to RMSEvario, and it was unable to account for the numerical bias introduced 

in Model C. This was a poor result given that Model B should be considered as the best 

performing approach. It highlights the difference between assessing the spatial structure 

and spatial pattern in SCM outputs, and its effect on geostatistical metrics like 

RMSEvario. Furthermore, estimating the spatial structure of an experimental variogram 

involved fitting a theoretical variogram, which required expert knowledge that is 

incompatible with the aim of having an automated and robust metric. 

RMSEcon identified Models B and C as the best models but was unable to differentiate 

between them. The spatial patterns of both models are the same, but the aspatial 

relationship is biased for Model C, i.e. the RMSEcon is a spatial metric that is insensitive 

to numerical bias. Regarding the objective of this study, RMSEcon is more interesting 

than RMSEvario as it is responsive to spatial patterns, rather than spatial structures and is 

more easily automated. However, a drawback to using connection probabilities to 

evaluate SCM performances is that it detects the presence of patterns at the within-field 

scale but not their location. Thus, for a given output, such as Model B, the RMSEcon 

would be identical if the output map was rotated 90°, 180° or 270°, i.e. if it had the 

same spatial pattern output but with different locations. 

Like RMSE and RMSEcon, the result using the novel SBA metric also identified Model 

B as the best model. However, SBA clearly identified Model B as the single best model 

(and not equal to another model as in the case of both RMSE and RMSEcon). Model B is 

considered as the best because it has the closest aspatial relationship between value data 

and preserves a maximum of the spatial pattern relative to the observed data. The SBA 

methodology is mainly based on connectivity analysis, which correctly assessed the 

variable spatial pattern. However, by also evaluating thresholds (i.e. percentiles for this 

study) across all values of observed and modelled data using the BA theory, the SBA 

also took into account the aspatial relationship between the observed and modelled data. 

The RMSEcon was unable to do this because the thresholds were computed 

independently between the observed and modelled data. The methodology to assess the 

variable spatial pattern was kept (i.e. it computed a metric for different binary maps for 

different defined thresholds between observed and modelled data), but BA was 

computed instead of the probability of connection. By evaluating both the spatial pattern 

connectivity as well as the placement of these spatial patterns, the SBA was able to 

correct the second drawback of connectivity analysis. This was shown by its lower 

evaluation (higher SBA value) of Model D compared to Models B and C. Thus, from 

this short study and simulations, the SBA appears to be the most relevant and a 

promising metric among those tested for evaluating the performance of a SCM. 



 

Conclusion 

 

This work has proposed a new metric, spatial balanced accuracy (SBA), to address the 

issue of how to evaluate the performance of a spatial or spatialized crop model (SCM). 

The SBA accounted for both the aspatial relationship between the values of observed 

and modelled variable(s) and the preservation of the spatial patterns of the observed 

variable(s) within the modelled variable(s). It is based on connectivity analysis with a 

modification to correct drawbacks of this methodology to evaluate the outputs of a 

SCM. In this preliminary study, the SBA gave relevant results on theoretical SCMs 

using simulated data that encompassed a variety of conditions. Further research will 

focus on testing the SBA via more in-depth sensitivity analyses and in real case studies 

to verify the ability of this metric to correctly characterise SCMs. 
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