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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Spatialization is of great interest to use 
crop models in precision agriculture. 

• Spatial calibration efficiently down
scaled APSIM at the within-field scale. 

• Spatial calibration performed best when 
modeling spatially structured variables. 

• Ancillary data used in downscaling need 
to be correlated with the target variable. 

• Better formalism of spatial processes 
improves spatialized crop model 
performance.  
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A B S T R A C T   

CONTEXT: Most crop models are designed for point-based modeling and to simulate agronomic variables on their 
native spatial footprint, i.e. typically as a uniform field-scale value. Precision agriculture needs crop model 
simulations at sub-field scales to support differential management application. Spatialization processes are used 
to change the simulation scale of crop models. 
OBJECTIVE: The objective of this study is to investigate the spatialization of a complex crop model by using a 
spatial calibration approach to modify its native spatial footprint and to evaluate if it is relevant to use this kind 
of crop model at the within-field scale. 
METHODS: APSIM was spatialized to simulate durum wheat yield at different spatial scales (field, within-field 
and site-scale) on an experimental field under Mediterranean conditions in southern Italy. Ancillary soil data 
were used to derive potential management (modeling) zones at different scales, which were then used to spatially 
calibrate soil and biomass parameters in APSIM to spatially predict yield in two different production years (one 
year was used for calibration and the other for evaluation). Spatialized crop model performances were evaluated 
using the spatial balanced accuracy (SBA) score, a metric to evaluate the global preservation of patterns between 
maps. 
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RESULTS AND CONCLUSIONS: The spatial structure of the yield data influenced the effectiveness of the spatial 
calibration process. When the agronomic variable (durum wheat yield) was spatially structured, a spatialized 
APSIM approached performed best (5-zone modeling scale, SBA = 0.17) and outperformed the field-scale (native 
footprint) model (SBA = 0.19). In contrast, when the target agronomic variable was more random (less spatially 
structured), the uniform field-scale modeling performed best and spatial calibration had no benefit. The spa
tialized APSIM performances were mainly based on the reliability of the delineated zones that undeniably 
affected the quality of the spatialized model outputs. Thus, more research is needed on how best to model scale- 
dependent processes to have more reliable modeling at the within-field scale. 
SIGNIFICANCE: Based on the example of a complex crop model like APSIM, this study showed that spatial 
calibration can be effective and has a role to play in the spatialization of complex crop models.   

1. Introduction 

Precision agriculture (PA) represents an opportunity to use site- 
specific management to increase input efficiency and reduce agricul
ture’s environmental footprint (Khanal et al., 2017; van Evert et al., 
2023). In this context, spatial decision support tools (DSTs) are impor
tant to help farmers to adapt their cultural practices in a spatially and 
temporally uncertain environment to increase resource efficiency and 
maximize sustainability in time and space (Jones et al., 2017). Crop 
models, especially mechanistic crop models, can be useful DSTs because 
they can take into account various variables (e.g. climatic conditions, 
soil properties, management options) that affect production. For this 
reason, mechanistic crop models are widely used to simulate various 
‘what-if’ scenarios and to describe and understand how some factors (e. 
g. environment, weather conditions, etc.) may affect crop growth and 
development. 

Most existing crop models simulate agronomic variables (e.g. wheat 
yield, vine water status, fruit nutrient content) on their native spatial 
footprint, i.e. the spatial footprint on which they were initially designed 
(e.g. plant, field, region scale) (Pasquel et al., 2022a). Crop models in 
current use are generally designed for modeling at the field-scale and 
they simulate agronomic variables by using homogeneous (average) 
field conditions (You et al., 2022). Even if the modeling is at the field- 
scale, such models are referred to as point-based models because they 
simulate agronomic variables at a specific spatial scale over a spatial 
footprint that is considered a homogeneous spatial modeling unit 
(Heuvelink et al., 2010). However, simulating agronomic variables at 
the field-scale is no longer sufficient to tackle the issues arising in the 
agronomic and modeling communities related to PA applications. The 
incorporation of crop models into PA applications is shifting the use of 
crop models from long-term strategic uses to short-term in-season 
tactical (and spatial) uses. Spatialization processes are used to change 
the simulation scale of crop models (Pasquel et al., 2022a). The concept 
of spatialization is not new and has previously been well defined by 
Faivre et al. (2004) in order to be able to use crop model at scales other 
than their native spatial footprint, particularly at larger scales to predict 
at regional, national and global scales. The use of these crop models in 
PA assumes a spatialization process that simulates agronomic variables 
at a finer scale than the field-scale. This way of modeling at the within- 
field scale for PA will be directly related to the spatial pattern of the 
agronomic variable. Therefore, the relevance of using such crop models 
at finer spatial scales will be dependent of the considered agronomic 
variable and its spatial distribution. 

Many studies, mostly linked to the impact of climate change on crop 
production, have used crop models at a larger scale than their native 
spatial footprint. Thus, the most common form of crop model spatiali
zation has been achieved by using upscaling methods to simulate 
agronomic variables at regional, national or even international scales 
(Asseng et al., 2018; Challinor et al., 2009; Villa et al., 2022). Most 
upscaling methods of applied crop models are performed on a defined 
grid and the crop model is run using the grid points (or pixels) as the 
modeling unit. Each modeling unit is individually calibrated (Hochman 
and Horan, 2018; van Ittersum et al., 2013). In crop-climate ensemble 

model studies, approximately half of the studies have used an upscaled 
data aggregation crop model approach, even if these crop models were 
initially designed at the field scale (Challinor et al., 2017). Others 
studies, using statistical crop models based on historical datasets, have 
aimed to upscale crop models to larger spatial scale (e.g. national scales) 
to predict the impact of climate change on crops (Lobell et al., 2008). In 
contrast, there have been very few studies investigating crop model uses 
on spatial scales smaller than their native spatial footprint, i.e. down
scaled crop modeling processes. Despite this, the spatialization of crop 
models at a within-field scale is of great interest for PA purposes to both 
model and manage within-field spatial variability. 

Within-field spatial variability is well-known to be highly significant 
to production and is caused by local interactions between several 
spatially variable biotic (e.g. pests, soil microorganisms) and abiotic (e. 
g. soil properties, weather conditions, anthropogenic consequences, 
topography) factors (Corwin and Lesch, 2005). Within-field production 
variability can be mapped by remote and/or proximal sensing data (Jin 
et al., 2018; Weiss et al., 2020; Zhang and Kovacs, 2012). To tackle 
spatial variability, fields can be divided into within-field management 
zones, i.e. sub-field areas that tend to have more homogenous produc
tion characteristics. Commonly in these studies, observed data are 
aggregated at selected within-field zone scales. Some studies have spa
tialized crop models by downscaling processes based on this manage
ment zone concept (Basso et al., 2001; Cammarano et al., 2021; Leo 
et al., 2023), which are also known in modeling terms as ‘functional 
units’ (Launay and Guerif, 2005). In this approach, the intent is to model 
a zonal response. The same kind of approach, by segmenting the 
modeling extent by simulation zone partitioning, has also been applied 
on upscaling studies at larger spatial scales than the native spatial 
footprint of existing crop models (Guo et al., 2018; Zhuo et al., 2022). Of 
the published works in this area, most have focused on data assimilation 
approaches, whereby observed spatial data sets are used to update or 
replace intermediates/variables within the model (Jin et al., 2018). A 
common example of this is the use of remotely sensed imagery as a 
surrogate for LAI (or biomass/vigor) within a crop model (Hu et al., 
2019; Huang et al., 2019; Jin et al., 2018). Alternatively, ancillary data 
could be used within a spatial calibration approach to locally correct/ 
adjust model parameters. The aim of spatial calibration is to calibrate 
model parameters that are likely to vary spatially based on the delin
eation of within-field zones that are representative of the spatial pattern 
of the agronomic variable. This can be done using in-season information 
using a data assimilation approach or, in a more classical sense, spatial 
calibration could be performed a priori (pre-season) using historical data 
sets. In either case of spatial calibration, the spatial pattern is hypoth
esized to determine the number of delineated within-field zones on 
which to perform the spatial calibration. 

Spatial calibration studies performed a priori are much less common 
than forcing data assimilation studies, but they have the advantages of 
allowing the production to be modeled (and potentially managed) from 
day one of the season. This is in contrast to data assimilation approaches 
that need crop development and data collection/processing to occur 
before the data assimilation and crop model spatialization can be per
formed. One previous study of downscaling by the spatial calibration of 
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crop model parameters using historical (rather than in-season data) was 
effectively performed on a relatively simple crop model (Pasquel et al., 
2022b), WaLIS (Celette et al., 2010). The WaLIS model is a simple model 
to simulate water partitioning between the vine and cover crop using 
water balance equations and vine and cover crop growth equations. 
However, the most commonly used crop models in agriculture are more 
detailed and complex than WaLIS, involving more equations and inputs 
to better account for atmosphere-soil-plant water movements and crop 
physiology (Soltani and Sinclair, 2015). Examples of such models 
include STICS (Brisson et al., 2003, 2002, 1998), DSSAT (Hoogenboom 
et al., 2021, 2019; Jones et al., 2003), APSIM (Holzworth et al., 2014), 
AquaCrop (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009), 
WOFOST (de Wit et al., 2019), MONICA (Nendel et al., 2011) or Daisy 
(Abrahamsen and Hansen, 2000; Hansen et al., 2012, 1991). To date, to 
the authors’ knowledge, there has been no published work on how a 
spatial calibration approach to downscaling would (or could) perform 
with these complex mechanistic crop models at the within-field scale. 
The spatial calibration approach advocated previously by Pasquel et al. 
(2022b) ran the spatialized crop model on a modeling unit by modeling 
unit scale while maintaining a spatial consistency at the within-field 
scale through the delineation of within-field zones. Thus, Pasquel 
et al.’s (2022b) approach to spatial calibration was not at a predefined 
grid/pixel size, but informed by the zoning of existing and relevant data. 
The transfer of this approach to a much complex crop model using real- 
world data for validation represents one of the main innovations of this 
study. 

Most crop models, whether simple or complex, are based on the 
assumption that the model parameters are homogenous over the spatial 
footprint that they are run on, regardless of the spatial scale. All model 
parameters exhibit no spatial variability, i.e. they are aspatial parame
ters, regardless of the type of model parameter. Moreover, they are 
commonly tested at the field-scale (Zhen et al., 2023). Thus, in a PA 
context, it is important to test the relevance of these crop model as
sumptions when applied at the within-field scale. For instance, if the 
same wheat cultivar is sown in a field, model plant parameters are not 
expected to change spatially. However, other model parameters relating 
to water and energy balances or soil dynamics, which are known to be 
spatiotemporally variable, would be expected to change spatially. The 
objective of this study is to investigate the spatialization of a complex 
crop model by using spatial calibration to modify crop model resolution 
(spatial footprint) for PA purposes. The crop model APSIM was selected 
for this study because it is a well understood model among the co- 
authors and meets the above requirements of being a more detailed 
and complex crop model. This is realized by (i) using ancillary data and a 
segmentation algorithm to delineate within-field zones, and (ii) spatially 
calibrating certain model parameters at different resolutions defined by 
these within-field zones. The purpose is to better understand how a 
complex crop model responds to such a spatialization process (i.e. 
spatial calibration) and whether within-field scale modeling is relevant 
using a spatially calibrated crop model. This study represents an 
exploratory and preliminary work to understand how a complex crop 
model could work regarding a change in spatial modeling scale. 

2. Materials and methods 

2.1. Site description and collected data 

A 12 ha experimental field of CREA (Research Centre for Cereal and 
Industrial Crops), near Foggia (41.462◦N N, 15.506◦E), south-eastern 
Italy was used in this study. This site has previously been used for 
comparing the performance of crop models under conditions of varying 
within-field soil properties in Wallor et al. (2018). Briefly, data in the 
original study were collected over three production seasons 
(2005–2006, 2006–2007 and 2007–2008) with durum wheat (Triticum 
durum Desf. cv. Gargano) grown in all three seasons. However, the 
2006–2007 year was drought affected (poor subsoil moisture at the start 

of the season and low rainfall during the crop season) with very low 
yields recorded. Since 2006–2007 was atypical, the decision was made 
not to use these data in this study. The rationale for this was that the 
production conditions in 2006–2007 were likely to be at the limit or 
beyond that for which the APSIM model was designed. It is not a drought 
model. Spatialization of a model operating under known sub-optimal 
conditions was considered to be of little value as the source of any er
rors and effects would be ambiguous, i.e. would an observed effect in 
2006–2007 be caused by modeling under drought conditions or by the 
model spatialization? For the other two years, meteorological conditions 
were typical of a Mediterranean climate, i.e. hot and dry summer (May 
to September) with precipitation concentrated in the autumn-winter 
period that coincides with cool-cold temperatures (October to April). 
Precipitation (P), minimum and maximum temperatures (Tmin and Tmax 
respectively) and solar radiation (Srad) were recorded daily at a weather 
station 300 m from the experiment field (Fig. 1). Rainfall patterns of 
both growing seasons were different and 2007–2008 was identified as a 
drier growing season. The experimental field is located on a wide plain 
(‘Tavoliere’ that means flat table) so weather conditions were assumed 
to be homogeneous over the whole field. Management practices for the 
two considered years are reported in Table 1 and were applied uniformly 
on the whole field (see Wallor et al. (2018) for more details). Pheno
logical stages were recorded for each year at seedling growth, tillering, 
flowering and ripening. Site-specific yield was recorded for each harvest 
using a John Deere combine equipped with a yield monitoring system 
that was calibrated prior to harvest. For these two production seasons, 
the mean harvested yields were similar, but they exhibited different 
spatial structures (Fig. 2). In 2005–2006, the yield was spatially struc
tured within-field, while in 2007–2008, it was more random across the 
whole field, as shown by the shape of variogram model as pure nugget 
effect (Fig. 2d). The soil is a deep silty-clay Vertisol of alluvial origin, 
classified as a Fine, Mesic, Chromoxerert (IUSS Working Group WRB, 
2015). Lateral water redistribution at the within-field scale was assumed 
to be negligible in this flat landscape. Soil properties were measured 
within-field at 100 optimized georeferenced sites in order to obtain an 
even spatial distribution (Buttafuoco et al., 2010) (Fig. 3A). For this 
study, only the values of crop lower limit (CLL) and drained upper limit 
(DUL), resulting from texture measurements on the shallow soil layer 
(0–0.2 m) and computed using a pedotransfer function (Hollis et al., 
2012), along with measured soil organic carbon (OC), at the same 100 
locations and at the same depth, were used. Aboveground biomass and 
soil water content (TDR measurements) were measured at each of the 
100 measurement locations, each year, at harvest and during the 
growing season. 

A soil apparent electrical conductivity (ECa) survey was performed in 
2010 using an electromagnetic induction ground conductivity meter 
(EM38DD, Geonics, Ltd., Ontario-Canada). The ECa was simultaneously 
measured in two polarization modes that explored different depths 
depending mostly on soil moisture conditions and textural properties 
(Sudduth et al., 2001). The EM38DD was set up to provide a depth of 
exploration equivalent to the topsoil layer in the horizontal mode (ECaH, 
maximum ECa sensitivity at 0–0.10 m) and to the expected, typical 
rooting depth in the vertical mode (ECaV, maximum ECa sensitivity at 
~0.40 m depth) (Fig. 3B). 

2.2. APSIM and modeled durum wheat yield 

Durum wheat yield was modeled using the crop model Agricultural 
Production Systems sIMulator - APSIM 7.14 (Holzworth et al., 2014) 
through the apsimx R package (Miguez, 2022) in R 4.2.0 (R Core Team, 
2022). APSIM required soil properties as input for different soil layers, 
and for this study it was decided to define soil input up to a depth of 2 m 
(for the entire soil profile). However, observed soil properties were only 
available for the first 0.20 m. Therefore, subsoil soil properties needed to 
be estimated. To do this, the soil profile was first divided into seven 
layers to ensure the correct functioning of the ground modeling (Fig. 4). 
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A pedometrics approach was used to model soil hydraulic limit (SHL) 
values, i.e. air dry moisture content (AD), lower limit soil moisture at 
− 1.5 MPa (LL15), crop lower limit (CLL), soil water (SW), drained upper 
limit (DUL) and soil water at saturation (SAT) at each layer from the 
topsoil observations (Fig. 4). In particular, SHL values at each mea
surement site profile were estimated from the observed topsoil mea
surements and known SHL shapes for Vertisol soils described in 
Dalgliesh et al. (2016) in order to initialize model parameters. The SW 
for each layer i was calculated from the modeled CLL and DUL of each 
layer using Eq.1. 

SWi = 0.25×ASWi = 0.25×(DULi − CLLi) (1)  

where SWi, ASWi, DULi and CLLi are respectively the soil water, the 
available soil water, the drained upper limit and the crop lower limit for 

the ith layer. 

2.3. Spatial calibration of APSIM 

Calibration of soil and plant parameters was performed indepen
dently on each considered production year and evaluated on the other 
year as explained in section 2.4. Weather data, soil information, initial 
soil water, nitrogen content and agronomic management practices were 
used as input for the calibration. APSIM was spatialized by using a 
downscaling approach that mainly involved spatial calibration, by 
defining within-field zones using ancillary data and identify which pa
rameters could be spatially calibrated. The high-resolution soil sensor 
data, ECaV and ECaH data, were used together for delineating within- 
field zones (minimum of 2 and maximum of 20) using a segmentation 
algorithm (Pedroso et al., 2010) with the GeoFIS R package (Guillaume 
and Lablée, 2022). Default settings were used with the segmentation 
algorithm. Both ancillary data were correlated to durum wheat yield so 
they could potentially explain the yield variability. Following the zone 
delineation, the different spatial scales which were considered for the 
calibration and the evaluation in this study were:  

(i) the measurement sites scale (n = 100);  
(ii) several within-field zones (z ∈ [2;20]) (Fig. 5);  

(iii) and the whole field (equivalent to a one zone solution), i.e. the 
APSIM native spatial footprint. 

For scales higher than the site-scale, data were aggregated at the 
different zonal scales by averaging the observations located within each 
individual zone. For all performance assessments, the output scale was 
disaggregated to the measurement site-scale to evaluate the modeling 
performance (Fig. 6). However, some parameters were calibrated with 
the same value regardless of the of spatial modeling units, i.e. these 
parameters were fixed whatever the modeling scale. For instance, this is 

Fig. 1. Daily precipitation, air temperatures (maximum = red lines and minimum = blue lines) and solar radiation for (a.) 2005–2006 and (b.) 2007–2008 growing 
seasons for the experimental field. Purple dashed lines correspond to the mean temperature over the years 2005–2006 and 2007–2008. Respectively for 2005–2006 
and 2007–2008 growing seasons, cumulative rainfalls were 510.4 mm and 429.2 mm, mean solar radiation was 14 MJ/m2 and 14.2 MJ/m2 and mean temperatures 
were 14.7 ◦C and 13.5 ◦C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Crop practices of the experimental field used as management information for the 
modeling. Adapted from Wallor et al. (2018).  

Date Crop practice 

2005–2006 
30.10 Ploughing (0.40 m) 
13.11 Disc-harrowing (0.15 m) 
07.12 Disc-harrowing (0.15 m) 
15.12 Sowing winter wheat (cv. Gargano) + fertilization with ammonium 

phosphate (30 kg N/ha) 
20.02 Fertilization with ammonium nitrate (60 kg N/ha) 
26.06 Harvest winter wheat  

2007–2008 
14.12 Sowing winter wheat (cv. Gargano) + fertilization with ammonium 

phosphate (30 kg N/ha) 
28.02 Fertilization with ammonium nitrate (60 kg N/ha) 
05.07 Harvest winter wheat  
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the case for the cultivar parameters (related to phenology), because it 
was the same sown cultivar under the same climatic conditions. 

Spatial calibration was performed through several spatial and aspa
tial steps (Fig. 7) to adjust (1) the observed phenology stages with the 
modeled phenology stages, then (2) the observed soil water content with 
the modeled soil water content, then (3) the observed biomass with the 
modeled biomass and then (4) the observed yield with the modeled 
yield. These steps were selected to match with de Wit’s concept (van 
Ittersum et al., 2003) of crop growth modeling, i.e. calibrating first 
phenology, constraints related to light, temperature and crop genetic 
and then stresses related to soil water content. This calibration meth
odology based on expertise was also applied to others studies on crop 
modeling particularly because it helps complex optimization which can 
be too difficult with lots of local optima (Seidel et al., 2018; Wallach 
et al., 2021). Calibration of the aspatial parameters assumed that pa
rameters were constant over the field regardless of the number of within- 
field zones/sites (e.g. cultivar parameters). Calibration of spatial pa
rameters assumed the parameter values could be different in the within- 
field zones or at the measurement sites (e.g. soil parameters). 

First, cultivar phenology parameters were adjusted to match the 
observed phenology stages with the modeled phenology stages. As only 
one cultivar (Gargano) was sown, the phenology was assumed to be 
homogeneous over the field and corresponded to an aspatial calibration 

(Fig. 7a.). Secondly, the soil water content was calibrated spatially by 
modification of the SHL values. The CLL and DUL values on the first 
layer (0–0.05 m) were estimated directly from the observed soil texture 
measurements related to the plant available water capacity. Calibration 
was used to determine CLL and DUL values for the other layers (2nd to 
7th) and also the values of other SHLs (AD, LL15, SW, and SAT) for the 
whole soil profile (Fig. 7b.). This spatial calibration tended to conserve 
the global shape of the local soil profile (example described in Fig. 4) for 
each site. Thirdly, biomass was calibrated by adjusting spatial and 
aspatial model parameters. Aspatial calibration was related to cultivar 
parameters considered homogeneous over the whole field (Fig. 7c.). 
However, the biomass was not considered homogeneous at the within- 
field scale since it may depend on water and nutrient availability in 
the field (Mon et al., 2016). Thus, parameters not related to potential 
biomass but to water stress affecting its expansive growth needed to be 
calibrated spatially (Fig. 7d.). As a first approximation to account for 
biomass variability, the fraction of plant available water able to be 
extracted (KL) in the model was considered to be the main driver of the 
biomass. Before this calibration step, four classes of soil KL (A, B, C and 
D) were defined that were considered representative of the soil profiles 
with increasing extractable water from A to D (see Supplementary 
Fig. S.1). The KL was spatially calibrated by assigning the different soil 
profiles (in the case of the site-specific modeling) or a zonal mean soil 

Fig. 2. Durum wheat yield characterization. (a.) Distribution of yield values recorded by yield monitor system at harvest, mean yield in 2005–2006 and 2007–2008 
were respectively 3.0 t/ha and 2.8 t/ha. (b.) Experimental and theoretical variogram of durum wheat yield in 2005–2006, yield is spatially structured at within-field 
scale. (c.) Durum wheat yield map in 2005–2006. (d.) Experimental and theoretical variogram of durum wheat yield in 2007–2008, yield exhibits no spatial structure 
at the within-field scale as shown by the shape of variogram model as pure nugget effect. (e.) Durum wheat yield map in 2007–2008. 
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water profile to one of these four classes. Calibrating KL this way was a 
first approach to account for spatial soil moisture variability in the field. 
Finally, yield was calibrated by again adjusting the aspatial cultivar 
parameters in terms of grain number size (Fig. 7e.) and then, in a similar 

way as to the KL calibration, three soil DUL classes (1, 2 and 3) were 
specified and spatially adjusted (Fig. 7f.) to correspond to different 
available soil water regimes (see Supplementary Fig. S.2). KL and DUL 
were chosen to be spatially calibrated because a previous study (Basso 
et al., 2009) showed that subsoil constraints (especially soil water 
retention properties) were the main factors impacting spatial structure 
in this field. All calibrated and estimated parameters needed as APSIM 
inputs are shown in Table 2. Note that in order to ensure a consistency of 
the calibrated parameters, calibration was carried by an optimization of 
the value of each parameter previously cited. The optimization was 
made as objective as possible by finding the best combination of values 
that resulted in the best calibration results from an expert-defined value 
domain range for each parameters, i.e. the optimum values were found 
by exhaustive search in a grid of values with physically consistent 
bounds. The possible domain range used for each parameter was 
consistent regardless of the modeling scale. This procedure aimed to be a 
relevant approach to following and testing the calibration method whilst 
maintaining logical values for the parameters that were describing the 
underlying biophysical processes. 

For each of these calibration steps, the root mean square error of 
calibration (RMSEC) (Eq. 2) was used to determine the optimal value of 
the target model parameter by comparing the observed and modeled 
parameter values. 

RMSEC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷC.i)2

√

(2)  

where yi is the observed value, ŷC.i is the corresponding modeled value 
for the calibration and n is the number of observations. 

2.4. Model output evaluation 

To test the temporal stability of the spatial calibration, APSIM per
formance was tested for the different spatial scales in two distinct cases: 
(i) calibration on 2005–2006 data and evaluation on 2007–2008 data 
and, (ii) the inverse, with calibration on 2007–2008 data and evaluation 
on 2005–2006 data. Note that both seasons were dissimilar in weather 
conditions and grain yield production. The cultivar parameters were 
calibrated differently for both cases because having only 2 years of data 

Fig. 3. Experimental field with A. Location of 100 measurement sites at within-field scale. B. Interpolated maps of (a.) apparent soil electrical conductivity in 
horizontal mode (ECaH) and (b.) in vertical mode (ECaV) using inverse distance weighting. 

Fig. 4. Example of a general soil profile shape for soil water properties used to 
model durum wheat yield with APSIM for one of the considered measurement 
sites. Right-hand side numbers refer to the soil layer number. Lines refer to soil 
hydraulic limits: AD = air dry moisture content, LL15 = lower limit soil 
moisture at − 1.5 MPa, CLL = crop lower limit, SW = soil water, DUL = drained 
upper limit and SAT = soil water at saturation. Each point refers to the soil 
hydraulic limit value for the corresponding layer in volumetric water content. 
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was not enough to estimate the general parameters of this cultivar under 
these climatic conditions. Thus, cultivar parameters were calibrated 
individually for both cases to better match the predicted yield. To 
evaluate APSIM performance, durum wheat biomass and yield were 
qualitatively evaluated from the maps and quantitatively evaluated 
using two metrics: root mean square error of prediction (RMSEP) (Eq. 3) 
to evaluate prediction performance and spatial balance accuracy (SBA) 
(Eq. 4) to evaluate simulation performance accounting for spatial 
relevance. 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷE.i)2

√

(3)  

where yi is the observed value, ŷE.i is the corresponding modeled value 
and n is the number of observations. 

The SBA is a specific metric for spatialized crop models (Pasquel 
et al., 2023) calculated by assessing both aspatial and spatial pattern 
errors. Thus, SBA is able to identify which simulation scale is the most 
relevant for modeling an agronomic variable (durum wheat yield here) 
using a given model (APSIM) and a given downscaling process (spatial 

calibration of selected model parameters). 

SBA =
1

100
∑100

q=1

[
1 − BA

(
Ot(O,M,q) ,Mt(O,M,q)

) ]
(4)  

where O and M are respectively the observed and modeled maps, Ot(O,M, 

q) and Mt(O,M,q) are respectively the observed and modeled maps at 
threshold level t(O,M,q) that is defined relative to percentile q on the 
merging data distributions of O and M. 

The closer SBA is to 0, the better the agreement between the 
observed data and output from the spatialized model. Note that in the 
spatial calibration step this metric was not used to determine the spa
tialized model parameters (only RMSEC was used). However, the SBA 
scores for biomass and yield maps were calculated during the calibration 
process to provide a greater understanding on how the calibration was 
affecting the spatialized APSIM model outputs at different simulation 
spatial scales. 

Fig. 5. Maps of different within-field zones defined using a segmentation algorithm based on soil apparent electrical conductivity data on horizontal and vertical 
mode together; 2-zone (a.), 3-zone (b.), 4-zone (c.), 5-zone (d.), 10-zone (e.), 15-zone (f.) and 20-zone (g.) for the experimental field. Note that the 1-zone is 
equivalent to the whole field scale (not shown). Points within the field indicate sampling locations for soil and crop parameters. 
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3. Results 

3.1. Spatial calibration maps for the different simulation scales 

Spatial calibration of the KL and DUL profiles differed with simula
tion scale when performed on the 2005–2006 data (Figs. 8 and 9). For 
the within-field spatial calibration (zonal approach), several within-field 
zones had the same parameter values (profiles). For the site-scale, the 
diversity of calibrated KL and DUL profiles was more important than for 
higher simulation scales (more details on KL and DUL profiles are shown 
in Supplementary Fig. S.1 and S.2; note that KL and DUL profiles will be 

hereafter designed respectively from A to D profiles and from 1 to 3 
profiles as explained in section 2.3). For the site-scale spatial calibration, 
the KL and DUL profiles represented the full diversity of considered 
profiles. However, for simulation of larger zones, this diversity was 
reduced, e.g. there was an absence of the KL profile D for simulation 
scales below 10 within-field zones (Fig. 8a to 8e) and an absence of the 
DUL profile 3 for simulation scales below 20 within-field zones (Fig. 9a 
to 9h). Spatial calibration for scales higher than the site-scale simulation 
tended to homogenize calibrated profiles. Moreover, the merging of 
different within-field zones did not necessarily lead to an intermediate 
profile of these different within-field zones. For example, in 2005–2006, 

Fig. 6. Different modeling scales of durum wheat yield using APSIM from site measurement observation scale, intermediate within-field scales (2 to 20 zones) 
defined with ancillary data related to soil characteristics up to the whole field scale. The APSIM’s native spatial footprint is shown in blue and corresponds to the field 
scale. Measurement site-scale corresponds to the original observation scale. The grey arrows correspond to the upscaling process associated with aggregations of the 
observed data to a higher spatial scale as model input. The spatial calibration is performed at this input scale. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Calibration steps followed for the spatial calibration of APSIM. Cultivar parameters were not spatially calibrated, whereas the other parameters were spatially 
calibrated. Italic parameters correspond to APSIM input parameters. SHL: soil hydraulic limits, PAW: plant available water, KL: fraction of plant available water able 
to be extracted, DUL: drained upper limit. 
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the western side of the field was mainly calibrated to DUL profile 2 with 
some 1 and 3 profile zones at the site scale, but calibrated to profile 1 
especially for lower order zoning (Fig. 9). 

Spatial calibration of KL and DUL profiles performed with the 
2007–2008 data showed the same trends as the 2005–2006 data 
described above. These results are given in Supplementary Fig. S.3 and 
S.4. Maps of the other spatial soil inputs to APSIM, OC and difference 
between CLL and DUL, are also shown in Supplementary Fig. S.5. Only 
the topsoil maps (directly observed data) are shown as the values in the 
subsoil layers were estimated from these topsoil data (Supplementary 
Fig. S.5). 

Minimization of RMSEC for the spatial calibration of KL and DUL 
profiles are shown in Supplementary Fig. S.6, S.7, S.8 and S.9. The 
values for parameters aspatially calibrated are available in Supple
mentary Table S.1 and S.2. 

3.2. Calibration performances using SBA 

The SBA scores (Table 3) were also calculated during the model 
calibration process to see if the best performing modeling scale could be 
identified before (and was consistent with) the evaluation step. SBA 
scores were computed for the spatial calibration steps 3 and 4, i.e. to 

assess the coherence between observed and modeled biomass and yield 
data, respectively. Compared with the SBA scores computed for the 
model evaluation (section 3.3), there was less variation in the biomass 
and yield SBA scores during the calibration step (Table 3). For the yield 
SBA scores for calibration, the variations were similar to the yield pre
diction SBA scores, in particular there was a relative stability in the SBA 
scores for simulation scales from 4-zone to site scale modeling. The 
exception to this was the calibrated site-specific yield SBA score in 
2007–2008 data that was considerably lower than the 20-zone SBA 
score. Thus, SBA scores on calibration steps did not match with SBA 
scores computed for the evaluation step (section 3.3) on durum wheat 
yield. 

3.3. Spatialized APSIM performance to simulate durum wheat yield 

When the model was calibrated on the 2005–2006 data and applied 
to the 2007–2008 data, there was a difference of 20% in the mean 
aspatial error between the best performed modeling scale (field scale) 
and the worst performed modeling scale (site-scale), with respectively a 
RMSEP of 0.94 t/ha and 1.17 t/ha (Table 4). There was no strong visual 
linear 1:1 relationship between the observed and modeled zonal or site- 
specific yield (Supplementary Fig. S.10). In most cases, the zone with the 
highest modeled yield tended towards an overestimation of yield. In this 
situation, it is unsurprising that the yield prediction at field-scale 
modeling generated the lowest RMSEP. When the data sets were inver
ted (calibration on 2007–2008, prediction on 2005–2006), there was a 
difference of 9% of aspatial error between the best performed modeling 
scale (2-zone scale) and the worst performed modeling scale (site-scale), 
with respectively 1.32 t/ha and 1.45 t/ha (Table 4). Again, there was no 
clear linear 1:1 relationship between the observed and modeled zonal or 
site-specific yield (Supplementary Fig. S.11). However, modeled yields 
at within-field scales had less overestimation with this combination and 
the 2-zone scale was identified as the best performing scale. 

Regarding the spatial error between the observed and modeled data, 
it was difficult to identify which modeling scale had the best perfor
mance by only using the 1:1 plots (Supplementary Fig. S.10 and S.11) 
and the simulated yield maps (Figs. 10 and 11). Indeed, concerning yield 
maps, it was difficult to identify a real spatial pattern among the site- 
scale observed data (Figs. 10 and 11), whereas modeling at within- 
field scales exhibited clear delineated zones that did not clearly match 
visually with the observed data (Figs. 10 and 11). None of the within- 
field scale for both years of calibration/modeling seemed to be the 
more relevant. 

The SBA scores (Table 5) on the predicted 2005–2006 and 
2007–2008 yields respectively showed that field scale modeling and 5- 
zone modeling were identified as the best performing, with SBA scores 
of 0.15 and 0.17 respectively. Compared with results shown in Figs. 10 
and 11 and Supplementary Fig. S.10 and S.11, the SBA scores showed 
additional information of the model performance that could not be 
identified from the RMSEP values, the observed vs modeled plots or the 
visual yield map comparisons. With only a RMSEP interpretation, eval
uation on the predicted 2005–2006 yield identified the 2-zone modeling 
scale as the best performing scale. In contrast, the SBA scores identified 
the 5-zone modeling as the best performed (Table 5 and Supplementary 
Fig. S.11). The SBA scores gave a relevant spatial evaluation of the 
APSIM performance as defined for spatialized crop models with esti
mation of aspatial and spatial error (Pasquel et al., 2023). There was a 
stabilization of SBA scores between the 10-zone to site-scale modeling. 
The biggest deviations in the SBA scores tended to be located between 
the field-scale and 5-zone scale modeling in both years, although the 
SBA scores and their evolution with the number of zones was very 
different depending on the calibration/evaluation year. It is clear that a 
calibration in 2007–2008 resulted in lower SBA scores. 

Table 2 
Summary of calibrated and estimated parameters necessary as APSIM inputs to 
simulate durum wheat yield. Further details on the values of the aspatially 
calibrated parameters are available in Supplementary Table S.1 and S.2.  

Parameters Abbreviation Calibration and estimation 
methods 

Calibration 

Lower limit − 1.5 
MPa 
Drained upper 
limit 

LL15 
DUL 

Measured on the 1st layer 
Estimated from Dalgliesh 
et al. (2016) for other layers 
Implement different profiles 
(1, 2 and 3) to match with 
the yield of the calibration 
year (see SHL profiles), 
variation of DUL profile to 
reduce wheat available soil 
water 

Spatial 

Bulk density 
Air dry 
Saturation 
Crop lower limit 

BD 
AD 
SAT 
CLL 

Estimated from Dalgliesh 
et al. (2016) based on LL15 
and DUL measurement on 
1st layer  

Soil water SW Eq. 1  
Fraction of plant 

available water 
able to be 
extracted 

KL Estimated from Dalgliesh 
et al. (2016) Implement 
different profiles (A, B, C 
and D) to match with the 
biomass of the calibration 
year (see KL profiles)  

Organic carbon OC Measured on the 1st layer 
Estimated from Dalgliesh 
et al. (2016) for other layers  

Root exploration 
factor 

XF Estimated from Dalgliesh 
et al. (2016) 

Aspatial 

Proportion of non- 
inert C in the 
microbial biomass 
pool 

FBiom   

Proportion of initial 
organic C assumed 
to be inert 

FInert   

Target thermal time    
(cultivar parameter) – Calibrated by an exhaustive 

search on a discredited 
range  

Leaf area growth 
(cultivar 
parameter) 

–   

Seed growth 
(cultivar 
parameter) 

–    
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Fig. 8. Maps of spatially calibrated fraction of plant available water able to be extracted (KL) profiles for each simulation scale on 2005–2006 data: (a.) field scale, 
(b.) 2-zone scale, (c.) 3-zone scale, (d.) 4-zone scale, (e.) 5-zone scale, (f.) 10-zone scale, (g.) 15-zone scale, (h.) 20-zone scale and (i.) site-scale. Voronoi tessellation 
was used to convert each data point into polygons. Note that A and D KL profiles are respectively the soil profiles with the least and the most extractable water (more 
details on KL profiles are shown in Supplementary Fig. S.1). 

Fig. 9. Maps of spatially calibrated drained upper limit (DUL) profiles for each simulation scale on 2005–2006 data: (a.) field scale, (b.) 2-zone scale, (c.) 3-zone 
scale, (d.) 4-zone scale, (e.) 5-zone scale, (f.) 10-zone scale, (g.) 15-zone scale, (h.) 20-zone scale and (i.) site-scale. Note that 1 and 3 DUL profiles are respec
tively the soil profiles with the most and the least available soil water (more details on DUL profiles are shown in Supplementary Fig. S.2). 

D. Pasquel et al.                                                                                                                                                                                                                                 



Agricultural Systems 212 (2023) 103773

11

4. Discussion 

4.1. Different modeling performance depending on the calibration/ 
prediction year 

Depending on the years used for calibration and prediction, the re
sults showed different spatialized APSIM performances for yield pre
diction at the within-field scale. It is hypothesized that this was affected 
by the differences in spatial structure of the yield data along with dif
ference in rainfall patterns, even though the mean and numerical dis
tribution of the yield data were similar. The 2005–2006 yield data was 
spatially structured while the 2007–2008 yield data was not. When the 
spatially structured 2005–2006 yield data was used for the spatial 
calibration of some model parameters and then applied to the poorly 
spatially structured 2007–2008 yield data, the field scale was identified 
as the most relevant modeling scale. The lower level of spatial structure 
(and patterning) in the 2007–2008 yield data suited a mean yield 
response that fits to the native spatial footprint. In effect, each part of the 
field could be calibrated with the same values for the APSIM input pa
rameters, i.e. the whole field has the same modeled yield value (even if 
yield actually varied over the field). Therefore, under these conditions, 
the SBA score identified field-scale modeling as the best performing 
scale even if there were some within-field yield variations ignored by 
this modeling scale. Field-scale modeling allowed the best trade-off for a 
better modeling of the yield based on aspatial and spatial coherence with 
the observed data. In contrast, when the spatial calibration was done on 
the poorly spatially structured 2007–2008 yield data, and evaluated on 
the spatially structured 2005–2006 yield data, the 5-zone scale was 
identified as the most relevant modeling scale according to the SBA 
score. In this situation, the spatial calibration was carried out on within- 
field zones segmented from spatially structured ancillary data that were 
correlated with durum wheat yield. Even with a relatively poor spatial 
structure in the 2007–2008 yield data, this spatial calibration succeeded 
in defining a distinction between the zone/site-specific APSIM input 
parameter values to reproduce the spatial patterns in the observed data. 
Thus, spatial calibration was relevant in this case. However, the rele
vance of the spatial calibration was based on the data from the end of the 
season that does raise questions regarding the management decisions 
that should have been made during the season. This is an important 
question to make this method applicable in a real world situation. 
However, in the present study the aim was to understand how APSIM is 
working at the within-field scale, i.e. to understand if it is relevant to use 
APSIM at finer spatial scales. Based on these results, considerations on 
how this method is applicable for farmers to advise them in differentially 
adapting their management for in-season production are better known. 

The spatial calibration aims to constrain the calibration process to 
ensure the reproduction of the spatial pattern of the agronomic variable. 
However, more work is still necessary to make a relevant spatial cali
bration in a truly operational context, i.e. there needs to be a trade-off 
between the calibration zones and the management zones, which 
reflect the real within-field management practices. The optimal scale of 
spatial calibration for the model will not necessarily align with the 
optimal scale of management possible by the grower. Other comple
mentary methods could be applied to the output maps to take into ac
count the operational constraint linked to used machines for instance 
(Leroux and Tisseyre, 2018). However, the aim of this study was to 
investigate the modeling of the durum wheat yield at the within-field 
scale (i.e. theoretical objective) and evaluation was made regarding 
this objective. Modeling related to an operational context was consid
ered here as an perspective to this work, the first step was to investigate 
if a use of existing crop models was relevant at within-field scale. 

There was not a lot of variation among the SBA scores, with spatial 
calibration on the 2007–2008 data being similar between the 3-zone 
scale and site-scale even if the 5-zone scale modeling was identified as 
the best performing scale. Given these similarities, consideration could 
also be given to the principle of parsimony and the need to have zones 
and decisions that can be enacted from an agronomic perspective. Cal
ibrating APSIM at 3 within-field zones is less time consuming and likely 
more relevant for management (avoids calibration on outliers and 
conserves spatial pattern consistency) compared to finer resolution 
calibration (site-scale). However, it could also ‘miss’ punctual specific 
patterns if not representative of the within-field segmentation. 

The spatial structures and the resulting spatial patterns of the durum 
wheat yield were not the same between the two years because of varying 
precipitation and temperature profiles between years (Fig. 1). Weather 
conditions heavily affect rain-fed grain yield determination, especially 
rainfall amount and distribution over the crop season (Buttafuoco et al., 
2017). Previous studies have attributed spatial variation of yield com
ponents mainly to different levels of available soil water between pro
duction years (Diacono et al., 2012; Guastaferro et al., 2010) and on this 
same field, Basso et al. (2012) showed that growing season rainfall and 
fallow rainfall were correlated with grain yield over a five year period as 
a result of the complex dynamic interactions between spatial static 
properties (e.g. soil texture) and dynamic properties (e.g. soil water 
content). In this study, soil information (ECa) was used to determine 
management (modeling) zones that were constant for both years. 
Annual modeling will be influenced by how well these soil-based zones 
reflect production potential in a given year. The differences in the 
calibration/prediction outcomes by inverting the role of the two years is 
indicative of this limitation. Thus, while spatial calibration has shown 

Table 3 
Spatial balanced accuracy (SBA) to assess calibration of APSIM spatialized version for modeling durum wheat biomass and yield at the field level and at different 
within-field spatial scales for the two different years.  

Year Variable Scale (zones) 

Field 2 3 4 5 10 15 20 Site 

2005–2006 
Biomass 0.13 0.19 0.19 0.18 0.18 0.18 0.19 0.21 0.16 
Yield 0.14 0.28 0.26 0.27 0.24 0.23 0.24 0.24 0.23 

2007–2008 
Biomass 0.16 0.23 0.24 0.23 0.22 0.20 0.19 0.21 0.15 
Yield 0.15 0.26 0.23 0.27 0.27 0.27 0.25 0.26 0.19  

Table 4 
Root mean square error of prediction (RMSEP) to assess the ability of the spatialized APSIM version to model durum wheat yield at field level and different within-field 
spatial scales for two different years of calibration and evaluation. Values indicated are in t/ha.  

Calibration year Evaluation year Scale (zones) 

Field 2 3 4 5 10 15 20 Site 

2005–2006 2007–2008 0.94 1.04 1.02 1.13 1.13 1.09 1.04 1.04 1.17 
2007–2008 2005–2006 1.44 1.32 1.45 1.42 1.42 1.40 1.41 1.38 1.45  
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some benefit in this study, research is still needed to better understand 
how ancillary data, especially soil data, can be used to generate 
seasonal-specific zoning for modeling, i.e. the local climate (predicted 
and/or observed weather conditions) should influence how downscaling 
methods are applied to account for known or expected local soil-plant- 
environment interactions. 

The choice of calibration and evaluation data had a significant 
impact on the spatialized APSIM outputs. Thus, regarding the pre
liminary results of this study and the choice of static soil zones for 
downscaling, it was more relevant to perform spatial calibration when 
the target agronomic variable exhibited good spatial structures/pat
terns. This was expected as calibrating a model with (yield) data that is 
atypical of the expected response or exhibits a large amount of stochastic 
variation is not expected to be effective. This result could be generalized 
to other large and complex crop models. 

In other words, the main interests in the spatial calibration are 
twofold. First, using the spatial calibration approach as a spatialization 
process allows to constrain the spatial pattern of the agronomic variable, 
Allowing to maintain a spatial consistency in the within-field modeling. 
Second, the spatial calibration is able to manage a trade-off between the 
accuracy of prediction at changing scales against the ‘noise’ in the 
available input data at different spatial resolutions. A crop model cali
brated individually for each modeling unit (i.e. at the site-scale) may 
have a significant stochastic error through the calibration process. 

4.2. Sources of uncertainty linked with parametrization 

The aim of this study was to investigate if using complex spatialized 
crop models at the within-field scale was relevant, i.e. if the uncertainty 
in the modeling process was acceptable to support agronomic decision- 

Fig. 10. Spatial patterns of durum wheat yield for (a.) observed data from 2007 to 2008 and modeled data from APSIM calibrated on 2005–2006 data for different 
modeling scales: (b.) field scale, (c.) 2-zone scale, (d.) 3-zone scale, (e.) 4-zone scale, (f.) 5-zone scale, (g.) 10-zone scale, (h.) 15-zone scale, (i.) 20-zone scale and (j.) 
site-scale. 
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making. With the SBA score, the most relevant spatial scale for modeling 
could be identified for each combination of calibration/prediction years. 
However, there was a huge source of uncertainty using the spatialized 
APSIM model, especially with the assumptions made for input param
eterization. APSIM is a complex crop model requiring several input 
parameters to work correctly to reproduce the biophysical processes 
implemented. Within-field downscaled modeling with spatial 

calibration involves an increase in input parameterization, which may 
not be useful to enhance model performances (Adam et al., 2011; Soltani 
and Sinclair, 2015; Zhen et al., 2023). Moreover, uncertainties in the 
downscaled crop model use could mostly be attributed to input data and 
to the downscaling methods used (Porwollik et al., 2017). Even with a 
fairly comprehensive data set, many parameters, especially parameters 
related to soil characterization, needed to be estimated and were not 

Fig. 11. Spatial patterns of durum wheat yield for (a.) observed data from 2005 to 2006 and modeled data from APSIM calibrated on 2007–2008 data for different 
modeling scales: (b.) field scale, (c.) 2-zone scale, (d.) 3-zone scale, (e.) 4-zone scale, (f.) 5-zone scale, (g.) 10-zone scale, (h.) 15-zone scale, (i.) 20-zone scale and (j.) 
site-scale. 

Table 5 
Spatial balanced accuracy (SBA) scores to assess the ability of the spatialized APSIM version to simulate durum wheat yield at field scale and at different within-field 
spatial scales for two different years of calibration and evaluation.  

Calibration year Evaluation year Scale (zones) 

Field 2 3 4 5 10 15 20 Site 

2005–2006 2007–2008 0.15 0.33 0.30 0.32 0.30 0.30 0.29 0.29 0.31 
2007–2008 2005–2006 0.19 0.25 0.18 0.18 0.17 0.19 0.19 0.19 0.18  
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directly measured (e.g. SHL). Furthermore, as the resolution of the 
spatialization increased (from the whole field to site-specific), the 
available data also decreased for a given spatial area of prediction, 
which may introduce higher stochastic variance effects in the model 
calibration and evaluation. Therefore, higher input parameterization 
may explain why more uncertainties have been observed. 

Cultivar parameters, especially growth parameters, are important 
parameters for crop models because they drive yield production, but 
they are also heavily influenced by punctual changes in water and nu
trients (Archontoulis et al., 2014; Rötter et al., 2012). For this study, 
cultivar parameters were considered homogeneous. The assumption of 
homogeneity for the weather data, especially precipitation, is highly 
questionable. Precipitation can be variable over even small areas (Kra
jewski et al., 2003), altering site-specific plant available water and even 
small changes in slope can impact subsoil water movement and accu
mulation (Subedi and Fullen, 2009). Although considered flat, there was 
a 10 m drop in altitude in the field and a trend to higher soil water 
content in the southern tip has already been noted (Basso et al., 2009). 
Directly accounting for these variations will improve the soil water 
representation, soil-cultivar interactions and the APSIM calibration 
(Hao et al., 2021; Huth et al., 2012). For this study, soil parameters were 
considered the key spatial parameters to calibrate APSIM, because these 
parameters are known to be the main local drivers of durum wheat yield. 
To achieve this, many subsoil parameters were estimated from topsoil 
information to have a modeled soil profile up to 2 m depth. This intro
duced uncertainties from the pedotransfer models. Crop models are 
known to operate more effectively when all required input parameters 
are measured (Cammarano et al., 2021), thus measuring the needed 
input soil properties for each soil layer would clearly improve the spatial 
APSIM calibration. However, in commercial production systems, these 
subsoil data are difficult to obtain due to cost and time constraints, and 
pedometric approaches for subsoil information are likely to commonly 
used in the future to generate these data when needed. Therefore, 
further improvements in subsoil pedotransfer functions is an obvious 
starting point for improving crop model spatialization. 

Spatial calibration for steps 3 and 4 was made through KL and DUL 
profile assignments, rather than detailed soil water observations. Again, 
an accurate calibration of the KL and DUL values for each soil layer at 
each measurement site was time and cost prohibitive, even for this 
research study. Profile assignment was considered here to be a good 
trade-off between computation time and improving modeling crop 
model performance. A limitation to this approach is that the assigning of 
a profile does not necessarily assigned the optimum value to minimize 
the calibration error. 

4.3. Calibration performance using the SBA score 

The calibration error of each simulation scale using the SBA scores 
(Table 3) would be interpreted differently compared to the SBA scores 
for evaluation (Table 5). If the relevance of the simulation scale was only 
based on the calibration error, then field-scale simulation (native foot
print) would have been selected for both scenarios and both target 
variables (biomass and yield) (Table 3). In terms of practical use, these 
results suggest that SBA scores are highly dependent of the spatial 
structure/pattern of the considered agronomic variable and SBA score 
interpretation should be interpreted carefully. Given this is the first 
attempt to use the SBA to assess spatial calibration of a complex crop 
model, no strong conclusions can be drawn from the identification of the 
native footprint as the preferred modeling scale during calibration; 
however, this is an area where further study is needed. Metrics to best 
calibrate the model are as important as prediction metrics. 

4.4. Within-field segmentation dependency and uncertainties 

Results of this study were very dependent on the zoning performed, i. 
e. the ancillary data and segmentation algorithm. Ancillary data that 

measures soil ECa were chosen to delineate zones because these data are 
known to be related to soil texture, which in turn is temporally stable 
and indirectly related to soil moisture holding capacity. The assumption 
in this pedoclimatic region, and this particular production system, was 
that soil water is the dominant driver of yield. Nawar et al. (2017) 
highlighted that using ECa by itself could be insufficient to quantify the 
spatial variability in production at the within-field scale and suggested 
coupling soil spatial properties with data related to crop productivity to 
have more reliable zones. However, this was not feasible in this study as 
the available yield and biomass data were part of the calibration/pre
diction data set and could not be considered as independent data for 
zone delineation. Within-field zone segmentation was also assumed to 
be temporally stable in this study because the segmentation was based 
on temporally stable soil properties. If data related to crop productivity 
is involved in zone delineation, it may give stable and unstable zoning 
overtime (multiple years). This is especially true in systems subject to 
very variable weather conditions. Indeed, data from multiple years will 
be needed for a reliable spatial calibration using crop productivity data, 
especially with rain-fed crops. Ideally, some historical data, such as 
production from previous years with similar evolving seasonal weather, 
and/or near real-time production data, such as within-season remote 
sensing images, could help to adapt segmentation during the production 
year and delineate more relevant zones for in-season crop model simu
lations (Maestrini and Basso, 2018). 

The strength of the spatial structure/pattern of the agronomic vari
able of interest was identified in this study as a driver of the success of a 
spatialized downscaling approach. Similarly, the strength and spatial 
structure/patterning of the ancillary data used in zone delineation, as 
well as the strength of its correlation with the modeled agronomic 
variable of interest, will affect the quality of the spatialized model 
outputs. For example, in this study, soil zones that had the highest 
predicted yield tended to be overestimating yield. The reason for this 
was unclear, but it is clear that the model was not accounting for some 
effect associated with production loss in these zones. In an extreme 
example, zoning with uncorrelated, poorly structured ancillary data will 
not generate sensible and relevant solutions beyond chance. As with any 
other application of zoning in PA, issues in the number and spatial 
distribution of measured sites and on the zoning methods applied should 
be carefully tackled (Xu et al., 2020). In studies concerning the use of 
crop models on a large scale, e.g. regional scale, when downscaling 
processes are necessary to match input scale models, correction methods 
are often applied (Ji et al., 2018). This kind of correction for down
scaling processes at within-field scale using crop models is still rarely 
applied. Another limitation of current crop models is that they seldom 
consider lateral water movement that can greatly affect water stress as 
experienced by the crop, and this could explain uncertainties in the 
APSIM spatial calibration in this study. Huth et al. (2012) for APSIM, 
and Xiang et al. (2020) and Shelia et al. (2018) for DSSAT have 
respectively improved these crop models to account for better water 
movements within the soil. These improvement modules could be used 
in further investigations when using, for instance, APSIM at within-field 
scale to improve spatial calibration and spatialized model performances. 

5. Conclusions 

Results showed that using APSIM at a within-field scale generated 
more relevant yield predictions than simulating yield at the field-scale 
when the target variable (durum wheat yield) was spatially structured 
in the predicted year. Spatial calibration of selected key model param
eters allowed APSIM to approximate the spatial pattern of the durum 
wheat yield. When the target yield was more randomly distributed, 
APSIM’s native spatial footprint, i.e. field-scale, was identified as the 
most relevant. The spatial calibration of complex crop models, such as 
APSIM, requires many inputs and assumptions of parameters values that 
could lead to uncertainties in the simulations. Finer spatial calibration 
has a need for more observed and sensed data to be collected to drive the 
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calibration/evaluation process, which could be limiting in commercial 
situations. The delineation of within-field zones was identified as an 
area which could also be improved to improve the spatial model cali
bration. Delineation should take into account various ancillary data 
types, including crop parameters, such as biomass or yield maps, over 
multiple, climatically varying seasons so that ancillary data choices can 
be better targeted to predicted in-season conditions. However, when 
production variables exhibit a strong spatial patterning, the use of a 
spatial calibration approach to spatialize crop models shows promise for 
within-field simulation at a scale that can support decision support tools 
to optimize their efficiency and their field management at within-field 
scale. Further work is certainly needed to validate these preliminary 
findings in other systems and other pedoclimatic regions. 
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