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ABSTRACT 

The number of metabolomic studies has grown steadily over the last twenty years. Among 
the fields of application, food sciences are broadly represented. Proton NMR (1H-NMR) is 
a commonly used technique for metabolomics and is particularly suitable for wine analysis, 
because the major wine constituents are highly dependent on biotic and abiotic conditions. 
1H-NMR-based metabolomics were used first to guarantee the authenticity of wines, and more 
recently to determine the impact of viticultural or oenological practices using both targeted and 
untargeted protocols. This state-of-the-art review covers the different analytical methodologies 
developed to ensure wine traceability from sample preparation to 1H-NMR spectrum analysis. 
The potential applications of 1H-NMR spectroscopy in oenology, from wine authenticity 
control to the monitoring of winemaking, are described. The challenges and perspectives of the 
deployment of NMR for oenological monitoring are also discussed.
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INTRODUCTION 

Metabolomics is the scientific study of the small molecules 
(metabolites) of a biological system based on a complete 
chemical analysis (omics technologies) in order to detect 
as many substances as possible (Cevallos-Cevallos et al., 
2009; Rochfort, 2005). It is therefore based on the chemical 
analysis of a biological matrix coupled with multivariate 
data analysis.

NMR is an analytical technique that has been used in food 
sciences for several decades (Hatzakis, 2019). Site-specific 
natural isotopic fractionation by NMR (SNIF-NMR) is 
widely used to detect wine chaptalization (Viskić et al., 2021).  
NMR-based metabolomics based on 1H-NMR spectroscopy 
really began in the 80s and is now used to characterise 
human body fluids (Wishart, 2019). NMR has become 
one of the most widely used techniques in metabolomics 
to analyse complex mixtures, such as body fluids and 
natural extracts. In the last twenty years, the application of 
NMR‑based metabolomics in food sciences in general and 
for vine products in particular has stimulated keen interest 
in this technique, as shown in Figure 1. Its use in wine is of 
central importance (Amargianitaki and Spyros, 2017), with 
approximately 20 % of NMR-based metabolomic studies on 
food focusing on vine or wine.

Compared to other food products, the chemical analysis of 
wine is a major challenge, since its chemical composition is 
complex and can evolve over time. The main advantage of 
NMR spectroscopy is its ability to identify and quantify in 
a single experiment a wide range of chemical compounds, 
such as amino acids, organic acids, alcohols, sugars and 
phenolic compounds (Gougeon et al., 2018). NMR signals 
are directly proportional to the number of resonating nuclei 
and compound concentrations, and the relevance of 1H-NMR 
analysis as a methodology for quantitating wine components 

was recently demonstrated in an international collaborative 
trial (Godelmann et al., 2016).

The chemical information obtained by 1H-NMR spectroscopy, 
a.k.a. the wine metabolome, is affected by several winemaking 
factors such as agronomic practices and pedoclimatic 
conditions (Mazzei et al., 2010), grape variety (Son et al., 
2008), fermentation process (López-Rituerto  et  al., 2009; 
López-Rituerto et al., 2022) and geographical origin 
(Gougeon et al., 2019a; Papotti et al., 2013). The NMR 
spectrum of a wine sample can be considered as a molecular 
fingerprint and can be used for traceability and authentication 
purposes (Solovyev et al., 2021; Valls Fonayet et al., 2021).
The purpose of this review is to establish state of the art on the 
potential use of 1H-NMR-based metabolomics in oenology, 
from the issue of establishing authenticity to ascertaining 
wine quality.

EXPERIMENTAL METHODOLOGY FOR 
WINE ANALYSIS

Initially, NMR was mainly used for the structural elucidation 
of compounds in organic and inorganic chemistry. It is used 
in metabolomics largely thanks to its ability to quantitate 
compounds. Several approaches, from sample preparation 
to data processing, have been described in the literature.  
To discuss these approaches, their analytical steps are divided 
into three parts: sample preparation, acquisition of spectra, 
and post-acquisition and data processing.

1. Wine sample preparation
The preparation of wine samples is a decisive step 
for the quantitative NMR (qNMR) analysis of wine.  
Several protocols have been developed to prepare samples 
including extraction steps or the use of internal standards and 
buffers. These methods are summarised in Table 1.

FIGURE 1. NMR-based metabolomics in food sciences and infringing rate in food.
A: Number of publications including the keywords [Food and NMR and Metabolomics] (in blue) or [Food and NMR and [Vine or Wine]] 
(in red), indexed in Scopus. B: Infringing market and infringement rate by product class in Europe (Wajsman et al., 2016).
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Wine is a beverage roughly comprising 83 % of water, 12 % 
of ethanol and 5 % of other compounds. To overcome the 
problem of water and ethanol contents, several authors 
use wine samples that are pre-concentrated by drying, 
lyophilisation or evaporation with nitrogen or argon. Although 
this improves the detection of compounds present in low 
concentrations in wine by increasing the signal‑to‑noise ratio, 
the drying process causes a loss of volatile and semi-volatile 
compounds, hence modifying the chemical composition 
of the samples (Amaral and Caro, 2005; Aru et al., 2018). 
Moreover, Amaral and Caro demonstrated that freeze‑drying 
is time-consuming and poses reproducibility issues.  
As a result, most studies use wine directly after filtration 
or centrifugation (to remove solid residues) and 

with the addition of at least 10 % deuterated solvent.  
Nevertheless, the quantification of minor constituents and 
specific families, such as polyphenols, poses a challenge. 
Recently, Ocaña-Rios et al. combined solid-phase extraction 
(SPE) and NMR metabolomics to investigate phenolic acids 
and flavonoids (Ocaña-Rios et al., 2021).

The pH shift from one sample to another induces a variation 
in the chemical shifts of certain compounds (Son et al., 
2008). White wines are generally more acidic than red 
wines, so they are more acidic with pH ranging from 2.8 to 
4.2. Many authors adjust pH to be able to compare spectra, 
even if this issue may be circumvented by post-acquisition 
data processing (detailed in the post-treatment paragraph). 

Method Solvent/Buffer pH adjusted Standards References

Liquid-liquid extraction methanol-d4 no no (Ali et al., 2011)

XAD column extraction methanol-d4 no no (Anastasiadi et al., 2009)

Solid-phase extraction methanol-d4 no TSP (Ocaña-Rios et al., 2021)

Evaporation with nitrogen
D2O no TSP (Amaral and Caro, 2005)

D2O/phosphate yes (pH 6.0) TSP (Chang et al., 2014)

Evaporation with centrifugal 
evaporator

D2O no TSP (De Pascali et al., 2014)

D2O/phosphate no TSP (Aru et al., 2018)

D2O yes (pH 3.0) TSP (Alves Filho et al., 2019)

Evaporation with centrifugal 
evaporator and lyophilisation D2O no TSP (da Silva Neto et al., 2009)

Lyophilisation

D2O no TSP (Pereira et al., 2007)

D2O no DSS (Hu et al., 2015;  
Viggiani and Morelli, 2008)

D2O yes (pH 2.0) TSP (Papotti et al., 2013)

D2O/oxalate no DSS (Zhu et al., 2018)

Direct analysis

D2O no formic acid (Mazzei et al., 2010)

D2O no TSP, formic acid (Mazzei et al., 2013)

D2O yes (pH 3.2) TSP (Ragone et al., 2015)

D2O yes (pH 3.0) TSP (López-Rituerto et al., 2012; 
López-Rituerto et al., 2022)

D2O/oxalate no TSP (Baiano et al., 2012)

D2O/acetate no TSP (Martin-Pastor et al., 2016)

D2O/PBS no no (Kioroglou et al., 2020)

D2O/phosphate yes (pH 3.1) TSP (Godelmann et al., 2016)

D2O/phosphate yes (pH 3.0) TSP (Fan et al., 2018)

D2O/phosphate no TSP (Crook et al., 2021;  
Magdas et al., 2019)

D2O/phosphate no TSP, calcium formate (Gougeon et al., 2018)

D2O/phosphate yes (pH 3.1) TSP, calcium formate (Gougeon et al., 2019b)

D2O/phosphate Yes (pH 4.0) DSS (Mascellani et al., 2021)

TABLE 1. Summary of wine sample preparation methods.
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Most authors adjust the pH of wines using a buffer solution. 
Oxalate and phosphate buffer, which are of variable pH 
and ionic strength, are the two buffers mainly used for the 
analysis of wines by 1H-NMR. It is important to adapt the 
buffer concentration, because the ionic strength can make 
the tuning of the probe difficult (Bharti and Roy, 2012). 
To simplify and automatise this step, the use of a titration 
pH robot is becoming more widespread. The titration pH 
robot helps to add small amounts of concentrated acid 
and/or base to finely adjust the pH (Godelmann et al., 
2016; Gougeon et al., 2019a). A reference compound is 
commonly added to calibrate spectra for NMR analyses.  
This step facilitates both the identification of metabolites 
and the comparison of the spectra. The references commonly 
used are 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium 
salt (TSP) and 2,2-dimethyl-2-si-lapentane-5-sulfonate-d4 
sodium salt (DSS). In addition to the calibration reference, an 
internal standard, such as formic acid (Mazzei et al., 2013) 
or calcium formate (Gougeon et al., 2019a), can be added for 
quantification purposes.

2. 1H-NMR spectrum acquisition
1H-NMR experiments are performed with different magnetic 
fields, from benchtop NMR (62 MHz) to 800 MHz.  
However, wine analyses are mainly carried out at 400 and 
600 MHz. The sequence parameters are crucial to obtain an 
effective quantitative analysis by NMR (Bharti and Roy, 2012).  
The main acquisition parameters used (sequence, temperature, 
etc.) are listed in Table 2 and are classified by spectrometric 
frequency.

Owing to the composition of wine, a 1H-NMR spectrum 
is dominated by the water signal (δ 4.8 ppm) and those of 
ethanol, a quadruplet at δ 3.6  ppm (CH2) and a triplet at 
δ  1.2  ppm (CH3). The concentration of the compounds of 
interest is low compared to these two  major compounds, 
and it is thus impossible to detect and accurately measure 
them with a simple proton sequence. Therefore, there are 
two  possibilities for studying the composition of wine by 
NMR: either physically removing water and ethanol by 
evaporation and freeze-drying and then using simple proton 
sequences, or removing the solvents by using specific pulse 
sequences. The former has been widely used and NMR 
analysis consists of a single-pulse 1H-NMR sequence that 
includes a 90 ° radio frequency pulse, followed by a signal 
acquisition time and a relaxation delay (d1). In this case, the 
NMR analysis is simple and fast since only one sequence 
is needed, but the evaporation step can lead to the loss 
of other volatile compounds, as mentioned previously.  
While this technique is therefore limited for wine 
metabolomics, it can be useful for specific compounds of 
interest, such as polyphenols (Ocaña-Rios et al., 2021).

One of the major advantages of NMR is that it is possible 
to modify pulse sequences to suppress unwanted signals. 
Indeed, multiple solvent removal techniques are used to 
increase the signal-to-noise ratio of the compounds of interest. 
Regarding the removal of solvents, several methods can be 
used: solvent presaturation, Water suppression Enhanced 

through T1  effects (WET) and Nuclear Overhauser Effect 
SpectroscopY (1DNOESY) sequences being the most popular  
(Giraudeau et al., 2015; Kew et al., 2017). The simplest 
method of solvent removal is to pre-saturate the solvent 
before the 90 ° pulse with continuous irradiation during 
the relaxation time (zgpr sequence). This method is not 
recommended for quantitative analysis, because it is not 
sufficiently selective in frequency, and it can induce signal 
saturation. Among the other available pulse sequences, 
multi‑solvent suppression with 1D-NOESY is very often 
used to analyse wines (Yulia B. Monakhova et al., 2014a; 
Ragone et al., 2015). This sequence makes it possible to 
significantly increase the receiver gain (rg), and therefore 
to increase the sensitivity of the analysis (Bharti and Roy, 
2012). Selective suppression of the water and ethanol 
signals is achieved from specific pulse sequences not only 
during the relaxation time but also during the mixing time.  
This sequence is easy to optimise and calibrate and is suitable 
for high-throughput NMR-based metabolomics.

Acquisition parameters depend on the method of preparation 
(sample concentration, direct analysis or drying, internal 
or external reference, etc.) and the chosen pulse sequence. 
However, Table  2 shows several general characteristics 
of these parameters for wine analysis. The spectral width 
(sw) analysed is, in general, between 10 and 20  ppm.  
The number of iterations of the experiment (number of 
scans, ns) ranges from 16 to 128. For accurate quantitative 
analysis, the number of scans needs to be adjusted to reach 
a signal over noise ratio (SNR) higher or equal to 250:1  
(Bharti and Roy, 2012). In NMR metabolomics, the smallest 
peaks (SNR  <  15:1) provide the largest coefficients of 
variation and should be examined carefully (Wang et al., 
2013). For quantitative analysis, the relaxation time should 
be at least 5 × T1 (Bharti and Roy, 2012), where T1 is the 
constant time characteristic of the relaxation process for 
spin to return to its thermal equilibrium value after pulsing.  
This process is called longitudinal relaxation. The relaxation 
time (d1) is generally fixed between 4 s and 6 s for direct wine 
analyses. The number of points acquired in the time domain 
(td) is usually between 32k and 64k for wine analyses.  
Bharti and Roy consider that a lower number of points does 
not provide sufficient resolution for the quantisation of 
signals, especially those that are partially superimposed, and 
that 32k data points are sufficient for quantitative analyses. 
Finally, temperature is also a critical factor that affects the 
reproducibility of the results (variations in chemical shifts). 
It is important to maintain a constant temperature for all 
analyses, especially for those using external quantitation 
standards, since a change in temperature can affect the 
relaxation properties, which can lead to quantitation errors. 
Analysis temperatures are generally set between 290 and 
300 K.

3. 1H-NMR spectrum processing
The acquired free precession signal (free induction decay 
or FID) then undergoes a Fourier transform. To increase the 
resolution, a zerofilling is generally applied. This consists in 
increasing the number of points, which are generally doubled. 
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Finally, an exponential window function is often applied. 
This function allows the attenuation of background noise 
and thus improves the SNR, albeit with a loss of resolution.  
This negative effect can be offset by using a single parameter 
called line broadening (lb), which is usually adjusted between 
0.3 and 1.0 Hz (Bharti and Roy, 2012).

After the Fourier transform, a phase correction of the 
spectrum is performed to obtain symmetrical signals over 

the entire spectrum. This is an important step because 
mis‑phased signals can lead to integration errors and thus 
induce incorrect quantisation. Manual phase correction is 
preferable to automatic phase correction in metabolomic 
studies, because small signals are distorted during automatic 
phase correction (Bharti and Roy, 2012). Baseline correction 
is often required to correctly account for the area of the 
integrated peak. This correction can be carried out manually 

Field (Hz) T (K) Sequence Sequence parameters PCa BCb References

62 - presaturation ns 16, td 32k, d1 30 s - - (Matviychuk et al., 2021)

200 298 presaturation ns 160, sw 25 ppm, td 16k, d1 3 s - - (Amaral and Caro, 2005)

300 293 proton ns 32, sw 15 ppm, td 32k, d1 3 s - - (da Silva Neto et al., 2009)

400

298 wet1d ns 128, sw 12 ppm, td 32k, d1 1.5 s manual automatic (Caruso et al., 2012)

298 zgpr ns 128, sw 10 ppm, td 64k, d1 60 s manual automatic (López-Rituerto et al., 2009)

298 zgpr ns 128, sw 20 ppm, td 64k, d1 10 s, rg fixed - - (López-Rituerto et al., 2012)

300 zgpr ns 8, sw 20 ppm, td 64k, d1 4 s, rg 1 - - (Godelmann et al., 2013)

300 zgpr ns 4, sw 20 ppm, td 64k, d1 4 s, rg 1 - - (Ragone et al., 2015)

300 zgpr ns 16, sw 20 ppm, td 64k, d1 1 s - - (Geana et al., 2016)

298 zgesgp/mt1ir ns 96, sw 16 ppm, td 32k, d1 3.5 s - automatic (Mazzei et al., 2013)

300 noesygpps1d ns 32, sw 20 ppm, td 64k, d1 4 s, rg 16 automatic automatic (Ehlers et al., 2022;  
Godelmann et al., 2013)

300 noesygpps1d ns 16, sw 18 ppm, d1 6 s, rg 16 local - (Godelmann et al., 2016)

300 noesygpps1d ns 16, sw 15 ppm, td 64k, d1 4 s, rg 16 automatic automatic (Fan et al., 2018)

500

298 proton ns 128, d1 1.5 s manual manual (Ali et al., 2011)

300 noesypr1d ns 256, sw 20 ppm, td 16k, d1 2 s manual manual (Martin-Pastor et al., 2016)

298 noesypr1d ns 128, sw 16 ppm, td 64k, d1 1 s, rg 18 - - (Mascellani et al., 2021)

600

298 zgpr ns 256, sw 20 ppm, td 64k, d1 4 s, rg fixed - - (Aru et al., 2018)

293 zgpr ns 8, sw 20 ppm, td 64k, d1 5 s, rg 5 manual automatic (Gougeon et al., 2019a)

298 zgpr ns 32, sw 20 ppm, td 64k, d1 20 s, rg fixed manual automatic (Alves Filho et al., 2019a)

298 zgpr ns 64, sw 20 ppm, td 64k, d1 10 s, rg fixed manual automatic (López-Rituerto et al., 2022)

298 noesypr1d ns 16, sw 16 ppm, td 32k, d1 1.5 s automatic automatic (H.-S. Son et al., 2009)

298 noesypr1d ns 256, sw 10 ppm, td 32k, d1 2 s - - (Zhu et al., 2018)

300 noesypr1d ns 256, sw 20 ppm, td 64k, d1 5 s manual automatic (Kioroglou et al., 2020)

293 noesygpps1d ns 32, sw 20 ppm, td 64k, d1 5 s, rg 64 manual automatic (Gougeon et al., 2019a)

298 noesygpps1d ns 256, sw 12 ppm, td 32k, d1 2 s - - (Hu et al., 2020)

700

300 proton ns 32, sw 20 ppm, td 64k, d1 2 s, rg 8 - - (Ocaña-Rios et al., 2021)

- noesypr1d ns 128, sw 20 ppm, td 64k, d1 4 s automatic /manual - (Crook et al., 2021)

300 noesygpps1d ns 128, sw 30 ppm, td 64k, d1 10 s, rg 16, lb 0.3 Hz automatic automatic (Baiano et al., 2012)

300 noesygpps1d ns 32, sw 20 ppm, td 64k, d1 4 s, rg 16 - - (Ocaña-Rios et al., 2021)

800 300 zgpr ns 32, sw 10 ppm, td 64k, d1 2 s, rg 64 manual manual (Rochfort et al., 2010)

TABLE 2. Main acquisition parameters used in studies of metabolomic analysis of wines by 1H-NMR.

a PC: phase correction; b BC: baseline correction.  
ns = number of scans, sw = window size, td = number of acquired points, d1 = relaxation time, rg = receiver gain.
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or automatically by various mathematical functions with 
the help of processing software. Finally, the chemical shift 
of the spectrum is calibrated to allow the processing and 
comparison of the different 1H-NMR spectra acquired.  
In general, calibration consists in adjusting the reference 
signal of the internal calibration standard (DSS, TSP) to 
δ 0.00 ppm.

1H-NMR SPECTRUM ANALYSIS

Two different methods can be applied to 1H-NMR wine spectra 
(Vignoli et al., 2019). The first is targeted analysis, which is 
based on the identification and quantification of a panel of 
wine constituents. These compounds must be identified and 

quantified without ambiguities on the 1H-NMR spectrum. 
The advantage of identifying the compounds present in wine 
is to be able to monitor their evolution according to different 
parameters and to determine the metabolites involved in the 
differentiations. The second method is untargeted analysis 
(fingerprinting), which provides a global view of all the 
observable wine constituents previously identified or not.  
This approach allows spectral pattern comparison to 
discriminate specific vine and wine behaviours (e.g., variety, 
vintage, geographic origin, winemaking process, etc.). 
Finally, data obtained from 1H-NMR spectra are usually 
combined with multivariate analysis using supervised and 
unsupervised methods. The application of chemometrics on 
the 1H-NMR metabolomics data allows wine classification.

FIGURE  2. Typical wine 1H-NMR spectrum using multi-solvent suppression based on 1D-NOESY experiment. 
Spectrum is divided into three regions: 0.5-3.5 ppm, 3.5-6.5 ppm and 6.5-9.5 ppm. Wine mixed with phosphate buffer and deuterated 
buffer (7:2:1 v/v). pH automatically adjusted to 3.1. 1H-NMR spectrum recorded at 293 K using the following parameters: ns 32, 
td 64k, sw 16 ppm, d1 5 s.
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1. Targeted analyses

1.1 Identification of wine constituents 
Wine is a complex matrix composed of many metabolites.  
For metabolomics purposes, most of the studies reviewed 
used wine directly. This method is a more reliable 
quantitative approach, because extraction, freeze-drying and 
evaporation can lead to the loss of all or some compounds 
(Amaral and  Caro, 2005; Aru et al., 2018). In addition, it 
limits the number of wine manipulations, thereby increasing 
the reproducibility of the analyses. Nevertheless, with this 
approach, only the major constituents are observable on the 
1H-NMR spectrum. Figure 2 shows a representative 1H-NMR 
spectrum of wine obtained by direct analysis. The signals of 
water (δ 4.8 ppm) and ethanol at (δ 3.6 and 1.2 ppm) were 
suppressed in a 1D-NOESY experiment.

Dozens of compounds from different families are 
superimposed onto the spectra obtained: alcohols and 
polyols, amino acids, organic acids, phenolics, sugars, esters, 
aldehydes and ketones. An initial approach is to compare 
signal assignments of the wine constituents with literature 

data and libraries provided by NMR data banks, such as the 
Biological Magnetic Resonance Bank (BMRB, https://bmrb.
io/), the Yeast Metabolome Database (YMDB, http://www.
ymdb.ca/) and the Birmingham Metabolite Library (BML, 
http://www.bml-nmr.org/).

To confirm the signal identification, spiking experiments 
directly in wine or in wine-like matrices using standard 
molecules can be performed, especially for compounds 
present in low concentrations (Cassino et al., 2017). Finally, 
besides the addition of pure standards, a combination 
of 2D NMR spectra can be used to confirm metabolite 
identification, including J-resolved spectroscopy (JRES), 
COSY COrrelated SpectroscopY (COSY) and TOCSY Total 
Correlation SpectroscopY (TOCSY) (Vignoli et al., 2019). 
Table 3 shows the main wine constituents identified in wine 
and their chemical shifts, signal multiplicities and coupling 
constants (Le Mao et al., 2021).

1.2. Quantification of wine constituents 
The integration of the signal area is one of the crucial steps 
in qNMR analysis. The wine 1H-NMR spectrum consists of 

Family Peak Compound
δ1

H (multiplicity, J in Hz, assignment)

Used for quantification Other signals

Alcohols

1 ethanol 1.18(t, 7.2, CH3) 3.65 (q, 7.1, CH2)

2 isopentanol 1.65 (m, CH) 0.88 (d, 6.7, 2CH3), 1.44 (q, 6.9, CH2), 3.61 (t, 6.7, CH2)

3 myo-inositol 3.27 (t, 9.7, CH) 3.52 (dd, 10.0, 2.8, 2CH), 3.61 (t, 2.8, 2CH), 4.05 (t, 2.8, CH)

4 methanol 3.35 (s, CH3) 0.87 (d, 6.7, 2CH3), 1,73 (m, CH)

5 isobutanol 3.37 (d, 6.7, CH2)

6 phenethyl alcohol 7.33 (m, 5CH) 2.85 (t, 6.6, CH2), 3.74 (t, CH2)

Amino acids

7 leucine 0.96 (d, 6.2, 2CH3) 1.71 (m, CHCH2), 3.74 (m, CH)

8 isoleucine 0.99 (d, 7.0, CH3)
0.93 (t, 7.4, CH3), 1.24 (m, CH2), 1.45 ( m, CH2), 1.97 (m, CH), 

3.66 (d, 3.9, CH)

9 valine 1.04 (d, 7.3, CH3) 0.99 (d, 7.3, CH3), 2.28 (m, CH), 3.66 (d, 4.3, CH)

10 threonine 1.33 (d, 6.7, CH3) 2.58 (d, 4.9, CH), 4.24 (m, CH)

11 alanine 1.50(d, 7.2, CH3) 3.76 (q, 7.2, CH)

12 arginine 1.89 (m, CH2) 1.70 (m, CH2), 3.23 (t, 6.9 CH2), 3.75 (t, 6.5, CH)

13 proline 1.99(m, CH2)
2.06 (m, CH), 2.33 (m, CH); 3.32 (dt, 14.0, 7.0, CH), 3.42 (dt, 11.6, 

7.0, CH); 4.11 (dd, 8.6, 6.4, CH)

14 tyrosine 6.88 (d, 8.4, 2CH) 3.02 (dd, CH2), 3.17 (dd, CH2), 3.92 (dd, CH), 7.17 (d, 8.6, 2CH)

Organic acids

15 lactic acid 1.40 (d, 7.0, CH3) 4.31 (q, 7.0, CH)

16 acetic acid 2.08 (s, CH3)

17 pyruvic acid 2.35 (s, CH3)

18 succinic acid 2.65 (s, 2CH2)

19 malic acid 2.89 (dd, 16.3, 4.5, CH) 2.78 (dd, 16.3, 7.0, CH), 4.53 (dd, 7.0, 4.5, CH)

20 citric acid 2.94 (d, 15.6, CH2) 2.79 (d, 15.6, CH2)

21 tartaric acid 4.60 (s, 2CH)

22 fumaric acid 6.78 (s, 2CH)

23 syringic acid 7.36 (s, 2CH) 3.84 (s, 2CH3)

TABLE 3. Chemical shifts and coupling constants used for compound identification (Le Mao et al., 2021).
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many signals, each corresponding to the chemical shifts of the 
different non-exchangeable protons present in the analysed 
extract. The area under each signal is directly proportional to 
the concentration and proton numbers of the corresponding 
compound (Bharti and Roy, 2012). The relative or absolute 
concentration of a compound can be obtained by comparing 
the area of the peak corresponding to that of the reference 
signal. Nevertheless, the integration procedure needs to be 
performed carefully due to overlapping signals and under- 
or over-estimation effects requiring correction factors 
(Godelmann et al., 2016).

Various procedures can be performed to provide the 
reference signal used for quantification, including internal 
standards, external standards, calibration curve methods 
and even electronic methods (Bharti and Roy, 2012).  

An internal standard needs to be stable in the wine matrix. 
Ideally, its signal should be isolated from the metabolites 
of interest. Gougeon et al. used calcium formate for 
the internal standard in wines (Gougeon et al., 2018).  
Some studies have used succinic acid for the external reference 
(López-Rituerto et al., 2022). A third approach is to use an 
electronic reference to avoid the problems posed by internal 
or external standards. Several specific procedures have been 
developed and applied to wine, such as electronic reference 
to access in vivo concentration (ERETIC), quantification 
by artificial signal (QUANTAS), and pulse length-based 
concentration determination (PULCON) (Bharti and Roy, 
2012). These methods are very sensitive to variations in the 
physicochemical properties of the samples to be analysed 
(salt concentrations, analyte concentrations, etc.).

Phenolics

24 catechin 6.01 (d, 2.0, CH) 2.53 (dd, 15.4, 5.7, CH2), 2.85 (m, CH2), 4.15 (m, CH), 4.41 (d, 7.0, 
CH), 6.08 (d, 2.3, CH), 6.84 (d, 8.6, CH), 6.92 (m, 2CH)

25 epicatechin 6.10 (d, 2.0, CH) 2.76 (m, CH2), 2.90 (m, CH2), 4.32 (m, CH), 4.95 (m, CH), 6.93 (m, 
CH2), 7.03 (d, 2.0, CH)

26 gallic acid 7.16 (s, 2CH)

27 tyrosol 6.85 (m, 8.4, 2CH) 2.77 (t, CH2), 3.77 (t, CH2), 7.17 (m, 8.4, 2CH)

Polyols

28 2,3-butanediol 1.13 (d, 6.2, 2CH3) 3.61 (m, 2CH)

29 glycerol 3.55 (dd, 11.8, 6.5, CH2) 3.64 (dd, 11.7, 4.3, CH2), 3.77 (m, CH)

30 mannitol 3.84 (dd, 11.9, 2.8, CH2) 3.65 (dd, 11.7, 6.2, CH2), 3.73 (m, CH), 3.77 (d, 9.0, CH)

Sugars

31 fructose 4.02 (dd, 12.8, 1.0 CH2)
3.56 (m, CH2), 3.70 (m, 2CH2), 3.77 (m, CHCHCH2), 3.87 (dd, 9.9, 

3.4, CH), 3.97 (m, CH), 4.09 (m, 2CH)

32 arabinose 4.50 ( d, 7.7, CH) 3.51 (dd,CH), 3.68 (m, CHCH2), 3.83 (dd, CH), 3.90 (m, CHCH2), 
3.95(m, CH), 4.02 (m, CHCH2), 5.25 (d, CH)

33 xylose 5.18 (d, 3.7, CH)
3.21 (dd, 9.3, 7.9, CH), 3.31 (t, 11.4, CH2), 3.42 (t, 9.25, CH), 3.51 
(dd, 9.3, 3.7, CH), 3.63 (m, CHCHCH2), 3.91 (dd, 11.5, 5.5, CH2), 

4.57 (d, 7.9, CH)

34 glucose 5.23 (d, 3.6, CH)
3.23 (dd, 9.2, 8.0, CH), 3.39 (m, CH), 3.45 (dd, 9.8, 3.7, CH) 3.72 
(m, CHCH2), 3.82 (m, CHCH2), 3.88 (dd, 12.2, 2.1, CH2), 4.63 (d, 

7.9, CH)

Others

35 acetoin 1.37 (d, 7.0, CH3) 2.21 (s, CH3), 4.42 (q, 7.2, CH)

36 ethyl lactate 4.21 (q, 7.06, CH) 1.28 (t, CH3), 1.42 (d, 7.0, CH3), 4.39 (q, 7.0, CH)

37 ethyl acetate 2.07 (s, CH3) 1.26 (t, 7.2, CH3), 4.12 (q, 7.1, CH2)

38 ethanal 2.23 (d, 3.0, CH3) 9.67 (q, 3.0, CH)

39 γ-aminobutyric acid 2.50 (t, 7.3, CH2) 1.96 (m, CH2), 3.05 (m, CH2)

40 choline 3.19 (s, 3CH3) 3.51 (dd, CH2), 4.05 (m, CH2)

41 trigonelline 9.14 (s, CH) 4.42 (s, CH3), 8.07 (m, CH), 8.82 (m, 2CH)

42 galacturonic acid 5.32 (d, 3.8, CH)
3.49 (dd, 8.0, 10.0, CH), 3.69 (dd, 9.9, 3.5, CH), 3.80 (dd, 10.3, 

3.8, CH), 3,92 (dd, 10.3, 3.4, CH), 4.24 (dd, 3.6, 1.2, CH), 4.26 (d, 
1.2, CH), 4.31 ( dd, 3.3, 1.4, CH)

43 shikimic acid 6.82 (dt, CH) 2.21 (dd, 18.2, 7.0, CH2), 2.75 (dd, 18.0, 5.3, CH2), 3.74 (dd, 8.6, 
4.3, CH), 4.01 (m, CH), 4.42 (t, 4.1, CH)

Part 2/2
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Overlapping signals cannot be integrated accurately using 
global integration methods. A signal deconvolution can be 
performed to determine the contribution of an individual 
peak to the total area (Cobas et al., 2011). NMR software 
has implemented algorithms to solve the problems of overlap 
by deconvolution of the signals (Gougeon et al., 2019a). 
Although useful in some circumstances, this method cannot 
solve all overlaps seen across the spectrum. Moreover, it does 
not predict the number of components hidden under a series 
of superimposed signals (Y. B. Monakhova et al., 2014b).

Finally, to perform absolute quantification, specific constant 
response factors may be introduced for each compound 
depending on the measuring conditions (Godelmann et al., 
2016). These factors depend on various parameters, including 
NMR sequences for solvent suppression and duplet roof 
effect.

2. Untargeted analyses (fingerprinting)
The untargeted methods are based on global analysis of the 
1H-NMR spectral data (Alonso et al., 2015; Riedl et  al., 
2015). This approach seeks to take advantage of all the 
data contained in the NMR spectrum to build patterns for 
classifying wines. The aim is to discriminate different wine 
fingerprints based on their geographical origins, varieties or 
vintages (Magdas et al., 2019). Untargeted analyses require 
many wine samples to be relevant, so they are combined with 
chemometrics to discriminate the specific signatures of each 
class of wines.

Typically, untargeted methods consist in transforming 
1H-NMR wine spectra into matrices of data by what is 
known as binning or bucketing (Ehlers et al., 2022).  
Each bin (bucket) represents a small area of the spectrum 
(between 0.01 and 0.05  ppm). This approach reduces the 
number of variables and smooths small shift fluctuations 
between spectra. 

One of the main limitations of this procedure is the integration 
of fixed buckets, applied independently of potential 
deviations (variation in chemical shifts, local deformation of 
the baseline, etc.). For example, pH or salt concentrations 
of wines may distort 1H-NMR spectra. Several methods 
have been developed to correct these fluctuations and 
allow advanced bucketing (Monakhova et al., 2013). For 
example, NMRProcFlow allows a semi-automatic procedure 
to be carried out based on adaptive intelligent bucketing  
(Jacob et al., 2017).

CHEMOMETRICS

Irrespective of whether the analysis is targeted, all 
metabolomics techniques produce a very large volume of 
data. NMR data are generally subjected to chemometrics 
based on multivariate data analysis, especially for food 
authentication studies (Borràs et al., 2015; Granato et al., 
2018). Two  types of multivariate analysis are commonly 
used: unsupervised and/or supervised approaches. 
Although non-linear approaches are used in foodomics, the 
multivariate statistical analysis models generally used are 

principal component analysis (PCA) and partial least squares 
regression models (Bona et al., 2018).

Unsupervised methods, such as principal component analysis 
(PCA) and hierarchical cluster analysis (HCA), are generally 
used to highlight patterns in the global data set. They make 
it possible to classify wines without allocation of samples 
to a membership group. PCA is the most widely used 
unsupervised method. It reduces the number of variables 
by linear combination of the initial variables, providing a 
smaller set of variables (principal components). PCA used 
first to identify trends, clusters and outliers (Le Mao et al., 
2021; Mascellani et al., 2021).

In contrast to unsupervised methods, the clusters are 
known in the supervised approaches. Partial least squares 
discriminant analysis (PLS-DA) and orthogonal projection to 
latent structures (OPLS-DA) are the most popular supervised 
methods. Like PCA, PLS-DA allows the dataset to be reduced 
and simplified, but it differs in its supervised nature. It uses 
learning sets with a priori-known information (grape variety, 
geographical origin, etc.) to build a classification model 
(Amargianitaki and Spyros, 2017; Gougeon et al., 2019a). 
PLS-DA is characterised by its high discriminatory power, 
but it can lead to the artificial separation of groups with no 
real difference between them (Hatzakis, 2019). 

A model validation procedure is of crucial importance 
in order to avoid overly optimistic classification results, 
which is currently one of the pitfalls of authenticity studies 
(Kjeldahl and Bro, 2010). The model validation procedure 
generally involves evaluating the acquired data, the variables 
selected to build the model, and its predictive capacity and 
relevance. Depending on the models and statistical packages 
used (R  Project, Matlab, SIMCA, etc.), various validation 
procedures are available. The best way to estimate a model 
is the external validation procedure using a training set to 
build the model and an independent test set to estimate its 
relevance. In foodomics - an internal validation procedure - 
cross-validation is often applied when the number of samples 
is limited (Gougeon et al., 2019a; Magdas et al., 2019;  
Triba et al., 2015). The most commonly used method is 
k-fold cross-validation and its derivative leave-one‑out 
cross-validation (LOOCV) for very small datasets  
(Spyros and Dais, 2013). LOOCV consists of excluding only 
one object at a time, the others being used to construct the 
model which is then applied to the discarded sample. In the 
k-fold method, it is a part of the dataset that is excluded and 
used as a test set for the rest of the data.

APPLICATION OF NMR-BASED 
METABOLOMICS TO WINE 

AUTHENTICITY

The first highlighted application of NMR-based metabolomics 
is to guarantee the authenticity of wine. A major new issue 
in recent decades, both customers and producers require 
wine to be authentic and traceable. As wine is a product with 
high added value, it is the target of numerous counterfeits; 
therefore, customers demand better traceability of the 
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Geographical origin
Cultivars Methods Reference

Countries Region

Australia, New 
Zealand - Pinot noir 1H-NMR and ICP-MS targeted analysis (Duley et al., 2021)

China

Shanxi Cabernet-Sauvignon, Shiraz 1H-NMR targeted analysis (Zhu et al., 2018)

- Cabernet-Sauvignon, Beihong 1H-NMR targeted analysis (Gougeon et al., 
2018)

Shacheng Cabernet-Sauvignon, Merlot, Ruby 
cabernet, Syrah, Zinfendel

1H-NMR targeted analysis (Hu et al., 2015)

Yeongdong, Yeongcheon 
and Chochiwon Muscat bailey 1H-NMR targeted analysis (Son et al., 2009a)

Czech Rep -

Riesling, Chardonnay, Pinot gris, 
Sauvignon blanc, Welschriesling, 

Pinot noir, Grüner veltliner, 
Gewürtztraminer, 

Pinot blanc, Blaufränkisch, Pálava, 
Cabernet-Sauvignon, Hibernal, 
Zweigeltrebe, Grüner silvaner, 

Saint laurent, Neuburger, Merlot, 
Muskat moravsky, Andre, Müller-

Thurgau, Cabernet moravia, Blauer 
portugieser, Dornfelder, Kerner, 

Aurelius, Alibernet

1H-NMR targeted and untargeted analysis (Mascellani et al., 
2021)

France

Bordeaux, Beaujolais, 
Burgundy, Côtes du 
Rhône, Languedoc-

Roussillon, Loire Valley

- 1H-NMR targeted analysis
(Gougeon, da 

Costa, Guyon, et al., 
2019a)

France, USA, 
Australia, South Korea - Cabernet-Sauvignon, Shiraz, 

Campbell early
1H-NMR targeted analysis (Son et al., 2008)

Germany
Rheinpfalz, Rheinhessen, 

Mosel, Saar, Ruwer, 
Baden and Württemberg

Riesling, Pinot noir, Müller-Thurgau, 
Pinot blanc, Pinot gris, Pinot meunier, 

Dornfelder, Gewürtztraminer, 
Silvaner, Lamberger

1H-NMR targeted and untargeted analysis (Godelmann et al., 
2013)

Greece -
Red: Mandilaria, Agiorgitiko

White: Moschofilero, Asyrtiko
1H-NMR targeted analysis (Anastasiadi et al., 

2009)

Italy

Verona Amarone 1H-NMR untargeted and targeted analysis (Consonni et al., 
2011)

Basilicata and 
Campagnia - 1H-NMR targeted analysis (Viggiani and 

Morelli, 2008)

Hungary Villány, Eger Cabernet-Sauvignon, Blaufränkisch, 
Merlot, Pinot noir

1H-NMR untargeted analysis (Nyitrainé Sárdy et 
al., 2022)

Romania

France
Romanian: Transylvania, 

Oltenia, Moldova

Romanian: Sauvignon blanc, 
Riesling, Chardonnay, Pinot gris

French: Sauvignon blanc, 
Chardonnay

1H-NMR untargeted analysis (Magdas et al., 
2019)

Romania Murfatlar Cabernet-Sauvignon, Merlot, 
Feteasca neagra, Pinot noir, Mamaia

1H-NMR untargeted analysis, HPLC and 
isotopes targeted analysis (Geana et al., 2016)

Spain

Galicia Albariño, Godello, Treixadura, 
Palomino

1H-NMR and SPME-GC untargeted analysis (Martin-Pastor et al., 
2016)

La Rioja - 1H-NMR targeted analysis (López-Rituerto et al., 
2012)

TABLE 4. Geographical origin discrimination by 1H-NMR-based metabolomics.
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products they consume. So far, three wine characteristics have 
been addressed by NMR-based metabolomics: geographical 
origin, grape variety and vintage.

1. Geographical origin
As mentioned by Amargianitaki and Spyros (2017), 
NMR‑based metabolomics has been widely used to classify 
wines according to their geographical origin. Initial studies 
first showed that wines from different countries or regions were 
dissociated by NMR analysis (Brescia et al., 2002; Du et al., 
2007). However, as this separation could be due to the grape 
varieties used, studies showed that the same grape variety 
vinified in different world regions gave a different metabolome 
(Caruso et al., 2012; Gougeon et al., 2019a; Magdas et al., 
2019; Son et al., 2009a; Son  et  al., 2008). These studies 
clearly demonstrated the impact of the soil to discriminate 
the geographical origin of wine. Finally, on a smaller scale, 
studies have shown that NMR‑based metabolomics can also 
discriminate between wines from regional trademarks in the 
same area (Gougeon  et al., 2019a; López-Rituerto et al., 
2012; Mazzei et al., 2010; Pereira et al., 2007). For example, 
Pereira et al. showed for the first time the impact of soil 
composition on the metabolic profile of wines by highlighting 
its impact on amino acids, phenolic compounds, glycerol 
and some organic acids (Pereira et al., 2007). These results 
were more recently confirmed by (Gougeon et al., 2019a).  
Various studies have been carried out to establish the profile 
of wines from different regions of the world (Table 4).

The main compounds related to the geographical 
discrimination of wines are listed in Table  5. There is a 
consensus that proline, one of the major amino acid in wines, 
is also the one whose content varies the most depending 
on the region, followed by alanine, leucine, threonine and 
histidine (Duley et al., 2021; Gougeon et al., 2018). Grape 
acids, such as malic acid or citric acid, as well as acids 
resulting from fermentation, such as lactic or succinic acid, 
are also impacted (Mazzei et al., 2010; Son et al., 2009).  
In their previous study, Son et al. (2008) also found that a- and 
b-glucose were discriminative in Cabernet-Sauvignon wines 
from France, California and Australia. Other metabolites 
resulting from fermentation are regularly mentioned as 
being discriminative according to their geographical origin, 
such as 2,3-butanediol, phenethyl alcohol and glycerol  
(Duley et al., 2021; Gougeon et al., 2018; Viggiani and Morelli, 

2008). Of the phenolic compounds, gallic acid seems to be 
linked to geographical differences in wines (Gougeon et al., 
2018; Nyitrainé Sárdy et al., 2022; Son et al., 2008). 
Interestingly, an untargeted NMR-based metabolomics 
approach showed that the region of the phenolic compounds 
(between 5.1 and 9.8 ppm) is the most discriminating area 
regarding geographical origin (Magdas et al., 2019).

2. Grape variety
The influence of grape variety on wine chemical composition 
has been widely studied. Numerous studies have shown that 
1H-NMR-based metabolomics combined with multivariate 
statistical analysis allows the successful classification of 
wines according to grape variety. Several comparisons 
conducted on wines produced in various countries have been 
performed on red grape varieties (Anastasiadi et al., 2009; 
Fan et al., 2018; Geana et al., 2016; Gougeon et al., 2019a) 
and white grape varieties (Ali et al., 2011; Anastasiadi et al., 
2009; Fan et al., 2018; Godelmann et al., 2013). Recently, 
a study performed on almost one thousand Czech wines 
showed the contribution of 1H-NMR-based metabolomics 
to the classification of wines according to grape variety 
(Mascellani et al., 2021). The statistical analyses showed 
the classification percentage of wines from thirteen different 
grape varieties. Of the grape varieties widely used in the 
world, the authors demonstrated that Pinot noir, Riesling, 
Cabernet‑Sauvignon and Chardonnay wines are well 
discriminated (good classification rate ranging between 76 
and 96 %), while Sauvignon blanc and Pinot gris wines were 
less well classified (45 and 48 % respectively). These results 
confirm the specificity of the metabolome of wines made from 
certain grape varieties. The 1H-NMR-based comparison of 
wines is able to discriminate between closely related varieties 
(Hu et al., 2015). As some commercialised wines may be the 
result of a blend of several grape varieties (blended wine), 
one study also showed that 1H-NMR-based metabolomics 
can discriminate wines made with various proportions of 
different grape varieties (Imparato et al., 2011).

As shown in Table  5, most studies agree that amino acids 
are the main compounds involved for grape variety 
classification, in particular proline, arginine, alanine 
and valine (Anastasiadi  et al., 2009; Zhu et al., 2018).  
There is also a consensus that other compounds, such as 
organic acids (malate, tartrate, citrate, succinate, acetate and 

Factors Organic acids Alcohols Sugars Amino acids Phenolics

Geographical origin
malic acid, citric acid, 
lactic acid, succinic 

acid

2,3-butanediol, 
phenethyl alcohol, 

glycerol
glucose

proline, alanine, 
leucine, threonine, 

histidine
gallic acid

Grape variety

tartaric acid, citric acid, 
malic acid, lactic acid, 
succinic acid, acetic 
acid, shikimic acid

ethyl acetate, 
2,3-butanediol, 

glycerol, methanol, 
acetone, isopentanol

glucose, fructose

proline, arginine, 
alanine, valine, 

leucine, isoleucine, 
choline, threonine, 
γ-aminobutyric acid

gallic acid, catechin, 
syringic acid, caffeic 

acid

Vintage

lactic acid, tartaric 
acid, fumaric acid, 

malic acid, citric acid, 
succinic acid

2,3-butanediol, ethyl 
acetate, glycerol glucose, xylose

proline, alanine, 
leucine, valine, choline, 

γ-aminobutyric acid

catechin, gallic 
acid, syringic 

acid, epicatechin, 
caffeic acid

TABLE 5. Main discriminating metabolites of geographical origin, grape variety and vintage.
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lactate) and alcohols (2.3-butanediol, glycerol), are markers 
of grape varieties (Geana et al., 2016; Godelmann et al., 2013; 
Hu et al., 2015). This is because the initial levels of primary 
metabolites from the grape berry vary greatly depending on 
the grape variety used (Cosme et al., 2016; Liu et al., 2006).  
These compounds undergo numerous chemical processes 
leading to different wine metabolomic profiles.  
Finally, shikimic acid, which is extracted from skin during 
winemaking, has also been identified as a grape variety 
marker (Godelmann et al., 2013; Magdas et al., 2019; 
Nyitrainé Sárdy et al., 2022).

3. Vintage
Finally, the vintage is a crucial criterion for guaranteeing 
wine authenticity. Indeed, since climatic and environmental 
conditions vary from one year to another, it strongly affects 
the chemical composition of grape berries. Vintage therefore 
plays an important role in evaluating the metabolic profile of 
wines. Several publications have shown that 1H-NMR-based 
metabolomics reveals differences in the metabolic profiles 
of wines depending on the vintage (Anastasiadi et al., 2009; 
Consonni et al., 2011; Lee et al., 2009a; López-Rituerto et al., 
2012), even if the percentage of good classification can 
depend on the vintage (Gougeon et al., 2019a). A recent 
study showed the impact of four vintages (2009-2012) on 
the chemical composition of Cabernet-Sauvignon wine; 
it demonstrated that it is not so much the compositions of 
metabolites that change, but rather the contents (Zhang et al., 
2021).

As indicated in Table 5, all authors agree that most organic 
acid, sugars, and amino acid contents vary with vintage 
(Cassino et al., 2017; Gougeon et al., 2019a). Some studies 
have also shown that the contents of phenolic compounds 
can change from vintage to another (Anastasiadi et al., 2009; 
López-Rituerto et al., 2012). While initial levels depend on 
climatic and environmental conditions, a significant decrease 
in the bottle can occur, mainly due to condensation reactions 
involving anthocyanins and flavonols (Consonni et al., 2011).

Although the vintage has a clearly demonstrable effect on 
the chemical composition of wine, aging greatly complicates 
the issue. Wine continues to evolve in the bottle, leading to 
variations in the results obtained over time. Cassino et al. 
conducted a study on two white wines and 10  red wines 
for two and four years respectively (Cassino et al., 2019).  
They found that some compounds analysed by 1H-NMR‑based 
metabolomics were impacted. Overall, they showed that, 
in red wines, 2,3-butanediol, acetic acid, ethyl lactate, ethyl 
acetate and gallic acid increase during aging, while acetoin, 
lactic acid, galacturonic acid, histidine, leucine, glucose, 
xylose, catechin and epicatechin decrease. They also observed 
an increase in ethyl acetate and ethyl lactate in white wines, 
but a decrease in malic acid, lactic acid and succinic acid.  
They attributed these findings to oxidation, reduction, 
hydrolysis and precipitation phenomena in wine 
(Cassino  et  al., 2019). Similar results were obtained by 
(Gougeon et al., 2019a), who compared young wines 
(2013‑2016) to older wines (2004-2007) from the Bordeaux 

area. They found that vintage and aging effects were closely 
linked. Thus, for the purpose of wine authentication, they 
proposed using a z-score system based on the evolution of 
compound levels in bottles over time (Gougeon et al., 2019b).

APPLICATION OF NMR-BASED 
METABOLOMICS TO CONTROL 

WINEMAKING 

Metabolic NMR may also be used to control winemaking by 
studying the impact of various viticultural and oenological 
practices. This application has received less attention 
than controlling for wine authenticity, but it demonstrates 
the usefulness of 1H-NMR-based metabolomics as a 
comprehensive tool for studying the impact of different 
practices commonly used in winemaking.

1. Viticultural practices
The impact of several viticultural practices on the chemical 
composition of wine has been increasingly studied by 
using 1H-NMR-based metabolomics over the past decade.  
To our knowledge, one of the first studies demonstrating the 
value of 1H-NMR-based metabolomics was performed on 
Cabernet‑Sauvignon wine produced by different cultivation 
techniques (Todasca et al., 2011). Variations in the wine 
metabolome depending on the viticultural practices were 
observed. The effects of tilling the soil, fertilisation and the 
training system were also studied and the wines analysed 
showed a different chemical composition depending on 
the process (Ciampa et al., 2019; De Pascali et al., 2014). 
1H-NMR-based metabolomics has proven to be an efficient 
tool for studying the influence of organic and biodynamic 
cultivation on the wine metabolome (Laghi et al., 2014;  
Picone et al., 2016). Several studies have recently used it 
to analyse wines produced with grapes at different stages 
of maturity (Alves Filho et al., 2022; Chang et al., 2014; 
Le Mao et al., 2021). Since the primary metabolism is 
directly impacted by maturity, the use of 1H-NMR-based 
metabolomics is relevant. Each one of these studies was 
conducted on different grape varieties and showed an effect on 
amino acids, organic acids, sugars and phenolic compounds. 
In a context of climate change, this avenue of research is of 
particular interest to be able to continue to produce quality 
wines in the future.

2. Winemaking practices
1H-NMR-based metabolomics has also been used to study 
the influence of oenological processes on wine metabolism 
to better understand and control the impact of practices 
commonly used in oenology. One of the first uses was to study 
the impact of different fermentation processes and evaluate 
the fermentation characteristics of different yeast strains 
(Hanganu et al., 2011; Mazzei et al., 2013; Son et al., 2009b) 
and bacteria (Lee et al., 2009b). The influence of Botrytis 
cinerea attack on grape berries used in Champagne wines 
has also been demonstrated (Hong et al., 2011). NMR-based 
metabolomics analyses have also evaluated the interest and 
influence of using innovative winemaking technologies such 
as cryomaceration, reductive winemaking, and ultrasound 
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(Baiano et al., 2012; De Pascali et al., 2014). Recently, 
studies have shown that 1H-NMR-based metabolomics is 
an effective tool to monitor the evolution of the majority 
compounds in wine during fermentation and barrel aging 
(López-Rituerto et al., 2022), or to evaluate the impact 
of the use of different glues or enzymes on the chemical 
composition of wines (Le Mao et al., 2021). Maceration 
time was also studied by 1H-NMR-based metabolomics and 
although it showed a tendency to impact certain compounds, 
but ANOVA results were found to be non-significant  
(Alves Filho et al., 2022). An interesting non-targeted 
approach on Mexican Merlot wines was used by focusing 
on the phenolic compounds region (5.58-8.00  ppm) to 
study different aging processes (Herbert Pucheta, 2019).  
Finally, as previously indicated, 1H-NMR-based metabolomics 
is an efficient tool for monitoring the wine aging effect  
(Cassino et al., 2019; Gougeon et al., 2019a).

CHALLENGES AND PERSPECTIVES 
1H-NMR-based metabolomics can be used both to guarantee 
the authenticity of wines and to control wine-growing 
parameters, whether the approach is targeted or non-targeted 
and quantitative or not. NMR has important advantages 
for the analysis of complex mixtures compared to other 
usual metabolomics tools: easy sample preparation, short 
analysis times, good reproducibility and adequate specificity  
(Wishart, 2019). Nowadays, 1H-NMR-based metabolomics 
enables the rapid and efficient quantification of several 
wine constituents from different chemical classes: organic 
acids, amino acids, carbohydrates, alcohols and phenolics.  
In combination with chemometrics including multivariate data 
analysis, 1H-NMR spectroscopy allows the discrimination 
of fundamental wine parameters including geographical 
origins, grape varieties, and vintages. 

However, our review found that many different protocols 
for preparing wine samples have thus far been used.  
Most of the wines studied were either freeze-dried, evaporated 
or directly used. Therefore, depending on the studies, the 
wine samples may or may not have undergone the addition 
of a buffer. In addition, they may have used different 
buffers, with the adjustment or not of the pH of the sample, 
and with different target pH depending on the study.  
This protocol variability leads inexorably to different spectra, 
so caution is required when comparing spectra and results.  
Almost two  decades ago, Amaro and Caro showed that the 
evaporation of wine produced better results than freeze‑drying. 
Both methods provide good spectral resolution, but they are 
time-consuming and can lead to reproducibility problems 
(Amaral and Caro, 2005). The WineScreenerTM system (Bruker 
Corporation), which is based on 1H-NMR metabolomics, 
provides a commercial facility for wine traceability using 
a proprietary database (Spraul et al., 2015); however, it 
has a lack of transparency in terms of data validation and 
chemometric workflow. These factors represent a major 
limitation to its use by wine control laboratories. There is a 
pressing need for model validation approaches to verify the 
robustness of methods, including the long-term stability of 

the instruments used and the evolution of wine, in order to 
guarantee their usability and transparency.

Wine authenticity studies can become extraordinarily 
complex when sophisticated counterfeits are being analysed. 
Innovative analytical techniques are always required and it is 
only through the careful combination of various technologies 
that subtle differences between wines can be revealed  
(Valls Fonayet et al., 2021). 1H-NMR-based metabolomics 
now need to be combined with other techniques. Recent 
studies have attempted the coupling of 1H-NMR, LC-MS 
and GC‑MS data for rums (Belmonte-Sánchez et al., 2020) 
and wines (Kioroglou et al., 2020), and 1D 1H-NMR and 
ICP-MS data for wines (Duley et al., 2021). These studies 
demonstrated how such data could lead to better prediction 
efficiency, thus underling the contribution of such approaches.  
The pooling of data obtained with different analytical 
techniques increases the reliability of authentication; however, 
it is not straightforward and presents major methodological 
challenges, such as the combination of these data with those 
obtained by multiblock chemometrics (Borràs et al., 2015).
1H-NMR-based metabolomics has proven its usefulness for 
monitoring viticultural and oenological practices, and NMR 
metabolomics is sufficiently rapid and sensitive to monitor 
the main components of wine. The major wine metabolites 
can be tracked throughout the winemaking process from the 
grape berry to the bottled wine. However, there are challenges 
that still need to be addressed. First, the relationship between 
wine quality and 1H-NMR-based metabolomics remains 
unclear. Rochfort et al. (2010) investigated the relationship 
between NMR analysis and some sensory aspects of 
wine quality. They demonstrated that 1H-NMR-based 
metabolomics could serve to predict some specific traits of 
interest correlated with the organoleptic quality of wine. 
However, wine quality involves many other compounds that 
are not currently analysed by NMR. Among the non‑volatile 
compounds, phenolic compounds are important markers 
of organoleptic properties. Interestingly, Ocaña‑Rios  et  al. 
have developed a solid-phase extraction method for 
1H-NMR-based metabolomics (Ocaña-Rios et al., 2021).  
By eliminating the major polar wine constituents, the method 
allows several compounds, including hydroxybenzoates and 
flavonols, to be assessed. Such approaches could be useful to 
assess the constituents that directly affect wine quality, such 
as phenolic compounds. Second, there is a need for simpler, 
more economically viable NMR systems for use in oenology 
laboratories. In this respect, benchtop NMR spectrometers 
are promising (Giberson et al., 2021). They are less 
expensive and more compact, thus offering new perspectives 
to a wide range of new users in oenological laboratories.  
Recently, Matviychuk et al. (2021) quantified more than 
fifteen wine constituents including alcohols, organic acids 
and amino acids by applying 1H-NMR-based metabolomics 
to wine using a 60 Mhz benchtop spectrometer.  
These spectrometers could be deployed very shortly where 
conventional NMR remains inaccessible in terms of cost, 
technical complexity or physical constraints.
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