

Functional gradient descent boosting for additive non-linear spatial autoregressive model

Ghislain Geniaux

▶ To cite this version:

Ghislain Geniaux. Functional gradient descent boosting for additive non-linear spatial autoregressive model. 19th International Workshop "Spatial Econometrics and statistics", French Association in Spatial Econometrics and Statistics, May 2021, Nantes, France. hal-04229938

HAL Id: hal-04229938 https://hal.inrae.fr/hal-04229938

Submitted on 5 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Functional gradient descent boosting for additive non-linear spatial autoregressive model

Ghislain Geniaux, INRAE Ecodéveloppement UR767

Main objectives:

An extension of spatial autoregressive models (SAR, SDM, SEM and SARAR) to non linear semi-parametric models (additive model with penalized smoothing spline) using boosting algorithms (Friedman, 2001; Bühlmann et al., 2007)

This extension to gradient boosting is mainly based on an estimation of the spatial parameter by QML following the example of Basile and Gress (2004) and Su and Jin (2010),

With two additional extensions:

- a Closed Form Estimator (CFE, Smirnov 2020) for SAR and SEM models and,
- a Flexible Instrumental Variable Approach (FIVA, Marra and Radice 2010) for SAR models.

Outline:

- 1. Spatial dependence, spatial heterogeneity and non-linearity
- 2. Introducing gradient Boosting
- 3. Estimators
- 4. Monte Carlo Results
- 5. Empirical study on the sale prices of houses in France.

DIAGNOSTIC

Anselin (1988) Anselin & Griffith (1988) Anselin & Bera (1998)

ESTIMATION METHOD

LOCAL GWR-SAR (MV), GWR-SAC (MV) MGWR-SAR (2SLS), SALE (MV)

 $Y = m(X, lon, lat) + \varepsilon$ $Y = \sum m_j(X_j) + m_s(lon, lat) + \varepsilon$

Каммалл & Wand (2003) Wood, (2003) Geniaux & Napoleone (2008) SEW2021, Geniaux Ghislain 01/06/20Ардоти ет аl. (2009) (spatio-темр)

Diagnostic Paelinck & Klaassen (1979) Baltagi & Li (2001) Graaff et al. (2001) McMillen (2003) Su & Qu (2016) Lee et al. (2021) Estimation Method Gres 2004 (?) Basile & Gres 2005 (SP-SAR +QML) Basile 2009 (SPA-SAR+QML) Basile et al. 2014 (SPA-SAR+IV)+HS

Partially Linear AR SU et Jin (2010) (QML) SU (2012) (QML+GMM) Zang (2013) (PDE) SUN (2016) (+NL WY) , SUN et Malikov (2017) +HS $Y = \lambda W, Y + m(X) + (I - \rho W_2)^{-1} \epsilon$

 $Y = \lambda W_1 Y + \sum m_j (X_j) + (I - \rho W_2)^{-1} \varepsilon$

NON LINEAR NP/SP $Y = m(X) + \epsilon$ $Y = \sum m_i(X_i) + \epsilon$ (ADDITIVE)

A simple definition of boosting

- Fit an additive model Y= $\sum_t h_t(x_{j(t)}) + \epsilon_t$ in a forward stagewise manner,
- In each stage t, introduce a weak learner $h_t(x_j(t))$ to compensate the shortcomings of existing weak learners: $\hat{h}_{t+1}(.) = \hat{h}_t(.) + \alpha \hat{h}_t(x_j(t))$
- lpha is a learning rate that corresponds to the step size used in gradient descent: 0<lpha<1. In pratice, lpha=0.1
- In Gradient Boosting, "shortcomings" (choice of j(t)) are identified by gradients.
- In Adaboost, "shortcomings" are identified by high-weight data points.
- Both high-weight data points and gradients tell us how to improve our model. SEW2021, Geniaux Ghislain 01/06/2021 9

Additive function

It is easy to see that the structure of this function is equivalent to the structure of the additive predictor of a GAM (see Hastie and Tibshirani 1990).

$$\hat{h}=\hat{h_1}+\hat{h_2}+...+\hat{h_P}$$

where $\hat{h_1}, \hat{h_2}, ..., \hat{h_P}$ correspond to the functions specified by the base-learners. Consequently, $\hat{h_1}, \hat{h_2}, ..., \hat{h_P}$ depend on the predictor variables that were used as input variables of the respective base-learners.

Note that a base-learner can be selected multiple times in the course of the boosting algorithm.

We will consider the two following spatial autoregressives models:

$$Y =
ho WY + \sum_{j=1}^p h_j(X_j) + \epsilon ~~(SAR)$$

$$Y=\sum_{j=1}^p h_j(X_j)+(I-\lambda M)^{-1}\epsilon~~(SEM)$$

We have the following concentrated loglikelihood:

$$lnL(\rho) = C + |I - \rho W|$$

$$- \frac{n}{2} ln \left(\frac{(Y - \rho WY - \sum h_j(X_j))'(Y - \rho WY - \sum h_j(X_j))}{n} \right)$$
(1)

Where $C = -(n/2)ln(2\pi) - (n/2).$

ho can be estimated by minimizing numerically the concentrated loglikelihood, using the filtered model with $ilde{Y}=(Iho WY)$

While $\sum h_j(X_j)$ can be estimated for a given ρ using semiparametric additive models with penalized Spline or using boosting with splines as base-learner.

BUT gradient boosting allows a more flexible and general approach by customizing the gradients and the loss function.

Table 1													
Gradients, Loss functions and concentrated likelihood													
	Aspatial	SAR	SEM	SARAR									
Gradient	(y-f)	(y - ho Wy - f)	$(I - \lambda W)(y - f)$	$(I - \lambda W)(y - \rho Wy - f)$									
Loss Function	$\sum (y-f)^2$	$\sum (y - \rho W y - f)^2$	$\sum (((I - \lambda W)(y - f))^2)$	$\sum \left(((I - \lambda W)(y - \rho Wy - f))^2 \right)$									

Algorithm 1. BSPA_SAR_ML and BSPA_SEM_ML algorithm

initialize learning rate α (and eventually m_stop). initialize init i = 0, $\eta = 10^{-8}$ and ρ^i with $-1 < \rho^i < 1$

while $\Delta lnL(\rho) < \eta$ do

if m_stop is NULL then

| Minimize $SSE(\rho^i; \alpha, m_stop)$ with respect to m_stop using k folds cross validation. end

Estimate $S\hat{S}E(\rho^{i}; \alpha, m_stop)$ using functional gradient descent boosting with customized (SAR or SEM) gradient and loss function (function gamboost of R package *mboost*), compute $lnL(\rho^{i}; \alpha, m_stop)$ compute $\hat{\Delta^{i}}lnL(\rho^{i}; \alpha, m_stop) = lnL(\rho^{i}; \alpha, m_stop) - lnL(\rho^{i-1}; \alpha, m_stop)$

chose ρ^{i+1} using golden search rule

end

if statistical significance is required then

Rewrite the model as a additive model with convenient base-learner for each selected covariate

Estimate the model using IPRLS with GCV (function gam of R package mgcv) to obtain p-ratio test for each covariate

Compute a Likelihood-ratio test as $LR = -2 * (lnL(0; \alpha, m_stop) - lnL(\hat{\rho}^i; \alpha, m_stop))$ end

A Closed Form Estimator (CFE) approach (Smirnov 2020)

With SAR model, the calculation of the parameter ρ using CFE approach is given by:

$$ho = rac{b - \sqrt{D}}{2a}$$

where $D = b^2 - 4ac$, $a = e_1'e_2$, $b = e_0'e_2 + e_1'e_1$, $c = e_0'e_1$.

With non linear terms, we have:

$$e_0 = Y - \sum \hat{h}_0(x)$$
 $e_1 = WY - \sum \hat{h}_1(x)$

SEW2021, Geniaux Ghislain 01/06/2021 $e_{216} = W^2 Y - \sum \hat{h}_2(x)$

A FIVA/control function approach

Instruments:

$$Z = [X, WX, WWX, WWWX]$$

First Stage:

$$Wy = \sum_j' g_j(Z_j') + u$$

Second Stage:

$$y = \sum_j h_j(X_j) + \hat{W}y + \hat{u} + \epsilon$$

Monte Carlo Design

Table 2 Monte Carlo Design

	E1	E2	E3
DGP		SAR, SEM	
ρ		(0, 0.2, 0.6, 0.9)	
Number of repetitions nr		1000	
Locations (u_i, v_i)		Unit square $[0, 1]^2$	
W		equal weight, 4 first neighbors	
n	n=(1000,2000,5000)	n=2000	
x j		$x_j \sim U(0,1) \ j = 1, 2, 3$	
SNR	SNR = (0.7, 0.9)	0.7	
Non-Linear		$f_1(x_1) = x_1; f_2(x_2) = \sqrt{(3(2x_2 - 1)^2)}; f_3(x_3) = \sin(2\pi)$	$(\pi x_3) + 1$
Spatial Heterogeneity		$\beta_0 = \beta_0 + sqrt(abs(u_i - 0.35) + abs(v_i - 0.65))$	
		AND/OR $\tilde{x}_2 = (I - 0.2\tilde{W})^{-1}x_2$	
		AND/OR $\tilde{f}_2(x_2) = \sqrt{(3(2x_2 - 1)^2) + (1 + u_i - v_i)^2}$	
Correlation between			$x_{j'} \sim N(0, \Sigma), \ j' = (4, 5, 6)$
true covariates x_{ij}			$cor(x_4, x_1) = (0, 0.1)$
and false covariates $(x_{ij'}, u_i, v_i)$			$cor(x_5, x_1) = (0, 0.2)$
			$cor(x_6, x_1) = (0, 0)$
Number of different cases	48	18	6

Monte Carlo Design

$$egin{aligned} f_1(x_1) &= x_1 \ f_2(x_2) &= \sqrt{(3(2x_2-1)^2)} \ f_3(x_3) &= sin(2\pi x_3) + 1 \end{aligned}$$

SEW2021, Geniaux Ghislain 01/06/2021 19

Monte Carlo Design

List of estimators used in Monte Carlo experiments

Estimators / DGP	SAR NON LINEAR	SEM NON LINEAR	R Packages
BSPA_SAR_ML	х		$_{ m spboost}$
BSPA_SAR_CFE	x		$_{ m spboost}$
GAM_SAR_ML	x		$\operatorname{spboost}$
GAM_SAR_CFE	x		$\operatorname{spboost}$
GAM_SAR_FIVA	x		$_{ m spboost}$
GAM_SAR_2SLSA	x		$\operatorname{spboost}$
BSPA_SEM_ML		x	$_{ m spboost}$
BSPA_SEM_CFE		x	$_{ m spboost}$
gam	x		mgcv
gamboost	x		mboost
lagsarlm	х		spatialreg
$\operatorname{errorsarlm}$		x	${ m spatialreg}$

Table 5

		gan	nboost	g	am	lagsa	arlm	BSPA_S	AR_ML	BSPA_SA	AR_CFE	GAM_S	AR_ML	GAM_SA	AR_CFE	GAM_S.	AR_FIVA	GAM_SA	AR_2SLSA
ρ	terms	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
	ρ					-0.0020	0.0306	-0.0021	0.0276	-0.0021	0.0276	-0.0022	0.0276	-0.0021	0.0276	0.0401	0.0749	0.0157	0.0531
0.0	\hat{f}_1		0.0172		0.0142		0.5355		0.0172		0.0172		0.0142		0.0141		0.0140		0.0140
0.0	\hat{f}_2		0.0459		0.0343		0.2885		0.0459		0.0459		0.0343		0.0343		0.0344		0.0344
	\hat{f}_3		0.0391		0.0202		0.5384		0.0391		0.0391		0.0202		0.0202		0.0203		0.0203
	$\hat{ ho}$					-0.0022	0.0275	-0.0022	0.0253	-0.0020	0.0255	-0.0023	0.0253	-0.0020	0.0255	0.0511	0.0787	0.0215	0.0533
0.2	\hat{f}_1		0.0164		0.0182		0.5376		0.0174		0.0174		0.0154		0.0154		0.0145		0.0145
0.2	\hat{f}_2		0.0460		0.0371		0.2888		0.0466		0.0466		0.0366		0.0366		0.0366		0.0366
	\hat{f}_3		0.0379		0.0209		0.5385		0.0393		0.0393		0.0215		0.0216		0.0221		0.0221
	$\hat{ ho}$					-0.0019	0.0177	-0.0019	0.0169	-0.0016	0.0180	-0.0020	0.0169	-0.0016	0.0180	0.0642	0.0767	0.0288	0.0462
0.6	\hat{f}_1		0.0375		0.0605		0.5448		0.0187		0.0187		0.0193		0.0193		0.0155		0.0155
0.0	\hat{f}_2		0.0533		0.0615		0.2896		0.0494		0.0495		0.0438		0.0438		0.0441		0.0441
	\hat{f}_3		0.0443		0.0444		0.5390		0.0399		0.0399		0.0258		0.0259		0.0298		0.0298
	$\hat{ ho}$					-0.0009	0.0060	-0.0008	0.0059	-0.0007	0.0076	-0.0009	0.0059	-0.0007	0.0076	0.0332	0.0365	0.0161	0.0213
0.0	\hat{f}_1		0.2243		0.2621		0.5549		0.0226		0.0226		0.0249		0.0250		0.0183		0.0183
0.9	\hat{f}_2		0.2061		0.2188		0.2912		0.0542		0.0542		0.0532		0.0533		0.0540		0.0540
	\hat{f}_3		0.2319		0.2453		0.5396		0.0421		0.0421		0.0316		0.0317		0.0389		0.0389

Table 5

		gamboost		g	gam	lagsa	arlm	BSPA_S	AR_ML	BSPA_SA	AR_CFE	GAM_S	AR_ML	GAM_SA	AR_CFE	GAM_S.	AR_FIVA	GAM_SA	AR_2SLSA
ρ	terms	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
	ρ					-0.0020	0.0306	-0.0021	0.0276	-0.0021	0.0276	-0.0022	0.0276	-0.0021	0.0276	0.0401	0.0749	0.0157	0.0531
0.0	\hat{f}_1		0.0172		0.0142		0.5355		0.0172		0.0172		0.0142		0.0141		0.0140		0.0140
0.0	\hat{f}_2		0.0459		0.0343		0.2885		0.0459		0.0459		0.0343		0.0343		0.0344		0.0344
	\hat{f}_3		0.0391		0.0202		0.5384		0.0391		0.0391		0.0202		0.0202		0.0203		0.0203
	$\hat{ ho}$					-0.0022	0.0275	-0.0022	0.0253	-0.0020	0.0255	-0.0023	0.0253	-0.0020	0.0255	0.0511	0.0787	0.0215	0.0533
0.2	\hat{f}_1		0.0164		0.0182		0.5376		0.0174		0.0174		0.0154		0.0154		0.0145		0.0145
0.2	\hat{f}_2		0.0460		0.0371		0.2888		0.0466		0.0466		0.0366		0.0366		0.0366		0.0366
	\hat{f}_3		0.0379		0.0209		0.5385		0.0393		0.0393		0.0215		0.0216		0.0221		0.0221
	$\hat{ ho}$					-0.0019	0.0177	-0.0019	0.0169	-0.0016	0.0180	-0.0020	0.0169	-0.0016	0.0180	0.0642	0.0767	0.0288	0.0462
0.6	\hat{f}_1		0.0375		0.0605		0.5448		0.0187		0.0187		0.0193		0.0193		0.0155		0.0155
0.0	\hat{f}_2		0.0533		0.0615		0.2896		0.0494		0.0495		0.0438		0.0438		0.0441		0.0441
	\hat{f}_3		0.0443		0.0444		0.5390		0.0399		0.0399		0.0258		0.0259		0.0298		0.0298
	$\hat{ ho}$					-0.0009	0.0060	-0.0008	0.0059	-0.0007	0.0076	-0.0009	0.0059	-0.0007	0.0076	0.0332	0.0365	0.0161	0.0213
0.9	\hat{f}_1		0.2243		0.2621		0.5549		0.0226		0.0226		0.0249		0.0250		0.0183		0.0183
0.9	\hat{f}_2		0.2061		0.2188		0.2912		0.0542		0.0542		0.0532		0.0533		0.0540		0.0540
	\hat{f}_3		0.2319		0.2453		0.5396		0.0421		0.0421		0.0316		0.0317		0.0389		0.0389

Table 5

		gamboost		ę	gam	lagsa	arlm	BSPA_SAR_ML		BSPA_SAR_CFE		GAM_SAR_ML		GAM_SA	AR_CFE	E GAM_SAR_FIVA		GAM_SAR_2SLSA	
ρ	terms	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
	ρ					-0.0020	0.0306	-0.0021	0.0276	-0.0021	0.0276	-0.0022	0.0276	-0.0021	0.0276	0.0401	0.0749	0.0157	0.0531
0.0	\hat{f}_1		0.0172		0.0142		0.5355		0.0172		0.0172		0.0142		0.0141		0.0140		0.0140
0.0	\hat{f}_2		0.0459		0.0343		0.2885		0.0459		0.0459		0.0343		0.0343		0.0344		0.0344
	\hat{f}_3		0.0391		0.0202		0.5384		0.0391		0.0391		0.0202		0.0202		0.0203		0.0203
	ρ					-0.0022	0.0275	-0.0022	0.0253	-0.0020	0.0255	-0.0023	0.0253	-0.0020	0.0255	0.0511	0.0787	0.0215	0.0533
0.2	\hat{f}_1		0.0164		0.0182		0.5376		0.0174		0.0174		0.0154		0.0154		0.0145		0.0145
0.2	\hat{f}_2		0.0460		0.0371		0.2888		0.0466		0.0466		0.0366		0.0366		0.0366		0.0366
	\hat{f}_3		0.0379		0.0209		0.5385		0.0393		0.0393		0.0215		0.0216		0.0221		0.0221
	$\hat{ ho}$					-0.0019	0.0177	-0.0019	0.0169	-0.0016	0.0180	-0.0020	0.0169	-0.0016	0.0180	0.0642	0.0767	0.0288	0.0462
0.6	\hat{f}_1		0.0375		0.0605		0.5448		0.0187		0.0187		0.0193		0.0193		0.0155		0.0155
0.0	\hat{f}_2		0.0533		0.0615		0.2896		0.0494		0.0495		0.0438		0.0438		0.0441		0.0441
	\hat{f}_3		0.0443		0.0444		0.5390		0.0399		0.0399		0.0258		0.0259		0.0298		0.0298
	$\hat{ ho}$				-	-0.0009	0.0060	-0.0008	0.0059	-0.0007	0.0076	-0.0009	0.0059	-0.0007	0.0076	0.0332	0.0365	0.0161	0.0213
0.0	\hat{f}_1		0.2243		0.2621		0.5549		0.0226		0.0226		0.0249		0.0250		0.0183		0.0183
0.9	\hat{f}_2		0.2061		0.2188		0.2912		0.0542		0.0542		0.0532		0.0533		0.0540		0.0540
	\hat{f}_3		0.2319		0.2453		0.5396		0.0421		0.0421		0.0316		0.0317		0.0389		0.0389

Monte Carlo Results

Table 5

		gamboost		gam		lagsarlm		BSPA_SAR_ML		BSPA_SAR_CFE		GAM_S	AR_ML	GAM_SA	AR_CFE	CFE GAM_SAR_FIVA		GAM_SAR_2SLSA	
ρ	terms	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE	Bias	RMSE
	ρ					-0.0020	0.0306	-0.0021	0.0276	-0.0021	0.0276	-0.0022	0.0276	-0.0021	0.0276	0.0401	0.0749	0.0157	0.0531
0.0	\hat{f}_1		0.0172		0.0142		0.5355		0.0172		0.0172		0.0142		0.0141		0.0140		0.0140
0.0	\hat{f}_2		0.0459		0.0343		0.2885		0.0459		0.0459		0.0343		0.0343		0.0344		0.0344
	\hat{f}_3		0.0391		0.0202		0.5384		0.0391		0.0391		0.0202		0.0202		0.0203		0.0203
	$\hat{ ho}$					-0.0022	0.0275	-0.0022	0.0253	-0.0020	0.0255	-0.0023	0.0253	-0.0020	0.0255	0.0511	0.0787	0.0215	0.0533
0.2	\hat{f}_1		0.0164		0.0182		0.5376		0.0174		0.0174		0.0154		0.0154		0.0145		0.0145
0.2	\hat{f}_2		0.0460		0.0371		0.2888		0.0466		0.0466		0.0366		0.0366		0.0366		0.0366
	\hat{f}_3		0.0379		0.0209		0.5385		0.0393		0.0393		0.0215		0.0216		0.0221		0.0221
	$\hat{ ho}$					-0.0019	0.0177	-0.0019	0.0169	-0.0016	0.0180	-0.0020	0.0169	-0.0016	0.0180	0.0642	0.0767	0.0288	0.0462
0.6	\hat{f}_1		0.0375		0.0605		0.5448		0.0187		0.0187		0.0193		0.0193		0.0155		0.0155
0.0	\hat{f}_2		0.0533		0.0615		0.2896		0.0494		0.0495		0.0438		0.0438		0.0441		0.0441
	\hat{f}_3		0.0443		0.0444		0.5390		0.0399		0.0399		0.0258		0.0259		0.0298		0.0298
	$\hat{ ho}$				-	-0.0009	0.0060	-0.0008	0.0059	-0.0007	0.0076	-0.0009	0.0059	-0.0007	0.0076	0.0332	0.0365	0.0161	0.0213
0.0	\hat{f}_1		0.2243		0.2621		0.5549		0.0226		0.0226		0.0249		0.0250		0.0183		0.0183
0.9	\hat{f}_2		0.2061		0.2188		0.2912		0.0542		0.0542		0.0532		0.0533		0.0540		0.0540
	\hat{f}_3		0.2319		0.2453		0.5396		0.0421		0.0421		0.0316		0.0317		0.0389		0.0389

In short for the first set of experiments,

- All of our estimators behave as consistent estimators,
- when ho>0, $\hat{
 ho}$ is unbiased as well as non linear terms,
- when ho > 0, the RMSE of non linear terms are slightly higher than their reference value without spatial dependence,
- CFE versions provide results almost identical to ML, and are fatest,
- FIVA version are more biased and very slow (several non linear models with J*4 variables to compute).

In short for the second set of experiments, which introduces spatially autocorrelated covariates and unobserved spatial heterogeneity in the DGP:

The spatial autocorrelation of X_2 leads to a slight increase of the RMSEs of non linear terms across all estimators, even when there is no spatial dependence

The other form of spatial heterogeneity (unobserved spatial heterogeneity, spatial trend in $f(X_2)$) introduced in DGP have no consequence.

In short, for the third set of experiments, in which we add unnecessary, possibly correlated covariates in the set of candidate variables:

- no effect on the estimation of ρ .
- The RMSEs of the non-linear terms are not affected as long as the unnecessary covariates are not correlated with the true variables of the DGP.

Some erroneous variables may be selected very rarely by the boosting algorithm , but this has no impact on the performance of the estimator regarding the estimates for the true variables.

Computing time

Average Computation time without paralellization, in seconds (MacBook Pro, 2.9 GHz Intel Core i9, 32 Go RAM)

n	k	gamboost	gam	lagsarlm	BSPA_SAR_ML	GAM_SAR_ML	BSPA_SAR_CFE	GAM_SAR_CFE	GAM_SAR_FIVA	GAM_SAR_2SLSA
1000	3	0.826	0.056	7.895	10.324	0.593	3.547	0.136	1.581	0.052
5000	3	1.499	0.129	1.090	18.582	0.849	5.693	0.197	6.406	0.102
10000	3	2.784	0.101	1.977	30.288	1.415	8.909	0.264	9.161	0.170
50000	3	10.930	0.313	8.633	131.356	5.119	45.061	0.938	29.671	0.605
250000	3	48.946	1.601	52.581	642.062	34.991	201.379	4.180	143.569	3.193
1000	10	2.455	0.476	7.890	34.703	6.195	10.041	1.065	95.525	0.450
5000	10	4.173	0.674	1.856	65.755	8.533	17.289	1.432	95.992	0.691
10000	10	6.709	0.677	3.312	97.239	10.016	25.342	1.510	80.806	0.894
1000	20	4.848	5.585	6.835	66.976	86.177	18.505	12.519	958.461	4.739
5000	20	8.374	6.437	3.860	125.432	76.284	34.229	11.743	1066.092	4.636
10000	20	12.455	5.899	6.678	192.953	74.235	48.912	12.752	925.779	5.720

Empirical study with house sales data

n=39673, 40 candidate covariates selected by stepAIC (forward+backward) for estimators without boosting.

	RM	ASE	MA	PE	F	R2	
MODELS	IN	OUT	IN	OUT	IN	OUT	
OLS	74836.17	66784.04	39.93~%	39.3~%	0.36	0.5	
LMBOOST	73310.36	66348.64	42.53~%	41.9~%	0.39	0.5	
GWR	57248.57	61860.45	32.27~%	34.64~%	0.65	0.58	
SAR	68220.37	67591.72	36.18~%	43.23~%	0.47	0.48	
GAM	56576.87	55603.84	32.56~%	32.74~%	0.64	0.64	
GAM geoadditive	55472.67	54998.71	30.87~%	31.46~%	0.66	0.66	
MGWRSAR $(0, kc, kv)$	56401.88	59412.69	31.51%	32.82~%	0.66	0.61	
XGBOOST	49128.19	54064.72	26.26~%	30.94~%	0.73	0.66	
XGBOOST geoadditive	51231.36	54197.7	27.31~%	30.8 %	0.71	0.66	
BSPA_SAR_ML geoadditive	53875.23	54323.52	29.57~%	30.8 %	0.68	0.66	
GAM_SAR_ML geoadditive	54943.05	54173.09	30.59~%	30.96~%	0.67	0.67	

Table 17

In-sample and out-sample accuracy for Vaucluse district

Conclusion

Our boosting estimator, allow to obtain estimates that are:

- better than the linear SAR and SEM estimators,
- better or as well as other nonlinear semi-parametric geoadditive estimators without spatial dependence based on boosting.
- and are fast enough to be used on large samples

Our next research efforts will focus:

- on the use of boosting to evaluate a spatial weight matrix with a spatially varying weighting scheme (see Kostov 2010, 2013))
- The development of a boosting SAR Probit version, building on Approximate likelihood estimation (Martinetti and Geniaux, 2017) (it's already functional and being tested at the moment).

A 2SLS augmented approach instead of FIVA

Instruments:

$$Z = [ilde{X}, W ilde{X}, W W ilde{X}, W W W ilde{X}]$$
 where $ilde{X} = [X, X^2, X^3]$

Linear First Stage:

$$Wy = heta Z + u$$

Second Stage:

$$y = \sum_j h_j(X_j) + \hat{W}y + \hat{u} + \epsilon$$