Frank Madrid

Quentin Chesnais
email: chesnais.quentin@ucr.edu

Kerry Mauck
email: kerry.mauck@ucr.edu

Shailendra Singh
email: singhs@ucr.edu

Eamonn Keogh
email: eamonn@ucr.edu

Efficient and Effective Labeling of Massive Time Series Archives

Keywords: Time Series, Segmentation, Labeling, Classification

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

A common problem for data analysts across many domains and disciplines is the annotation of long sections of time series data [START_REF] Walker | TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[END_REF]. In some cases, this can be done automatically, using a time series classification algorithm [START_REF] Batista | A complexity-invariant distance measure for time series[END_REF] [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF]. However, in many circumstances, the performance of even the state-of-the-art algorithms can be significantly worse than a human expert. Consider for example the three snippets of insect behavior shown in Figure 1. To an expert in phytophagous (plant eating) insects with piercing-sucking mouthparts, these are obviously all examples of the same probing-pathway phase behavior. However, this data shows high levels of noise, and significant variability. This variability may be due to individual characteristics of the insects, or the vagaries of the sensing apparatus. In either case, no off-the-shelf time series classification system we are aware of would work well here. This is because extracting and reformatting such data is itself a much harder problem than the classification, and this preprocessing step cannot (in general) be done automatically [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF] (See Appendix A).

Annotating such time series data necessitates human inspection; requiring the expensive services of a domain expert. Moreover, it can be significantly outpaced by the rate at which the time series data is generated. For example, a recent paper by an international team of animal movement ecologists bemoans the fact that annotating time series data is "time consuming and error-prone for the domain expert and is now the limiting factor for realizing the value of [the time series]" [START_REF] Walker | TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[END_REF].

To prevent confusion, we refer to the task of annotating time series data as "labeling". While we could use the more familiar term "classification", that term is more typically used to describe the vast body of research that considers the special (and, as [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF] and others argue, often unrealistic) problem, in which the time series has been contrived into a relational data format [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF] [START_REF] Peng | ACTS: An Active Learning Method for Time Series Classification[END_REF].

Figure 1: Examples of probing-pathway phase behavior for whiteflies (Bemisia tabaci).

Note that this behavior has significant variability, some attributable to intrinsic variability of the insects, and some due to variability of the recording apparatus, which must be very sensitive, given the insects size.

Our problem setup, which we will formalize in Section 3, is as follows. Assume we are given a long time series, T. Some fraction (possibly all) of T is comprised of well-defined behaviors from a finite set of possibilities S which may or may not be known in advance. We assume a human domain expert can correctly identify any snippet of the time series representing any of the well-defined discrete behaviors in 𝑆, if given the opportunity to view it. Note that the human annotator may have the possibility to consider additional, auxiliary information. For example, the time series may be accompanied by video or audio recordings. For any time series snippets that are uncertain or ambiguous in the time-series-only view, the human labeler may expend the extra effort to review the parallel multimedia data.

Given this model, the human could label all the data. However, suppose that she labels one-second chunks at a time. For the whitefly problem introduced in Figure 1, entomologists often run eight parallel twelve-hour experiments each day, that would total 345,600 one-second snippets to classify daily. Even if our entomologist could label ten behaviors a second, during an eight-hour shift, she still could not keep up with the daily production rate.

Our task-at-hand seems to invite automation by use of a time series classifier [START_REF] Walker | TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[END_REF]; however, there are many circumstances in which even a state-of-the-art time series classifier will not produce human competitive results. For example:

• A physiologist may need to label activities from participants in a study. However, while the activities may be visually obvious to the physiologist, variability caused by even minor differences in sensor placement, can confound time series classifiers [START_REF] Atallah | Sensor Positioning for Activity Recognition Using Wearable Accelerometers[END_REF]. Moreover, the physiologist may have insights and intuitions she can use, that would not be easily available to an algorithm. For example, if a noisy time series snippet appears equally likely to be whisking-food or swimming, but the surrounding time series was clearly choppingfood, she could use this context to resolve the ambiguity.

• Entomologists routinely use an apparatus called an Electrical Penetration Graph (EPG) to produce recordings of insect/plant interactions by insects with piercing-sucking mouthparts [START_REF] Tjallingii | Comparison of AC and DC systems for electronic monitoring of stylet penetration activities by homopterans[END_REF]. Some of these insects, such as the whitefly shown in Figure 1 are smaller than this dot • [START_REF] Hodges | An identification guide to the whiteflies (Hemiptera: Aleyrodidae) of the Southeastern United States[END_REF]. Naturally recording such tiny insects requires a very sensitive apparatus. This sensitivity means the signal, while interpretable to a trained entomologist, has variability caused by vibration, air currents, etc., all of which conspire to make it difficult for automatic classification [1][16]. Moreover, entomologists have insights and intuitions into the behavioral patterns of piercing-sucking insects which may be difficult to encode into algorithms, the classic "I know when I see it" skills. For example, a path-phase must always precede a phloem-phase since the Asian citrus psyllid must first puncture the plant with its piercing-sucking mouthparts before beginning sap ingestion [START_REF] Tjallingii | Comparison of AC and DC systems for electronic monitoring of stylet penetration activities by homopterans[END_REF].

Our proposed solution to this problem is the Like-Behaviors Labeling Routine (LBLR). The LBLR system greatly reduces the need for human annotation, by showing the user "clustered" snippets from the time series and brushing the given label to all the elements of the cluster. By using the Minimum Description Length (MDL) [START_REF] Hu | Discovering the intrinsic cardinality and dimensionality of time series using MDL[END_REF][11], to carefully reasoning about which snippets, and in which order to show the user, we can typically reduce the burden of human time by one to two orders of magnitude, with little or no loss of accuracy.

Related Work and Notation

We begin with a brief review of related work before introducing the notation needed to understand our framework.

Related Work

While the literature on time series classification is vast, see [START_REF] Walker | TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[END_REF] and the references therein, there is very little on time series labeling [START_REF] Chen | A general framework for never-ending learning from time series streams[END_REF]. Our proposed algorithm is superficially like active learning [START_REF] Peng | ACTS: An Active Learning Method for Time Series Classification[END_REF]; however, there are enough differences that the large active learning literature is of little help. In particular:

• In active learning, the unlabeled data points are typically shown to the user (teacher/oracle) one object at a time 1 . In contrast, by exploiting the ability to "overplot" time series (see Figure 2.right) we propose to show the user collections of objects, exploiting the human ability to "batch process".

• In active learning, the goal is typically to build a more accurate classifier. In contrast, we are only interested in annotating data to allow downstream analytics. Thus, active learners exploit unlabeled data until the model accuracy plateaus. In contrast, we annotate unlabeled data, until it is all labeled, or the annotator prematurely terminates the labeling procedure. A recent paper introduces a new shapelet-based informativeness metric for time series active learning [START_REF] Peng | ACTS: An Active Learning Method for Time Series Classification[END_REF]. However, they assume that all the data has been perfectly segmented and arranged into a relational format. As [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF] points out, partitioning a long time series stream into this format is much harder than the classification or labeling task that follows. Moreover, [START_REF] Peng | ACTS: An Active Learning Method for Time Series Classification[END_REF] assumes that all snippets belong to some welldefined class, and that all possible classes are known ahead of time. As we shall show below, these are unrealistic assumptions for real-world problems.

Notation

We begin by defining the data type of interest, the time series: Definition 1: A time series 𝑇 ∈ ℝ 𝑛 is a sequence of realvalued numbers 𝑡 𝑖 ∈ ℝ ∶ 𝑇 = [𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑛] where 𝑛 is the length of 𝑇.

We are typically not interested in the global properties of a time series, but in the local regions known as subsequences: Definition 2: A subsequence 𝑇 𝑖,𝑚 ∈ ℝ 𝑚 of a time series 𝑇 ∈ ℝ 𝑛 is a contiguous proper subset of the values from 𝑇 of length 𝑚 starting from position 𝑖. Formally, 𝑇 𝑖,𝑚 = [𝑡 𝑖 , 𝑡 𝑖+1 , … , 𝑡 𝑖+(m-1)] where 𝑚 < 𝑛.

We plan to increase labeling efficiency by grouping similar subsequences together, these are known as time series motifs: Definition 3: A time series motif is the most "similar" subsequence pair of a time series. Let 𝑇 𝑎,𝑚 and 𝑇 𝑏,𝑚 for some 𝑎, 𝑏 ∈ [1,2, … , 𝑛 -𝑚 + 1] and 𝑎 ≠ 𝑏 be two distinct subsequences of 𝑇. 𝑇 𝑎,𝑚 and 𝑇 𝑏,𝑚 is a motif pair iff 𝑑𝑖𝑠𝑡(𝑇 𝑎,𝑚 , 𝑇 𝑏,𝑚) ≤ 𝑑𝑖𝑠𝑡(𝑇 𝑖,𝑚 , 𝑇 𝑗,𝑚) ∀𝑖, 𝑗 ∈ [1, 2, … , 𝑛 -𝑚 + 1] where 𝑖 ≠ 𝑗 and 𝑑𝑖𝑠𝑡 is a function that computes the znormalized Euclidean distance between 𝑎 and 𝑏 [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF] [START_REF] Zhu | Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins[END_REF].

One of the most efficient ways to locate time series motifs is to compute the matrix profile [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF] of 𝑇. Definition 4: A matrix profile 𝑃 ∈ ℝ 𝑛-𝑚+1 of a time series 𝑇 is a meta time series that stores the z-normalized Euclidean distance between each subsequence and its nearest neighbor where 𝑛 is the length of 𝑇 and 𝑚 is the given subsequence length. The top-1 motif can be found by simply locating the two lowest values in 𝑃. The remaining motifs can be extracted by finding the next lowest values in the matrix profile.

To avoid trivial matches in which a pattern is matched to itself, or a pattern that largely overlaps with itself, the matrix profile incorporates an "exclusion-zone" concept, which is a region before and after the location of a given query that should be ignored. The exclusion zone is heuristically set to 𝑚/2 [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF].

Figure 3 illustrates a matrix profile on a small toy dataset. The time complexity to compute a matrix profile 𝑃 is 𝑂(𝑛2). This may seem untenable for time series data mining, but several factors mitigate this concern. First, note that the time complexity is independent of m, the length of the subsequences. Thus, unusually for a time series algorithm, the time and space complexity do not depend on the length of the subsequences.

Secondly, the matrix profile can be computed with an anytime algorithm, and, in most domains, in as few as 𝑂(𝑛𝑐) steps the algorithm converges to what would be the final solution [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF] (c is a small constant). Finally, the matrix profile can be computed with GPUs, cloud computing and other HPC environments that make scaling to at least tens of millions of data points trivial [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF]. Even using standard hardware, all the examples in this paper can be computed much faster than realtime. For example, 30 minutes of EPG sampled at 60Hz takes about four minutes to compute using STOMP [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF]. If that was not fast enough, STAMP can produce a very high-quality approximation in under five seconds [START_REF] Yeh | Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets[END_REF].

Minimum Description Length

As we shall show in the next section, a key subroutine in our system requires our algorithm to reason about which motifs are semantically the same, and which are distinct. To achieve this, we plan to exploit MDL to decide which group of subsequences are semantically similar and thus can be grouped together to receive a single label from a user [START_REF] Hu | Discovering the intrinsic cardinality and dimensionality of time series using MDL[END_REF][10] [START_REF] Matsubara | AutoPlait: A utomatic mining of coevolving time sequences[END_REF]. We can gain some intuition about this idea by first considering the text analogue of time series.

MDL: Text

Suppose that "motif" discovery has managed to whittle down the character representation of a long text string to just four candidates, 𝑇 1 , 𝑇 2 , 𝑇 3 , and 𝑇 4 :

𝑇: scatters shatters swatters syzygies

Here we see the first three words scatters, shatters and swatters as being similar enough to warrant grouping into a single class. MDL helps us to realize the appropriate grouping by attempting to perform lossless compression on the data by exploiting regularities shared among the time series.

For example, since s-atters is a repeated structure among some of the words, we consider the first word scatters and think of it as being a potential model or hypotheses for the four words. We can use this model to try to "explain" the rest of the data, by encoding each word 𝑇 𝑖 with the hypothesis 𝐻:

𝐻 = scatters 𝑇|𝐻: •••••••• •h•••••• •w•••••• •yzygie•
where ⋅ indicates a shared character between 𝑇 𝑖 and 𝐻. Using this encoding, we only need 𝐻 and the differing (symbol, position) pair values to reconstruct 𝑇 𝑖 . Thus, if 𝐷𝐿(𝑇 𝑖) is the original description length of 𝑇 𝑖 , the reduced description length 𝐷𝐿(𝑇 𝑖 , 𝐻) is 𝐷𝐿(𝐻) + 𝑛(⌈log 2 |𝑆|⌉ + ⌈log 2 |𝐻|⌉) where 𝑛 is the number of different (symbol, position) pairs, 𝑆 is the number of unique symbols and |𝐻| the length of 𝐻. With 26 unique symbols (letters of the alphabet) and word lengths of 8, we achieve the description lengths depicted in Figure 4. From these values, we can see that DL(𝑇 𝑖 , 𝐻) < DL(𝐻) + DL(𝑇 𝑖) for 𝑇 2 = shatters and 𝑇 3 = swatters indicating {scatters, shatters, swatters} is a logical group.

DL(𝑇 𝑖) DL(𝑇 𝑖 |𝐻) DL(𝑇 𝑖 , 𝐻) < DL(𝐻) + DL(𝑇 𝑖) 𝑇 1 20 - - - -

MDL: Time Series

While MDL is well defined in the intrinsically discrete space (text, DNA etc.), it requires some modifications to work in the real-valued time series space 2 [10] [START_REF] Matsubara | AutoPlait: A utomatic mining of coevolving time sequences[END_REF]. In particular, we quantize our time series 𝑇 using the following discretization function.

Definition 6:

The Discretization function is used to map a real-valued time series 𝑇 into (𝑏 -𝑎) + 1 discrete values in the range [𝑎, 𝑏] and is defined as:

Discretizatio𝑛 (𝑎,𝑏) (𝑇) = round ((𝑏 -𝑎) × (𝑇-min max-min) + 𝑎)
where 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum and maximum values of 𝑇 respectively if 𝑇 is not constant 3 .

3 In this work we consider the range [1,2 4] → [START_REF] Adasme-Carreno | A2EPG: a new software for the analysis of electrical penetration graphs to study plant probing behaviour of hemipteran insects[END_REF][START_REF] Tjallingii | Comparison of AC and DC systems for electronic monitoring of stylet penetration activities by homopterans[END_REF] yielding Since a time series is a sequence of real-valued numbers, the discretization of 𝑇 results in a reduction of precision. However, it has been shown that this reduction in precision does not result in a significant reduction in classification accuracy [START_REF] Hu | Discovering the intrinsic cardinality and dimensionality of time series using MDL[END_REF], suggesting that little or no useful information is lost in the process. Note that as we are working with znormalized times series, in practice all subsequences have very similar max and min values. Figure 5 shows the effects of discretization on four insect data snippets.

For any discretized time series 𝑇, we are interested in approximating how many bits it takes to represent it or its description length:

Definition 7:
The description length 𝐷𝐿 of a time series 𝑇 is the total number of bits required to represent it. When Huffman Coding is used to compress the time series, the description length of time series 𝑇 is defined by:

DL(𝑇) = |HuffmanCoding(𝑇)|
One of the key steps in finding clusters of semantically similar subsequences is identifying a subsequence, or hypothesis, which exemplifies a common substructure. Using this hypothesis, we calculate the reduced description length of a time series: Definition 9: A reduced description length of a time series 𝑇 given hypothesis 𝐻 is the number of bits used to encode 𝑇, exploiting information in 𝐻. The reduced description length of 𝑇 using 𝐻 is defined as:

DL(𝑇, 𝐻) = DL(𝐻) + DL(𝑇|𝐻)

The first term DL(𝐻) is the model cost or the number of bits required to store the hypothesis 𝐻 while the second term DL(𝑇|𝐻), the correction cost, is the number of bits required to rebuild the entire time series 𝑇 from 𝐻. Storing the difference vector 𝐻 -𝑇, we can easily regenerate 𝑇; thus, 𝐷𝐿(𝑇|𝐻) = DL(𝐻 -𝑇) [START_REF] Hu | Discovering the intrinsic cardinality and dimensionality of time series using MDL[END_REF].

The following example offers a visual intuition of these ideas. In Figure 5.left we show four time series from an insect EPG dataset [START_REF] Bonani | Characterization of electrical penetration graphs of the Asian citrus psyllid, in sweet orange seedlings[END_REF] and their corresponding discretizations. In Figure 6 we use the first time series 𝐻 as our hypothesis and model the remaining three time series 𝐻 -𝑇 𝑖 . Lastly, the results in Figure 7 indicate {𝐻, 𝑇 1 , 𝑇 2 } is a logical cluster. As we shall explain in Section 4. The effectiveness of our labeling algorithms hinges on the ability of the algorithm to decide which patterns should be grouped together and presented to the user as a single entity deserving of a single label. The first three patterns, 𝐻, 𝑇 1 , and 𝑇 2 in Figure 5.left are the same semantic behavior, but the fourth 𝑇 3 is a different behavior and should not be included in the grouping. One might imagine that one could learn a Euclidean distance "radius" that covers all members of the same class, at least within a given domain. However, this in impractical for several reasons; more complex shapes tend to need a much greater radius that simpler shapes (i.e. complexity bias [START_REF] Batista | A complexity-invariant distance measure for time series[END_REF]). Even if you could learn a good radius for a given length, the best radius for different lengths can scale non-linearly (indeed, non-monotonically for znormalized time series).

MDL allows us to bypass these issues. As we show in Figure 6, we can treat one time series 𝐻, as the hypotheses and then encode 𝑇 𝑖 using 𝐻 by calculating the difference vector 𝐻 -𝑇 𝑖 (right). Comparing DL(𝐻) + DL(𝑇 𝑖) to DL(𝑇 𝑖 , 𝐻), we can then judge if 𝑇 𝑖 should be grouped with 𝐻, that is to say, we ask if DL(𝑇 𝑖 , 𝐻) < DL(𝐻) + DL(𝑇 𝑖). In our experiments, 𝐷𝐿(𝐻) + 𝐷𝐿(𝑇 𝑖) proved to be too conservative of an upperbound for 𝐷𝐿(𝑇 𝑖 , 𝐻) bound while 𝐷𝐿(𝑇 𝑖) proved to be too liberal. Giving the annotator the functionality to easily add or remove subsequences gives us the ability to be slightly conservative or slightly liberal when proposing candidate groupings to the annotator. As we can see in our examples from Figure 6, the discretizations of 𝐻 and 𝑇 1 are so similar, their difference vector 𝐻 -𝑇 1 consists mostly of zeros, with just a handful of non-zero values, which will require less bits to encode than the original raw data. From Figure 7, modeling 𝑇 1 and 𝑇 2 with 𝐻 resulted in a positive number of bits saved or a reduction in the number of required bits while modeling 𝑇 3 with 𝐻 resulted in a negative bitsave; thus, we confidently feel that 𝑇 1 and 𝑇 2 belong in the semantic group as 𝐻 while 𝑇 3 does not. Thus, in this example, the set of time series {H, T1, T2} would be presented to the user as a (tentative) group that can be assigned a label with a single interaction, rather than three interactions.

LBLR

We begin with a concrete statement of the problem we wish to address. While this addresses a common task [START_REF] Walker | TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[END_REF], to the best of our knowledge, this problem has not been formalized.

Problem Definition: Time Series Labeling. Given a time series 𝑇 of length 𝑛, which is comprised (at least partly) of regions that correspond to discrete well-defined behaviors (which may or may not be known in advance) and given access to an oracle that can label subsequences of 𝑇, into these behaviors. We wish to produce 𝐴, an integer vector of length n, which correctly annotates 𝑇, while minimizing the number of accesses to the oracle. This notation is illustrated in Figure 8. Without loss of generality, we assume the oracle always produces the correct label. As noted above, the oracle may have access to out-of-band information (such as video or audio recorded in parallel to the time series), and may be able to label even unseen data, based on context. For example, if an oracle was asked to label a previously unknown activity, she might notice that it happens five times a day, and the file name is Ali_Muhammad_02.txt. This would surely allow our oracle to suspect that the behavior is connected to the salat, the five daily prayers of a Muslim.

To solve our problem, we envision a system that shows the human annotator (hereafter, just annotator) a set of time series snippets believed to be in the same class and asks for a label. This framework requires us to define the snippet grouping policy and the set of annotator operators. For clarity of presentation, we discuss these below in reverse order.

User Interactions

Any active-learning interaction system for labeling time series must at least allow the following annotator operators during each interaction:

• Label as a Predefined Behaviors: These behaviors are previously known to the annotator. For example, predefined behaviors for EPG include active sap ingestion, intercellular penetration, and intracellular puncture [START_REF] Tjallingii | Comparison of AC and DC systems for electronic monitoring of stylet penetration activities by homopterans[END_REF]. • Label as a New Behavior: These behaviors are previously unknown to the annotator. For example, a behavior study in "youth activity" only expected to see a handful of recognizable behaviors such as walking, running, etc. However, after inspecting the data an unexpected behavior, which was later realized to be skipping was found. • Label as an Unknown Behavior: The annotator may label a snippet as unknown. These types of behaviors may simply be sufficiently unique, or the annotator does not simply have enough information to identify the behavior. • Label as a Polymorphic Behavior: The identified system contains two or more distinct behaviors and should be reconsidered using a more conservative grouping. The active-learning system may be too aggressive and attempt to group behaviors that the annotator considers distinct. Thus, the annotator must be able to tell the system to reconsider the grouping, and instead present multiple, more conservative groupings of the data. Alternatively, the annotator may create a new behavior which is an amalgamation of the two or more distinct behaviors. For example, during our case study, LBLR identified the ending of a path-phase and the beginning of a phloem phase in which the creation of the behavior path-phloem would have accurately labeled the behavior. • Temporarily Pass: The annotator chooses to revisit the current motif during some future iteration. The annotator may be unsure of a label for a snippet. Yet later in the process, once they had gained some experience with the data, they would be able to classify it. For example, they may be unsure if a snippet of gait represents a fast walk or a slow run. But later, when they have seen an unambiguous walk section, they would realize that the original ambiguous section was indeed run. • Terminate the Labeling Process: The annotator may preemptively end the labeling process after a sufficient fraction of the time series has been labeled. The remaining snippets may be unknown/unclassifiable, sufficiently unique, or unambiguously consistent.

Having defined all the possible user interactions, we are finally able to introduce our algorithm.

The LBLR Algorithm

In Section 2.3, we considered text and time series toy examples and demonstrated how to we can determine whether two 0 1280 1 subsequences are semantically similar. In this section, we will describe and then explain our algorithm in detail. Table 1 outlines a high-level overview of our algorithm for the rapid labeling of a time series. We begin our algorithm by quantizing a real-value time series 𝑇 into a discrete-value time series 𝐷 to accommodate MDL (line 1). Next, we begin the labeling process and continue until no unlabeled data remains (lines 2-7). We also allow the user to prematurely end after any iteration if they feel enough of the data has been annotated or if the remaining data does not warrant annotation.

Beginning each iteration, our algorithm identifies our model 𝑀 as a time series motif of 𝑇 * , the union of unlabeled data points of 𝑇 and an inclusion range 𝑚 heuristically set 𝑙/2 (line 3). Using 𝑀 as our hypothesis, our algorithm produces 𝑆, the set of subsequences of the discretized data corresponding to 𝑇 * , sorted by their reduced description length (line 4). If left unsupervised, LBLR would automatically group together all subsequences 𝑆 * ∈ 𝑆 whose reduced description length is less than its original description length, that is,

DL(𝑆 * , 𝑀) < DL(𝑆 *)

The user may add or remove subsequences from an overplot of the elements in 𝑆 (see Figure 9), if they feel that the MDL-driven grouping was too conservative or too liberal (Line 5). Lastly, during the cleanup phase, we automatically label any unlabeled subsequences with length less than 𝑙. The labels will be split between the shared label of the subsequences neighboring behaviors if the neighboring behaviors have the same label or is shared between the two neighboring behaviors if they have different labels (see Figure 10) (line 6).

Figure 10: Two time series snippets of an EPG which contain unlabeled sequences with length less than 𝒍 (left) and were automatically labeled (right). Subsequence (A) indicates a transition between two separate behaviors and is thus shared between the two while subsequences (B) and (C) share the only available label between their neighboring behaviors.

The basic algorithm can benefit from an optional module which we discuss in the next section.

Priming Run

Before LBLR interacts with the user, it can perform and optional priming run on the time series data. In this phase, the algorithm annotates any "low-hanging fruit" in the data; regions that it can confidently classify without human intervention. The set of such regions is domain dependent, but some examples include:

• Constant Regions: As Figure 11 hints at, many scientific and medical datasets have regions of constant values. They are typically the result of a disconnected or faulty sensor, or a sensor recording a value that greater/smaller that its precision allows. One caveat to note is that some disconnected sensors report what is visually a constant line, but it may have some tiny variance due to electrical noise. As we are working in z-normalized space, the znormalization will magnify such data. Thus, we may have to set a domain specific threshold to define "constant" in our domain. For example, for our EPG example, |Δ𝑉| < 1.0 mV is only observed when the whitefly is dead, or the wire is broken or disconnected from the insect. • Trivially Classifiable Patterns: Many domains produce some patterns that are classifiable by simple algorithms, although these may not be particularly interesting. Consider Figure 12 which shows a near perfect sinusoidal pattern imbedded in what is otherwise a typical EGC signal identified as interference from an insulin pump. This pattern is common, and well conserved, thus worth removing in a priming run, rather than wasting an annotator's time. Note that we do not attempt to exclude very noisy regions during our priming run, despite their ubiquity. As we have explained, our MDL scoring function would in any case prioritize these subsequences last.

Experimental Evaluation

To ensure that our experiments are reproducible, we have built a website which contains all data/code/raw spreadsheets for the results, in addition to videos of the system in action. LBLR has also been made available for open source distribution. Note that while this tool was built specially for entomology, labeled datasets are hard to find in this domain. Moreover, all the labeled datasets we do have access to, where labeled by authors of this paper, or their workmates, thus presenting the possibility of bias. For that reason, in addition to testing on entomology data, we also test on proxy datasets, including cardiology and human-activity data.

Reproducible Experiments

In addition to the somewhat anecdotal domain specific case studies in later sections, we want to have experiments that can not only be reproduced but could be potentially improved on by the community. However, clearly, we cannot make our domain experts available in perpetuity. With mild assumptions, we can address this issue.

We have created a diverse collection of completely annotated time series we can use to mimic human feedback. When labeling clustered subsequences, a collection of potentially related time series, instead of showing it to a human labeler, we simply use the ground truth annotations to assign the group the majority label. This simple scheme does not use the full expressiveness of the system, as it does not allow the Label as Unknown, Temporarily Pass or Label as Multiple Behaviors interactions.

We created datasets in each of three domains: (1) Entomology, (2) Cardiology and (3) Human-activity which each exhibit two class behavior. Recall that the Cardiology and Human-activity were chosen as plausible proxies for entomological data.

While in principle a two-class dataset could be labeled with just two interactions, in practice, most datasets have a wandering baseline, noise, drift and polymorphic behaviors that make that unlikely. Nevertheless, we would hope the system could label most of the data accurately while minimizing annotator interactions. To summarize the system's performance, we will use progress plots as illustrated in Figure 13.

Figure 13: A key to interpreting progress plots for a labeling system. In future plots we will omit the dashed lines, which are implicit if a line does not terminate at 0 on the y-axis.

Note that these plots do not encode the accuracy of system, however this was always greater than 99%. The interested reader can visit [22] to see all the original data and a forensic step-by-step trace of each experiment.

Our only inputs into the system are the time series, and a suggestion of the subsequence length, after that, the proxy system (AutoLBLR) runs without human intervention, until all the data is labeled.

Entomology

For our first domain of interest, we selected five independent snippets of EPG data from an Asian citrus psyllid (Diaphorina citri) illustrated in Figure 14. Though each behavior (waveform) has characteristics to facilitate identification, the waveforms exhibit high variability attributed to the sensitivity of the recording apparatus and the intrinsic variability of the insect. Specifying each dataset and a fixed subsequence length of 100 to LBLR, AutoLBLR accurately labeled all datasets with less than 50% of the relative human effort (see Figure 15). AutoLBLR was particularly effective at labeling EPG1 and EPG2 requiring less than 25% of the human effort. These two plots contain a "long fall" which indicate a large grouping of subsequences suggesting the variability within the waveforms of these two datasets did not impede AutoLBLR's ability to quickly label these datasets. However, despite a few "minor successes", AutoLBLR was essentially labeling a single subsequence at a time in EPG5 though we were still able to completely label the entire dataset with half the human effort. Ideal Case: After a handful of interactions, all the data is labeled.

Poor Case: After about a dozen interactions, the system has only labeled about ½ of the data. From that point on, the user is condemned to labeling individual snippets one-by-one.

Benchmark:

The user labels individual snippets one-by-one. In Section 5, we discuss a few ideas which take advantage of the unique characteristics of each waveform to more quickly label time series from this domain.

After performing preliminary waveform analysis on the EPG datasets, the suggested subsequence length was not obvious since each different waveform can consist of a different length and is also dependent on the variability of the insect. We repeated each experiment, supplying a different subsequence length to LBLR. The effects of these changes on AutoLBLR's progress plots can be seen in Figure 16. AutoLBLR is indeed reflective of a change to the subsequence length but is not particularly sensitive.

Medicine (as a proxy for entomology)

We now turn our attention to our second domain where we selected five snippets of medical data illustrated in Figure 17. The data includes both ECG and APB (Arterial Blood Pressure) traces. All data is from humans, except M1 which is from a pig used as a proxy for a stabbing victim. Though each behavior is well-defined, the difference between each class is very subtle, increasing the risk of false positives. Though LBLR has the propensity of being liberal in its proposed groupings, relying on an annotator to prune out false positives, AutoLBLR accurately labeled each dataset using about a quarter of the relative human effort and was particularly effective in labeling M2 requiring only three iterations, one iteration shy of the optimal possiblity (see Figure 18). Furthermore, despite having no behaviors detectable to the human eye, AutoLBLR correctly identified about half of M5 in just two iterations.

Case Study: Entomology

At the time of going to press we have just begun the first human trials with LBLR (see Figure 19) inviting experts in entomology to us it to annotate EPG data. In Figure 20.bottom-panel we compare the relative efforts required for the annotator and AutoLBLR to completely label the dataset. These results are = good news for us. They suggest that our experiment in Sections 4.1.1 to 4.1.3 might have been somewhat pessimistic. Recall that the set of interactions available in these human-proxy experiments is a subset of the interactions available to actual humans.

Conclusions and Future Work

In this work we have concretely formulated a task which appears to be ubiquitous in science and medicine, yet poorly supported, or only supported by limited and very domain specific tools [17][18]. In contrast, our LBLR system is domain independent and generic. It requires only one input, the subsequence length. However that is one parameter that domain experts typical have some intuition for.

While our motivation comes from entomology, we have demonstrated the utility of our system on very diverse domains. In the best cases, for example the M2 dataset, the system can reduce the human effort one-hundred-fold. In other cases the reduction of human effort is not as great, however this is a real and essentially free improvement. That is to say, there is no additional cognitive overhead for using. Even if the system "only" eliminates three-quarters of the work this allows the entomologists to process four times as much data.

We see two avenues for improvement. The first is to optimize the user experience. To glean the necessary feedback to do this, we are currently conducting a user study in multiple entomological labs. The second avenue for improvement is in further improving the critical snippet grouping strategy (Section 2.3.2). It is possible that replacing the Euclidian distance with Dynamic Time Warping will help here [START_REF] Batista | A complexity-invariant distance measure for time series[END_REF].

We have made all code and data freely available to allow the community to confirm and extend our ideas.

Figure 2 :

 2 Figure 2: (left) A snippet of insect EPG data from an Asian citrus psyllid (Diaphorina citri) [18]. Rather than label each pattern one-by-one in this view, we propose to group related patterns (right) to label multiple patterns at once with a single interaction.

Figure 3 :

 3 Figure 3: A synthetic time series 𝑻 which has two (highlighted) motifs imbedded, and its matrix profile P. Note that P minimizes at the location of the motifs.

1 m

 1 𝐷𝑖𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇) = round ((16 -1) × (𝑇-min max-min) + 1).600 P, a matrix profile |P| = |T| -|m| + 1 Top motif location T, a random walk time series with two sine waves embedded

Figure 5 :

 5 Figure 5: Given four z-normalized time series of insect dataset [5]. To avail MDL, we must discretize each time series (left) into their 4-bit representations (right).

Figure 6 :

 6 Figure 6: left) The hypotheses overlaid with three candidate time series. right) Subtracting the time series from the hypotheses produces a difference vector, the "simplicity" of which is suggestive of similarity of the two signals.

Figure 7 :

 7 Figure 7: The description lengths for the original subsequences 𝐃𝐋(𝑻 𝒊), the description length after modeling 𝑻 𝒊 with 𝑯 𝐃𝐋(𝑯 -𝑻 𝒊), and their difference, or the number of bits saved. Since 𝑻 𝟏 and 𝑻 𝟐 result in a positive number of bits saved, they are considered to be semantically the same as 𝑯.

Figure 8 :

 8 Figure 8: An example illustrating a time series 𝑻, and its annotation vector 𝑨. The key to 𝑨 is domain dependent, for example, here 1 = normal beat and 2 = ventricular contraction.

Figure 9 :

 9 Figure 9: An example of LBLR clustering subsequences from an EKG where the hypothesis depicts sustained ventricular tachyarrhythmia. LBLR identified 𝟗𝟔 similar subsequences of which 𝟖. 𝟑𝟑% were false positives. The annotator may easily remove such sequences with minimal interaction.

Figure 11 :

 11 Figure 11: Two ten-second snippets of data, EPG from a whitefly and ECG data from an anonymous patient. Both contain regions of "constant" values due to sensor disconnect.

Figure 12 :

 12 Figure 12: A snippet of ECG data that contains an artifact from electrical interference from an insulin pump.

Figure 14 :

 14 Figure 14: Five one-two minute time series snippets of insect EPG data from an Asian citrus psyllid (Diaphorina citri) each featuring two behaviors. EPG2 exhibits an easily identifiable behavior (to the human eye) but exhibits high variability which may impede LBLR.

Figure 15 :

 15 Figure 15: Progress plot for the corresponding datasets depicted in Figure 14. With less than half the relative effort, all datasets were completely labeled. While the EPG1 and EPG2 datasets achieved equal results with less than a quarter of the relative effort due.

Fraction

 Fraction of Effort (relative to labeling snippets individually)

Figure 16 :

 16 Figure 16: Sensitivity of AutoLBLR to the change of subsequence length on the EPG1 dataset from Figure 14. Though the subsequence length varied by up to 𝟐𝟎%, the fraction of relative effort remained in a 𝟐𝟓% range.

Figure 17 :

 17 Figure 17: Five snippets of medical data featuring two district behaviors, as labeled by medical experts. The subject in M1 has undergone a fatal stabbing, M2 survey the effects of a tilt table on a subject, M3 and M4 show signs of Pulsus Paradoxus while M5 depicts an individual undergoing cardiac death.

Figure 18 :

 18 Figure 18: Progress plot for the corresponding datasets depicted in Figure 17. With about a quarter of the relative effort all datasets were completely labeled. While M2 was completely labeled in less than 𝟏% of the relative effort.

Figure 19 :Figure 20 :

 1920 Figure 19: A snapshot of our deployed implementation of LBLR. After performing four iterations, the user is in the process of brushing the phloem label onto the subsequences identified in the bottom cluster. These changes will be reflected in the top graph and the user will again be shown another candidate cluster of subsequences. Two such entomologists who are experts in whitefly (B. tabaci) waveform analysis used the application to label an EPG time series of an Asian citrus psyllid (D. citri). Their results, along with the results of the AutoLBLR are shown in Figure 20.top-panel.

Since the reduced description length for 𝑻 𝟒 is less than its reduced description length, 𝑻 𝟒 should not be grouped with

	𝑇 2	20	8	28	T	40
	𝑇 3	20	8	28	T	40
	𝑇 4	20	48	68	F	40

Figure 4: The description lengths for the original subsequences 𝐃𝐋(𝑻 𝒊), the description length of modeling 𝑻 𝒊 given 𝑯 𝐃𝐋(𝑻 𝒊 |𝑯), and the reduced description length 𝐃𝐋(𝑻 𝒊 , 𝑯). 𝑯. Conversely, 𝑻 𝟐 and 𝑻 𝟑 should be grouped with 𝑯.

Table 1 : LBLR ALGORITHM

 1

	Input:	T :	Time Series,	l : Model length
	Output: L :	Labels corresponding to 𝑇
	1	D = DiscreteNormalization16(T)
	2	while(T has unlabeled data ∧ (user(quits))
	3		M = FindModel(T * ,l)
	4		S = MDL(D * ,M)
	5		BrushLabels(S)
	6		Cleanup()
	7	end while	

There is research on batch mode active learning. However, here the unlabeled examples are extracted in batches to reduce computation effort in retraining a classification model.

We wish to disclaim that our model may better be described as MDL-like or MDL-inspired. Our goal is to build a practical system and not make any claims about MDL model selection.

Acknowledgments

We gratefully acknowledge NSF 1631776.

Data

Data

Human Annotator AutoLBLR

Fraction of Unlabeled

Appendix A: Why not Automatic Classification?

In the introduction we pointed to Figure 1 and claimed, "no time series classification system we are aware of would work here".

Given the extraordinary number of papers on time series classification (see [START_REF] Bagnall | The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[END_REF][4] and the references therein) this claim may seem surprising, thus we take the time to briefly justify it here. It is possible that if we carefully extracted patterns from this dataset, and very carefully aligned them to begin and end at the same logical point (reinterpolating longer or shorter patterns as needed), and applied the appropriate smoothing/spike removal, that we could then apply one of the more than 100 algorithms that have been applied to the UCR archive and get reasonable results. However, this glosses over the fact that extracting and reformatting such data, is itself a much harder problem that cannot (in general) be solved automatically (this point is made in more detail in [START_REF] Hu | Classification of streaming time series under more realistic assumptions[END_REF]). With a little introspection, this claim is obviously true. Consider that ECGs are possibly the most studied type of time series in human history, and they are highly constrained by physics and physiology. Yet, even here, ECG beat extraction is still considered a very difficult problem [START_REF] Rahman | A comprehensive survey of the feature extraction methods in the EEG research[END_REF]. If the reader doubts the inadequacy of ECG extraction/classification algorithms, consider Figure 12 again. The state-of-the-art classifier used by Physionet misclassified the transition from insulin pump inference to a normal heartbeat as a Premature Ventricular Contraction, a trivial mistake no human would make [START_REF] Moody | PhysioNet: a research resource for studies of complex phyiologic and biomedical signals[END_REF].