
HAL Id: hal-04233726
https://hal.inrae.fr/hal-04233726

Submitted on 9 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix Profile XVI: Efficient and Effective Labeling of
Massive Time Series Archives

Frank Madrid, Quentin Chesnais, Kerry Mauck, Shailendra Singh, Eamonn
Keogh

To cite this version:
Frank Madrid, Quentin Chesnais, Kerry Mauck, Shailendra Singh, Eamonn Keogh. Matrix Profile
XVI: Efficient and Effective Labeling of Massive Time Series Archives. IEEE International Conference
on Data Science and Advanced Analytics (DSAA), IEEE, Oct 2019, Whashington, France. pp.463-472,
�10.1109/DSAA.2019.00061�. �hal-04233726�

https://hal.inrae.fr/hal-04233726
https://hal.archives-ouvertes.fr

Matrix Profile XVI: Efficient and Effective Labeling of Massive Time
Series Archives

Frank Madrid1 Quentin Chesnais2 Kerry Mauck2 Shailendra Singh1 Eamonn Keogh1
1Computer Science, 2Entomology @ University of California, Riverside

{fmadr002, singhs, eamonn}@ucr.edu, {chesnais.quentin,kerry.mauck}@ucr.edu

ABSTRACT
In domains as diverse as entomology and sports medicine,
analysts are routinely required to label large amounts of time
series data. In rare cases, this can be done automatically with a
classification algorithm. However, in many domains, complex,
noisy, and polymorphic data can defeat state-of-the-art
classifiers, yet easily yield to human inspection and annotation.
This is especially true if the human can access auxiliary
information and previous annotations. This labeling task can be
a significant bottleneck in scientific progress. For example, an
entomology lab may produce several days’ worth of time series,
each day. In this work, we introduce an algorithm that greatly
reduces the human effort required. Our interactive algorithm
groups subsequences and invites the user to label a group’s
prototype, brushing the label to all members of the group. Thus,
our task reduces to optimizing the grouping(s), to allow our
system to ask the fewest questions of the user. As we shall
show, in a deployed system for entomologists, we can reduce
the human effort by at least an order of magnitude, with no
decrease in accuracy.

Keywords
Time Series, Segmentation, Labeling, Classification

1. Introduction
A common problem for data analysts across many domains and
disciplines is the annotation of long sections of time series data
[17]. In some cases, this can be done automatically, using a time
series classification algorithm [4][8]. However, in many
circumstances, the performance of even the state-of-the-art
algorithms can be significantly worse than a human expert.
Consider for example the three snippets of insect behavior
shown in Figure 1. To an expert in phytophagous (plant eating)
insects with piercing-sucking mouthparts, these are obviously
all examples of the same probing-pathway phase

behavior. However, this data shows high levels of noise, and
significant variability. This variability may be due to individual
characteristics of the insects, or the vagaries of the sensing
apparatus. In either case, no off-the-shelf time series
classification system we are aware of would work well here.
This is because extracting and reformatting such data is itself a
much harder problem than the classification, and this
preprocessing step cannot (in general) be done automatically
[8] (See Appendix A).

Annotating such time series data necessitates human
inspection; requiring the expensive services of a domain
expert. Moreover, it can be significantly outpaced by the rate at
which the time series data is generated. For example, a recent
paper by an international team of animal movement ecologists
bemoans the fact that annotating time series data is “time

consuming and error-prone for the domain expert and is now the
limiting factor for realizing the value of [the time series]” [17].

To prevent confusion, we refer to the task of annotating
time series data as “labeling”. While we could use the more
familiar term “classification”, that term is more typically used
to describe the vast body of research that considers the special
(and, as [8] and others argue, often unrealistic) problem, in
which the time series has been contrived into a relational data
format [8][13].

Figure 1: Examples of probing-pathway phase behavior for
whiteflies (Bemisia tabaci). Note that this behavior has
significant variability, some attributable to intrinsic
variability of the insects, and some due to variability of the
recording apparatus, which must be very sensitive, given
the insects size.

Our problem setup, which we will formalize in Section 3, is
as follows. Assume we are given a long time series, T. Some
fraction (possibly all) of T is comprised of well-defined
behaviors from a finite set of possibilities S which may or may
not be known in advance. We assume a human domain expert
can correctly identify any snippet of the time series
representing any of the well-defined discrete behaviors in 𝑆, if
given the opportunity to view it. Note that the human annotator
may have the possibility to consider additional, auxiliary
information. For example, the time series may be accompanied
by video or audio recordings. For any time series snippets that
are uncertain or ambiguous in the time-series-only view, the
human labeler may expend the extra effort to review the
parallel multimedia data.

Given this model, the human could label all the data.
However, suppose that she labels one-second chunks at a time.
For the whitefly problem introduced in Figure 1, entomologists
often run eight parallel twelve-hour experiments each day, that
would total 345,600 one-second snippets to classify daily. Even
if our entomologist could label ten behaviors a second, during
an eight-hour shift, she still could not keep up with the daily
production rate.

Our task-at-hand seems to invite automation by use of a
time series classifier [17]; however, there are many
circumstances in which even a state-of-the-art time series

classifier will not produce human competitive results. For
example:

• A physiologist may need to label activities from participants
in a study. However, while the activities may be visually
obvious to the physiologist, variability caused by even minor
differences in sensor placement, can confound time series
classifiers [2]. Moreover, the physiologist may have insights
and intuitions she can use, that would not be easily available
to an algorithm. For example, if a noisy time series snippet
appears equally likely to be whisking-food or swimming,

but the surrounding time series was clearly chopping-

food, she could use this context to resolve the ambiguity.

• Entomologists routinely use an apparatus called an Electrical
Penetration Graph (EPG) to produce recordings of
insect/plant interactions by insects with piercing-sucking
mouthparts [16]. Some of these insects, such as the whitefly
shown in Figure 1 are smaller than this dot ⚫ [7]. Naturally
recording such tiny insects requires a very sensitive
apparatus. This sensitivity means the signal, while
interpretable to a trained entomologist, has variability
caused by vibration, air currents, etc., all of which conspire to
make it difficult for automatic classification [1][16].
Moreover, entomologists have insights and intuitions into the
behavioral patterns of piercing-sucking insects which may be
difficult to encode into algorithms, the classic “I know when I
see it” skills. For example, a path-phase must always

precede a phloem-phase since the Asian citrus psyllid must

first puncture the plant with its piercing-sucking mouthparts
before beginning sap ingestion [16].

Our proposed solution to this problem is the Like-Behaviors
Labeling Routine (LBLR). The LBLR system greatly reduces the
need for human annotation, by showing the user “clustered”
snippets from the time series and brushing the given label to all
the elements of the cluster. By using the Minimum Description
Length (MDL) [9][11], to carefully reasoning about which
snippets, and in which order to show the user, we can typically
reduce the burden of human time by one to two orders of
magnitude, with little or no loss of accuracy.

2. Related Work and Notation
We begin with a brief review of related work before
introducing the notation needed to understand our framework.

2.1 Related Work
While the literature on time series classification is vast, see [17]
and the references therein, there is very little on time series
labeling [6]. Our proposed algorithm is superficially like active
learning [13]; however, there are enough differences that the
large active learning literature is of little help. In particular:

• In active learning, the unlabeled data points are typically
shown to the user (teacher/oracle) one object at a time1. In
contrast, by exploiting the ability to “overplot” time series
(see Figure 2.right) we propose to show the user collections
of objects, exploiting the human ability to “batch process”.

1 There is research on batch mode active learning. However, here the unlabeled

examples are extracted in batches to reduce computation effort in retraining a
classification model.

• In active learning, the goal is typically to build a more
accurate classifier. In contrast, we are only interested in
annotating data to allow downstream analytics. Thus, active
learners exploit unlabeled data until the model accuracy
plateaus. In contrast, we annotate unlabeled data, until it is
all labeled, or the annotator prematurely terminates the
labeling procedure.

Figure 2: (left) A snippet of insect EPG data from an Asian
citrus psyllid (Diaphorina citri) [18]. Rather than label
each pattern one-by-one in this view, we propose to group
related patterns (right) to label multiple patterns at once
with a single interaction.

A recent paper introduces a new shapelet-based
informativeness metric for time series active learning [13].
However, they assume that all the data has been perfectly
segmented and arranged into a relational format. As [8] points
out, partitioning a long time series stream into this format is
much harder than the classification or labeling task that follows.
Moreover, [13] assumes that all snippets belong to some well-
defined class, and that all possible classes are known ahead of
time. As we shall show below, these are unrealistic
assumptions for real-world problems.

2.2 Notation
We begin by defining the data type of interest, the time series:

Definition 1: A time series 𝑇 ∈ ℝ𝑛 is a sequence of real-
valued numbers 𝑡𝑖 ∈ ℝ ∶ 𝑇 = [𝑡1, 𝑡2, . . . , 𝑡𝑛] where 𝑛 is the
length of 𝑇.

We are typically not interested in the global properties of a
time series, but in the local regions known as subsequences:

Definition 2: A subsequence 𝑇𝑖,𝑚 ∈ ℝ𝑚 of a time series 𝑇 ∈

ℝ𝑛 is a contiguous proper subset of the values from 𝑇 of
length 𝑚 starting from position 𝑖. Formally, 𝑇𝑖,𝑚 =

[𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+(m−1)] where 𝑚 < 𝑛.

We plan to increase labeling efficiency by grouping similar
subsequences together, these are known as time series motifs:

Definition 3: A time series motif is the most “similar”
subsequence pair of a time series. Let 𝑇𝑎,𝑚 and 𝑇𝑏,𝑚 for some

𝑎, 𝑏 ∈ [1,2, … , 𝑛 − 𝑚 + 1] and 𝑎 ≠ 𝑏 be two distinct
subsequences of 𝑇. 𝑇𝑎,𝑚 and 𝑇𝑏,𝑚 is a motif pair iff

𝑑𝑖𝑠𝑡(𝑇𝑎,𝑚, 𝑇𝑏,𝑚) ≤ 𝑑𝑖𝑠𝑡(𝑇𝑖,𝑚, 𝑇𝑗,𝑚) ∀𝑖, 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 + 1]

where 𝑖 ≠ 𝑗 and 𝑑𝑖𝑠𝑡 is a function that computes the z-
normalized Euclidean distance between 𝑎 and 𝑏 [20][21].

One of the most efficient ways to locate time series motifs is
to compute the matrix profile [20] of 𝑇.

Definition 4: A matrix profile 𝑃 ∈ ℝ𝑛−𝑚+1 of a time series 𝑇
is a meta time series that stores the z-normalized Euclidean
distance between each subsequence and its nearest neighbor

where 𝑛 is the length of 𝑇 and 𝑚 is the given subsequence
length. The top-1 motif can be found by simply locating the
two lowest values in 𝑃. The remaining motifs can be extracted
by finding the next lowest values in the matrix profile.

To avoid trivial matches in which a pattern is matched to
itself, or a pattern that largely overlaps with itself, the matrix
profile incorporates an “exclusion-zone” concept, which is a
region before and after the location of a given query that should
be ignored. The exclusion zone is heuristically set to 𝑚/2 [20].

Figure 3 illustrates a matrix profile on a small toy dataset.
The time complexity to compute a matrix profile 𝑃 is 𝑂(𝑛2).
This may seem untenable for time series data mining, but
several factors mitigate this concern. First, note that the time
complexity is independent of m, the length of the subsequences.
Thus, unusually for a time series algorithm, the time and space
complexity do not depend on the length of the subsequences.

Secondly, the matrix profile can be computed with an
anytime algorithm, and, in most domains, in as few as 𝑂(𝑛𝑐)
steps the algorithm converges to what would be the final
solution [20] (c is a small constant). Finally, the matrix profile
can be computed with GPUs, cloud computing and other HPC
environments that make scaling to at least tens of millions of
data points trivial [20]. Even using standard hardware, all the
examples in this paper can be computed much faster than real-
time. For example, 30 minutes of EPG sampled at 60Hz takes
about four minutes to compute using STOMP [20]. If that was
not fast enough, STAMP can produce a very high-quality
approximation in under five seconds [20].

Figure 3: A synthetic time series 𝑻 which has two
(highlighted) motifs imbedded, and its matrix profile P.
Note that P minimizes at the location of the motifs.

2.3 Minimum Description Length
As we shall show in the next section, a key subroutine in our
system requires our algorithm to reason about which motifs
are semantically the same, and which are distinct. To achieve
this, we plan to exploit MDL to decide which group of
subsequences are semantically similar and thus can be grouped
together to receive a single label from a user [9][10][11]. We
can gain some intuition about this idea by first considering the
text analogue of time series.

2.3.1 MDL: Text
Suppose that “motif” discovery has managed to whittle down
the character representation of a long text string to just four
candidates, 𝑇1, 𝑇2, 𝑇3, and 𝑇4 :

2 We wish to disclaim that our model may better be described as MDL-like or

MDL-inspired. Our goal is to build a practical system and not make any claims
about MDL model selection.

𝑇: scatters shatters swatters syzygies

Here we see the first three words scatters, shatters and

swatters as being similar enough to warrant grouping into a
single class. MDL helps us to realize the appropriate grouping
by attempting to perform lossless compression on the data by
exploiting regularities shared among the time series.

For example, since s-atters is a repeated structure among
some of the words, we consider the first word scatters and
think of it as being a potential model or hypotheses for the four
words. We can use this model to try to “explain” the rest of the
data, by encoding each word 𝑇𝑖 with the hypothesis 𝐻:

𝐻 = scatters

𝑇|𝐻: ········ ·h······ ·w······ ·yzygie·

where ⋅ indicates a shared character between 𝑇𝑖 and 𝐻. Using
this encoding, we only need 𝐻 and the differing
(symbol, position) pair values to reconstruct 𝑇𝑖 . Thus, if 𝐷𝐿(𝑇𝑖)
is the original description length of 𝑇𝑖 , the reduced description
length 𝐷𝐿(𝑇𝑖 , 𝐻) is 𝐷𝐿(𝐻) + 𝑛(⌈log2|𝑆|⌉ + ⌈log2|𝐻|⌉) where 𝑛 is
the number of different (symbol, position) pairs, 𝑆 is the
number of unique symbols and |𝐻| the length of 𝐻. With 26
unique symbols (letters of the alphabet) and word lengths of 8,
we achieve the description lengths depicted in Figure 4. From
these values, we can see that DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖) for
𝑇2 = shatters and 𝑇3 = swatters indicating {scatters,

shatters, swatters} is a logical group.

 DL(𝑇𝑖) DL(𝑇𝑖|𝐻) DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖)

𝑇1 20 − − − −

𝑇2 20 8 28 T 40

𝑇3 20 8 28 T 40

𝑇4 20 48 68 F 40

Figure 4: The description lengths for the original
subsequences 𝐃𝐋(𝑻𝒊), the description length of modeling
𝑻𝒊 given 𝑯 𝐃𝐋(𝑻𝒊|𝑯), and the reduced description length
𝐃𝐋(𝑻𝒊, 𝑯). Since the reduced description length for 𝑻𝟒 is
less than its reduced description length, 𝑻𝟒 should not be
grouped with 𝑯. Conversely, 𝑻𝟐 and 𝑻𝟑 should be grouped
with 𝑯.

2.3.2 MDL: Time Series
While MDL is well defined in the intrinsically discrete space
(text, DNA etc.), it requires some modifications to work in the
real-valued time series space2 [10][11]. In particular, we
quantize our time series 𝑇 using the following discretization
function.

Definition 6: The Discretization function is used to map a
real-valued time series 𝑇 into (𝑏 − 𝑎) + 1 discrete values in
the range [𝑎, 𝑏] and is defined as:

Discretizatio𝑛(𝑎,𝑏)(𝑇) = round ((𝑏 − 𝑎) × (
𝑇−min

max−min
) + 𝑎)

where 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum and maximum values
of 𝑇 respectively if 𝑇 is not constant3.

3 In this work we consider the range [1,24] → [1,16] yielding

𝐷𝑖𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇) = round ((16 − 1) × (
𝑇−min

max−min
) + 1).

600

P, a matrix profile |P| = |T| - |m| + 1

1

m

Top motif location

T, a random walk time series

with two sine waves embedded

Since a time series is a sequence of real-valued numbers,
the discretization of 𝑇 results in a reduction of precision.
However, it has been shown that this reduction in precision
does not result in a significant reduction in classification
accuracy [9], suggesting that little or no useful information is
lost in the process. Note that as we are working with z-
normalized times series, in practice all subsequences have very
similar max and min values. Figure 5 shows the effects of
discretization on four insect data snippets.

For any discretized time series 𝑇, we are interested in
approximating how many bits it takes to represent it or its
description length:

Definition 7: The description length 𝐷𝐿 of a time series 𝑇 is
the total number of bits required to represent it. When
Huffman Coding is used to compress the time series, the
description length of time series 𝑇 is defined by:

DL(𝑇) = |HuffmanCoding(𝑇)|

One of the key steps in finding clusters of semantically
similar subsequences is identifying a subsequence, or
hypothesis, which exemplifies a common substructure. Using
this hypothesis, we calculate the reduced description length of a
time series:

Definition 9: A reduced description length of a time series 𝑇
given hypothesis 𝐻 is the number of bits used to encode 𝑇,
exploiting information in 𝐻. The reduced description length
of 𝑇 using 𝐻 is defined as:

DL(𝑇, 𝐻) = DL(𝐻) + DL(𝑇|𝐻)

The first term DL(𝐻) is the model cost or the number of bits
required to store the hypothesis 𝐻 while the second term
DL(𝑇|𝐻), the correction cost, is the number of bits required to
rebuild the entire time series 𝑇 from 𝐻. Storing the difference
vector 𝐻 − 𝑇, we can easily regenerate 𝑇; thus, 𝐷𝐿(𝑇|𝐻) =
DL(𝐻 − 𝑇) [9].

The following example offers a visual intuition of these
ideas. In Figure 5.left we show four time series from an insect
EPG dataset [5] and their corresponding discretizations. In
Figure 6 we use the first time series 𝐻 as our hypothesis and
model the remaining three time series 𝐻 − 𝑇𝑖 . Lastly, the
results in Figure 7 indicate {𝐻, 𝑇1, 𝑇2} is a logical cluster. As we
shall explain in Section 4. The effectiveness of our labeling
algorithms hinges on the ability of the algorithm to decide
which patterns should be grouped together and presented to
the user as a single entity deserving of a single label.

Figure 5: Given four z-normalized time series of insect
dataset [5]. To avail MDL, we must discretize each time
series (left) into their 4-bit representations (right).

The first three patterns, 𝐻, 𝑇1, and 𝑇2 in Figure 5.left are the
same semantic behavior, but the fourth 𝑇3 is a different
behavior and should not be included in the grouping. One might
imagine that one could learn a Euclidean distance “radius” that
covers all members of the same class, at least within a given
domain. However, this in impractical for several reasons; more
complex shapes tend to need a much greater radius that
simpler shapes (i.e. complexity bias [4]). Even if you could learn
a good radius for a given length, the best radius for different
lengths can scale non-linearly (indeed, non-monotonically for z-
normalized time series).

MDL allows us to bypass these issues. As we show in Figure
6, we can treat one time series 𝐻, as the hypotheses and then
encode 𝑇𝑖 using 𝐻 by calculating the difference vector 𝐻 − 𝑇𝑖
(right). Comparing DL(𝐻) + DL(𝑇𝑖) to DL(𝑇𝑖 , 𝐻), we can then
judge if 𝑇𝑖 should be grouped with 𝐻, that is to say, we ask if
DL(𝑇𝑖 , 𝐻) < DL(𝐻) + DL(𝑇𝑖).

Figure 6: left) The hypotheses overlaid with three
candidate time series. right) Subtracting the time series
from the hypotheses produces a difference vector, the
“simplicity” of which is suggestive of similarity of the two
signals.

In our experiments, 𝐷𝐿(𝐻) + 𝐷𝐿(𝑇𝑖) proved to be too
conservative of an upperbound for 𝐷𝐿(𝑇𝑖 , 𝐻) bound while
𝐷𝐿(𝑇𝑖) proved to be too liberal. Giving the annotator the
functionality to easily add or remove subsequences gives us the
ability to be slightly conservative or slightly liberal when
proposing candidate groupings to the annotator.

0 50 100 150 0 50 100 150

H)

T1)

T2)

T3)

0 50 100 150

H - T1

H - T2

H - T3

 DL(𝑇𝑖) 𝐷𝐿(𝐻 − 𝑇𝑖) 𝐷𝐿(𝑇𝑖) − 𝐷𝐿(𝐻 − 𝑇𝑖)

𝑇1 169 156 13

𝑇2 264 240 24

𝑇3 220 257 −37

Figure 7: The description lengths for the original
subsequences 𝐃𝐋(𝑻𝒊), the description length after
modeling 𝑻𝒊 with 𝑯 𝐃𝐋(𝑯 − 𝑻𝒊), and their difference, or the
number of bits saved. Since 𝑻𝟏 and 𝑻𝟐 result in a positive
number of bits saved, they are considered to be
semantically the same as 𝑯.

As we can see in our examples from Figure 6, the
discretizations of 𝐻 and 𝑇1 are so similar, their difference
vector 𝐻 − 𝑇1 consists mostly of zeros, with just a handful of
non-zero values, which will require less bits to encode than the
original raw data. From Figure 7, modeling 𝑇1 and 𝑇2 with 𝐻
resulted in a positive number of bits saved or a reduction in the
number of required bits while modeling 𝑇3 with 𝐻 resulted in a
negative bitsave; thus, we confidently feel that 𝑇1 and 𝑇2 belong
in the semantic group as 𝐻 while 𝑇3 does not. Thus, in this
example, the set of time series {H, T1, T2} would be presented to
the user as a (tentative) group that can be assigned a label with
a single interaction, rather than three interactions.

3. LBLR
We begin with a concrete statement of the problem we wish to
address. While this addresses a common task [17], to the best
of our knowledge, this problem has not been formalized.

Problem Definition: Time Series Labeling. Given a time
series 𝑇 of length 𝑛, which is comprised (at least partly) of
regions that correspond to discrete well-defined behaviors
(which may or may not be known in advance) and given
access to an oracle that can label subsequences of 𝑇, into
these behaviors. We wish to produce 𝐴, an integer vector of
length n, which correctly annotates 𝑇, while minimizing the
number of accesses to the oracle.

This notation is illustrated in Figure 8.

Figure 8: An example illustrating a time series 𝑻, and its
annotation vector 𝑨. The key to 𝑨 is domain dependent, for
example, here 1 = normal beat and 2 = ventricular
contraction.

Without loss of generality, we assume the oracle always
produces the correct label. As noted above, the oracle may have
access to out-of-band information (such as video or audio
recorded in parallel to the time series), and may be able to label
even unseen data, based on context. For example, if an oracle
was asked to label a previously unknown activity, she might
notice that it happens five times a day, and the file name is
Ali_Muhammad_02.txt. This would surely allow our oracle

to suspect that the behavior is connected to the salat, the five
daily prayers of a Muslim.

To solve our problem, we envision a system that shows the
human annotator (hereafter, just annotator) a set of time series
snippets believed to be in the same class and asks for a label.
This framework requires us to define the snippet grouping
policy and the set of annotator operators. For clarity of
presentation, we discuss these below in reverse order.

3.1 User Interactions
Any active-learning interaction system for labeling time series
must at least allow the following annotator operators during
each interaction:

• Label as a Predefined Behaviors: These behaviors are
previously known to the annotator. For example, predefined
behaviors for EPG include active sap ingestion,

intercellular penetration, and intracellular

puncture [16].

• Label as a New Behavior: These behaviors are previously
unknown to the annotator. For example, a behavior study in
“youth activity” only expected to see a handful of
recognizable behaviors such as walking, running, etc.

However, after inspecting the data an unexpected behavior,
which was later realized to be skipping was found.

• Label as an Unknown Behavior: The annotator may label a
snippet as unknown. These types of behaviors may simply be

sufficiently unique, or the annotator does not simply have
enough information to identify the behavior.

• Label as a Polymorphic Behavior: The identified system
contains two or more distinct behaviors and should be
reconsidered using a more conservative grouping. The
active-learning system may be too aggressive and attempt to
group behaviors that the annotator considers distinct. Thus,
the annotator must be able to tell the system to reconsider
the grouping, and instead present multiple, more
conservative groupings of the data. Alternatively, the
annotator may create a new behavior which is an
amalgamation of the two or more distinct behaviors. For
example, during our case study, LBLR identified the ending of
a path-phase and the beginning of a phloem phase in which
the creation of the behavior path-phloem would have

accurately labeled the behavior.
• Temporarily Pass: The annotator chooses to revisit the

current motif during some future iteration. The annotator
may be unsure of a label for a snippet. Yet later in the process,
once they had gained some experience with the data, they
would be able to classify it. For example, they may be unsure
if a snippet of gait represents a fast walk or a slow run. But
later, when they have seen an unambiguous walk section,
they would realize that the original ambiguous section was
indeed run.

• Terminate the Labeling Process: The annotator may
preemptively end the labeling process after a sufficient
fraction of the time series has been labeled. The remaining
snippets may be unknown/unclassifiable, sufficiently unique,
or unambiguously consistent.

Having defined all the possible user interactions, we are finally
able to introduce our algorithm.

3.2 The LBLR Algorithm
In Section 2.3, we considered text and time series toy examples
and demonstrated how to we can determine whether two

0 1280

1

2

subsequences are semantically similar. In this section, we will
describe and then explain our algorithm in detail. Table 1
outlines a high-level overview of our algorithm for the rapid
labeling of a time series.

Table 1: LBLR ALGORITHM

Input: T : Time Series, l : Model length
Output: L : Labels corresponding to 𝑇
1
2
3
4
5
6
7

D = DiscreteNormalization16(T)
while(T has unlabeled data ∧ (user(quits))
 M = FindModel(T*,l)
 S = MDL(D*,M)
 BrushLabels(S)
 Cleanup()
end while

 We begin our algorithm by quantizing a real-value time
series 𝑇 into a discrete-value time series 𝐷 to accommodate
MDL (line 1). Next, we begin the labeling process and continue
until no unlabeled data remains (lines 2-7). We also allow the
user to prematurely end after any iteration if they feel enough
of the data has been annotated or if the remaining data does not
warrant annotation.

 Beginning each iteration, our algorithm identifies our
model 𝑀 as a time series motif of 𝑇∗, the union of unlabeled
data points of 𝑇 and an inclusion range 𝑚 heuristically set 𝑙/2
(line 3). Using 𝑀 as our hypothesis, our algorithm produces 𝑆,
the set of subsequences of the discretized data corresponding
to 𝑇∗, sorted by their reduced description length (line 4). If left
unsupervised, LBLR would automatically group together all
subsequences 𝑆∗ ∈ 𝑆 whose reduced description length is less
than its original description length, that is,

DL(𝑆∗, 𝑀) < DL(𝑆∗)

The user may add or remove subsequences from an overplot of
the elements in 𝑆 (see Figure 9), if they feel that the MDL-driven
grouping was too conservative or too liberal (Line 5).

Figure 9: An example of LBLR clustering subsequences
from an EKG where the hypothesis depicts sustained
ventricular tachyarrhythmia. LBLR identified 𝟗𝟔 similar
subsequences of which 𝟖. 𝟑𝟑% were false positives. The
annotator may easily remove such sequences with
minimal interaction.

Lastly, during the cleanup phase, we automatically label any
unlabeled subsequences with length less than 𝑙. The labels will
be split between the shared label of the subsequences
neighboring behaviors if the neighboring behaviors have the
same label or is shared between the two neighboring behaviors
if they have different labels (see Figure 10) (line 6).

Figure 10: Two time series snippets of an EPG which
contain unlabeled sequences with length less than 𝒍 (left)

and were automatically labeled (right). Subsequence (A)
indicates a transition between two separate behaviors and
is thus shared between the two while subsequences (B)
and (C) share the only available label between their
neighboring behaviors.

The basic algorithm can benefit from an optional module
which we discuss in the next section.

3.3 Priming Run
Before LBLR interacts with the user, it can perform and
optional priming run on the time series data. In this phase, the
algorithm annotates any “low-hanging fruit” in the data;
regions that it can confidently classify without human
intervention. The set of such regions is domain dependent, but
some examples include:
• Constant Regions: As Figure 11 hints at, many scientific

and medical datasets have regions of constant values. They
are typically the result of a disconnected or faulty sensor,
or a sensor recording a value that greater/smaller that its
precision allows. One caveat to note is that some
disconnected sensors report what is visually a constant
line, but it may have some tiny variance due to electrical
noise. As we are working in z-normalized space, the z-
normalization will magnify such data. Thus, we may have
to set a domain specific threshold to define “constant” in
our domain. For example, for our EPG example, |Δ𝑉| < 1.0
mV is only observed when the whitefly is dead, or the wire
is broken or disconnected from the insect.

Figure 11: Two ten-second snippets of data, EPG from a
whitefly and ECG data from an anonymous patient. Both
contain regions of “constant” values due to sensor
disconnect.

• Trivially Classifiable Patterns: Many domains produce
some patterns that are classifiable by simple algorithms,
although these may not be particularly interesting. Consider
Figure 12 which shows a near perfect sinusoidal pattern
imbedded in what is otherwise a typical EGC signal identified
as interference from an insulin pump. This pattern is
common, and well conserved, thus worth removing in a
priming run, rather than wasting an annotator’s time.

Figure 12: A snippet of ECG data that contains an artifact
from electrical interference from an insulin pump.

Note that we do not attempt to exclude very noisy regions
during our priming run, despite their ubiquity. As we have
explained, our MDL scoring function would in any case
prioritize these subsequences last.

0 60 0 60seconds seconds

2584 2684 2584 2684

5000 5200 5000 5200

(A)

(B) (C)

(A)

(B) (C)

0 seconds 10

ECG

EPG

0
seconds

5

BIDMC Congestive Heart Failure chfdb chf07 13:05:20

4. Experimental Evaluation
To ensure that our experiments are reproducible, we have built
a website which contains all data/code/raw spreadsheets for
the results, in addition to videos of the system in action. LBLR
has also been made available for open source distribution.

Note that while this tool was built specially for entomology,
labeled datasets are hard to find in this domain. Moreover, all
the labeled datasets we do have access to, where labeled by
authors of this paper, or their workmates, thus presenting the
possibility of bias. For that reason, in addition to testing on
entomology data, we also test on proxy datasets, including
cardiology and human-activity data.

4.1 Reproducible Experiments
In addition to the somewhat anecdotal domain specific case
studies in later sections, we want to have experiments that can
not only be reproduced but could be potentially improved on by
the community. However, clearly, we cannot make our domain
experts available in perpetuity. With mild assumptions, we can
address this issue.

We have created a diverse collection of completely
annotated time series we can use to mimic human feedback.
When labeling clustered subsequences, a collection of
potentially related time series, instead of showing it to a human
labeler, we simply use the ground truth annotations to assign
the group the majority label. This simple scheme does not use
the full expressiveness of the system, as it does not allow the
Label as Unknown, Temporarily Pass or Label as Multiple
Behaviors interactions.

We created datasets in each of three domains: (1)
Entomology, (2) Cardiology and (3) Human-activity which each
exhibit two class behavior. Recall that the Cardiology and
Human-activity were chosen as plausible proxies for
entomological data.

While in principle a two-class dataset could be labeled with
just two interactions, in practice, most datasets have a
wandering baseline, noise, drift and polymorphic behaviors
that make that unlikely. Nevertheless, we would hope the
system could label most of the data accurately while
minimizing annotator interactions. To summarize the system’s
performance, we will use progress plots as illustrated in Figure
13.

Figure 13: A key to interpreting progress plots for a
labeling system. In future plots we will omit the dashed
lines, which are implicit if a line does not terminate at 0 on
the y-axis.

Note that these plots do not encode the accuracy of system,
however this was always greater than 99%. The interested

reader can visit [22] to see all the original data and a forensic
step-by-step trace of each experiment.

Our only inputs into the system are the time series, and a
suggestion of the subsequence length, after that, the proxy
system (AutoLBLR) runs without human intervention, until all
the data is labeled.

4.1.1 Entomology
For our first domain of interest, we selected five independent
snippets of EPG data from an Asian citrus psyllid (Diaphorina
citri) illustrated in Figure 14. Though each behavior
(waveform) has characteristics to facilitate identification, the
waveforms exhibit high variability attributed to the sensitivity
of the recording apparatus and the intrinsic variability of the
insect.

Figure 14: Five one-two minute time series snippets of

insect EPG data from an Asian citrus psyllid (Diaphorina

citri) each featuring two behaviors. EPG2 exhibits an easily

identifiable behavior (to the human eye) but exhibits high

variability which may impede LBLR.

Specifying each dataset and a fixed subsequence length of
100 to LBLR, AutoLBLR accurately labeled all datasets with less
than 50% of the relative human effort (see Figure 15).

Figure 15: Progress plot for the corresponding datasets

depicted in Figure 14. With less than half the relative

effort, all datasets were completely labeled. While the

EPG1 and EPG2 datasets achieved equal results with less

than a quarter of the relative effort due.

AutoLBLR was particularly effective at labeling EPG1 and
EPG2 requiring less than 25% of the human effort. These two
plots contain a “long fall” which indicate a large grouping of
subsequences suggesting the variability within the waveforms
of these two datasets did not impede AutoLBLR’s ability to
quickly label these datasets. However, despite a few “minor
successes”, AutoLBLR was essentially labeling a single
subsequence at a time in EPG5 though we were still able to
completely label the entire dataset with half the human effort.

0 1
0

0.5

1

Ideal Case: After a handful of

interactions, all the data is labeled.

Poor Case: After about a dozen interactions, the system has

only labeled about ½ of the data. From that point on, the user

is condemned to labeling individual snippets one-by-one.

Benchmark: The user labels

individual snippets one-by-one.

Fraction of Effort (relative to labeling snippets individually)

F
ra

c
ti

o
n
 o

f
U

n
la

b
e
le

d
 D

a
ta

EPG1

EPG2

EPG3

EPG4

EPG5

0 0.25 0.50 0.75 1

Fraction of Effort (relative to labeling snippets individually)

0

0.25

0.50

0.75

1

F
ra

c
ti

o
n

 o
f

U
n

la
b

e
le

d
 D

a
ta

In Section 5, we discuss a few ideas which take advantage
of the unique characteristics of each waveform to more quickly
label time series from this domain.

After performing preliminary waveform analysis on the
EPG datasets, the suggested subsequence length was not
obvious since each different waveform can consist of a different
length and is also dependent on the variability of the insect. We
repeated each experiment, supplying a different subsequence
length to LBLR. The effects of these changes on AutoLBLR’s
progress plots can be seen in Figure 16. AutoLBLR is indeed
reflective of a change to the subsequence length but is not
particularly sensitive.

Figure 16: Sensitivity of AutoLBLR to the change of
subsequence length on the EPG1 dataset from Figure 14.
Though the subsequence length varied by up to 𝟐𝟎%, the
fraction of relative effort remained in a 𝟐𝟓% range.

4.1.2 Medicine (as a proxy for entomology)

We now turn our attention to our second domain where we
selected five snippets of medical data illustrated in Figure 17.
The data includes both ECG and APB (Arterial Blood Pressure)
traces. All data is from humans, except M1 which is from a pig
used as a proxy for a stabbing victim. Though each behavior is
well-defined, the difference between each class is very subtle,
increasing the risk of false positives.

Figure 17: Five snippets of medical data featuring two
district behaviors, as labeled by medical experts. The
subject in M1 has undergone a fatal stabbing, M2 survey
the effects of a tilt table on a subject, M3 and M4 show signs
of Pulsus Paradoxus while M5 depicts an individual
undergoing cardiac death.

Though LBLR has the propensity of being liberal in its
proposed groupings, relying on an annotator to prune out false
positives, AutoLBLR accurately labeled each dataset using
about a quarter of the relative human effort and was
particularly effective in labeling M2 requiring only three
iterations, one iteration shy of the optimal possiblity (see
Figure 18). Furthermore, despite having no behaviors
detectable to the human eye, AutoLBLR correctly identified
about half of M5 in just two iterations.

Figure 18: Progress plot for the corresponding datasets
depicted in Figure 17. With about a quarter of the relative
effort all datasets were completely labeled. While M2 was
completely labeled in less than 𝟏% of the relative effort.

4.2 Case Study: Entomology

At the time of going to press we have just begun the first human
trials with LBLR (see Figure 19) inviting experts in entomology
to us it to annotate EPG data.

Figure 19: A snapshot of our deployed implementation of
LBLR. After performing four iterations, the user is in the
process of brushing the phloem label onto the
subsequences identified in the bottom cluster. These
changes will be reflected in the top graph and the user will
again be shown another candidate cluster of
subsequences.

Two such entomologists who are experts in whitefly (B.
tabaci) waveform analysis used the application to label an EPG
time series of an Asian citrus psyllid (D. citri). Their results,
along with the results of the AutoLBLR are shown in Figure
20.top-panel.

0 0.25 0.50 0.75 1

Fraction of Effort (relative to labeling snippets individually)

0

0.25

0.50

0.75

1

F
ra

c
ti

o
n

 o
f

U
n

la
b

e
le

d
 D

a
ta

L = 80
L = 90
L = 100
L = 110
L = 120

M1

M2

M3

M4

M5

0 0.25 0.50 0.75 1

Fraction of Effort (relative to labeling snippets individually)

0

0.25

0.50

0.75

1

F
ra

c
ti

o
n

 o
f

U
n

la
b

e
le

d
 D

a
ta

Figure 20: top-panel) LBLR results when used by an
annotator (bottom) and AutoLBLR (middle) compared to
the ground truth (top). AutoLBLR mislabeled the
transition between the two behaviors achieving an
accuracy of 𝟗𝟗. 𝟖𝟎% while the human annotator
designated the region as unclassifiable, achieving a 𝟏𝟎𝟎%
accuracy on the 𝟗𝟓. 𝟖𝟑% of the data he had classified.
bottom-panel) Comparison of the relative effort required
to label the data. This result suggests that that AutoLBLR
proxy for humans was pessimistic, the experiments in the
previous sections should be considered lower bounds.

In Figure 20.bottom-panel we compare the relative efforts
required for the annotator and AutoLBLR to completely label
the dataset. These results are = good news for us. They suggest
that our experiment in Sections 4.1.1 to 4.1.3 might have been
somewhat pessimistic. Recall that the set of interactions
available in these human-proxy experiments is a subset of the
interactions available to actual humans.

5. Conclusions and Future Work
In this work we have concretely formulated a task which
appears to be ubiquitous in science and medicine, yet poorly
supported, or only supported by limited and very domain
specific tools [17][18]. In contrast, our LBLR system is domain
independent and generic. It requires only one input, the
subsequence length. However that is one parameter that
domain experts typical have some intuition for.

While our motivation comes from entomology, we have
demonstrated the utility of our system on very diverse
domains. In the best cases, for example the M2 dataset, the
system can reduce the human effort one-hundred-fold. In other
cases the reduction of human effort is not as great, however this
is a real and essentially free improvement. That is to say, there
is no additional cognitive overhead for using. Even if the system
“only” eliminates three-quarters of the work this allows the
entomologists to process four times as much data.

We see two avenues for improvement. The first is to
optimize the user experience. To glean the necessary feedback
to do this, we are currently conducting a user study in multiple
entomological labs. The second avenue for improvement is in
further improving the critical snippet grouping strategy
(Section 2.3.2). It is possible that replacing the Euclidian
distance with Dynamic Time Warping will help here [4].

We have made all code and data freely available to allow the
community to confirm and extend our ideas.

Acknowledgments

We gratefully acknowledge NSF 1631776.

6. References
[1] F. Adasme-Carreno C. Munoz-Gutierrez, J. Salinas-Cornejo, and C. Ramirez.

A2EPG: a new software for the analysis of electrical penetration graphs to
study plant probing behaviour of hemipteran insects. Comput. Electron.
Agric. 113: 128–135, 2015.

[2] L. Atallah, B. Lo, R.C. King, G.Z. Yang: Sensor Positioning for Activity
Recognition Using Wearable Accelerometers. IEEE Trans. Biomed. Circuits
and Systems 5(4): 320-329, 2011.

[3] A. Bagnall, J. Lines, A. Bostrom, J. Large, E.J. Keogh. 2017. The great time
series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery. 31(3):
606-660, 2017.

[4] G.E. Batista, X. Wang and E.J. Keogh, 2011, April. A complexity-invariant
distance measure for time series. In Proc’ of the 2011 SDM pp. 699-710.

[5] J.P. Bonani, A. Fereres, E. Garzo, M. Miranda, B. Appezzato-Da-Gloria, J. R. S.
Lopes. Characterization of electrical penetration graphs of the Asian citrus
psyllid, in sweet orange seedlings. Entomologia Experimentalis et Applicata
134: 35–49, 2010.

[6] Y. Chen, Y. Hao, T. Rakthanmanon, J. Zakaria, B. Hu, E.J. Keogh: A general
framework for never-ending learning from time series streams. Data Min.
Knowl. Discov. 29(6): 1622-64 (2015)

[7] G.S. Hodges, G.A. Evans. An identification guide to the whiteflies
(Hemiptera: Aleyrodidae) of the Southeastern United States. Florida
Entomologist 88(4):518–534, 2005.

[8] B. Hu, Y. Chen, E.J. Keogh. 2016. Classification of streaming time series
under more realistic assumptions. Data Mining and Knowledge Discovery,
30(2): 403-437, 2016.

[9] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E.J. Keogh.
"Discovering the intrinsic cardinality and dimensionality of time series
using MDL." Data Mining (ICDM), 2011 IEEE 11th International Conference
on. IEEE, 2011.

[10] K. Kawabata, Y. Matsubara, and Y. Sakurai. 2018. StreamScope: Automatic
Pattern Discovery over Data Streams. In Proceedings of the First
International Workshop on Exploiting Artificial Intelligence Techniques for
Data Management (aiDM'18).

[11] Y. Matsubara, Y. Sakurai, C. Faloutsos: AutoPlait: A utomatic mining of co-
evolving time sequences. SIGMOD Conference 2014: 193-204

[12] G.B. Moody, R.G. Mark, A.L. Goldberger. PhysioNet: a research resource for
studies of complex phyiologic and biomedical signals, Comput Cardiol,
2000, vol. 27 (pg. 179-82)

[13] F. Peng, Q. Luo, L.M. Ni. 2017 ACTS: An Active Learning Method for Time
Series Classification. In 2017 IEEE 33rd ICDE,, 175-178, 2017.

[14] M.A. Rahman, W. Ma, D. Tran, and J. Campbell. A comprehensive survey of
the feature extraction methods in the EEG research. Springer-Verlag,
Berlin, 2012

[15] A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for
Activity Monitoring. The 16th IEEE International Symposium on Wearable
Computers (ISWC), 2012.

[16] W.F. Tjallingii. Comparison of AC and DC systems for electronic monitoring
of stylet penetration activities by homopterans." Journal of Evolutionary
Biology (2001): 41.

[17] Y. Walker, M. Jones, R. Laramee, O. Bidder, H. Williams, R. Scott, E.L.C.
Shepard, and R. Wilson. TimeClassifier: a visual analytic system for the
classification of multi-dimensional time series data. The Visual Computer
31(6-8), 1067-1078, 2015.

[18] D.S. Willett, J. George, N.S. Willett, L.L. Stelinski and S.L. Lapointe, 2016.
Machine learning for characterization of insect vector feeding. PLoS
computational biology, 12(11).

[19] J.R. Villar, M. Menendex, J. Sedana, E. Cal, V.M. Gonzalez. Analyzing
accelerometer data for epilepsy episode recognition. 10th International
Conference on Soft Computing Models in Industrial and Environmental
Applications. Springer, 2015.

[20] C.M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A.
Mueen, E. J. Keogh. Matrix Profile I: All Pairs Similarity Joins for Time Series:
A Unifying View That Includes Motifs, Discords and Shapelets. IEEE 16th
International Conference on Data Mining (ICDM), 2016, pp. 1317-1322.

[21] Y. Zhu, Z. Zimmerman, N.S. Senobari, C.M. Yeh, G. Funning, A. Mueen, P.
Brisk, E. J. Keogh. Matrix Profile II: Exploiting a Novel Algorithm and GPUs
to Break the One Hundred Million Barrier for Time Series Motifs and Joins.
16th International Conference on Data Mining (ICDM), 2016, pp. 739-748.

[22] Project URL: www.cs.ucr.edu/~fmadr002/LBLR.html

1 5200

Ground Truth

Unsupervised LBLR

Human Annotator

0 0.25 0.50 0.75 1

Fraction of Effort (relative to labeling snippets individually)

0

0.25

0.50

0.75

1

F
ra

c
ti

o
n

 o
f

U
n

la
b

e
le

d
 D

a
ta

Human Annotator

AutoLBLR

Appendix A: Why not Automatic Classification?
In the introduction we pointed to Figure 1 and claimed, “no time
series classification system we are aware of would work here”.
Given the extraordinary number of papers on time series
classification (see [3][4] and the references therein) this claim
may seem surprising, thus we take the time to briefly justify it
here. It is possible that if we carefully extracted patterns from
this dataset, and very carefully aligned them to begin and end
at the same logical point (reinterpolating longer or shorter
patterns as needed), and applied the appropriate
smoothing/spike removal, that we could then apply one of the
more than 100 algorithms that have been applied to the UCR
archive and get reasonable results. However, this glosses over
the fact that extracting and reformatting such data, is itself a
much harder problem that cannot (in general) be solved
automatically (this point is made in more detail in [8]). With a
little introspection, this claim is obviously true. Consider that
ECGs are possibly the most studied type of time series in human
history, and they are highly constrained by physics and
physiology. Yet, even here, ECG beat extraction is still
considered a very difficult problem [14]. If the reader doubts
the inadequacy of ECG extraction/classification algorithms,
consider Figure 12 again. The state-of-the-art classifier used by
Physionet misclassified the transition from insulin pump
inference to a normal heartbeat as a Premature Ventricular
Contraction, a trivial mistake no human would make [12].

