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ABSTRACT

Motivation: Hierarchical clustering is a common approach to study

protein and gene expression data. This unsupervised technique is

used to find clusters of genes or proteins which are expressed in a

coordinated manner across a set of conditions. Because of both the

biological and technical variability, experimental repetitions are

generally performed. In this work, we propose an approach to

evaluate the stability of clusters derived from hierarchical clustering

by taking repeated measurements into account.

Results: The method is based on the bootstrap technique that is

used to obtain pseudo-hierarchies of genes from resampled

datasets. Based on a fast dynamic programming algorithm, we

compare the original hierarchy to the pseudo-hierarchies and assess

the stability of the original gene clusters. Then a shuffling procedure

can be used to assess the significance of the cluster stabilities. Our

approach is illustrated on simulated data and on two microarray

datasets. Compared to the standard hierarchical clustering meth-

odology, it allows to point out the dubious and stable clusters, and

thus avoids misleading interpretations.

Availability: The programs were developed in C and R languages.

Contact: brehelin@lirmm.fr

Supplementary information: Supplementary Material and source

code are available at address http://www.lirmm.fr/~brehelin/Stability/

1 INTRODUCTION

The development of technologies to analyze transcriptomic and

proteomic data has brought new perspectives in molecular

biology. These technologies have also raised many challenging

problems in experimental design and data analysis. One of the

important drawbacks of these approaches is the experimental

variability that can be divided into two categories: technical

variability and biological variability. Technical variability is

inherent to techniques used to quantify the transcriptome or the

proteome. Biological variability corresponds to the variability

which naturally exists between different individuals. In both

cases, variability is a significant problem when biological

mechanisms or processes are involved. To address this problem,

experimental repetitions (technical or biological) are performed

through experimental design.
Because of the number of genes or proteins and the complexity

of genetic networks, clustering approaches have proven useful to

analyze expression profiles. Hierarchical clustering (Eisen et al.,

1998), self-organizing maps (Tamayo et al., 1999), K-means

(Tavazoie et al., 1999) and mixture models (Yeung et al., 2001)

are among the most used methods. Some authors proposed to

combine several clustering methods to define consensus cluster-

ing (Monti et al., 2003). Although these approaches have proven

valuable in gene expression analysis, most studies do not

consider variations in measured expression levels. The standard

approach involves averaging repetitions for each gene or

protein, and for each experimental condition. These averages

are treated as if they were accurate measures of true expression

levels and the measurement effects are neglected. This approach

would be warranted if the number of repetitions for each

measurement was sufficiently high to allow for reliable estima-

tion of the expression level. In practice, the measurement cost

does not allow for a high repetition number, which is usually

limited to 3 or 4. In this case, and when variability is significant,

the average is a poor estimate of the expression level and it is

not apparent how these measurement variations might affect

clustering. A better exploitation of the information brought

by repetitions seems essential. Yeung et al. (2003) evaluated

several clustering algorithms that incorporate repeated measure-

ments and showed that algorithms that take advantage of

repeated measurements yield more accurate and more stable

clusters.
Two approaches can be proposed to more suitably account

for the experimental repetitions:

� The first one involves directly using the repetitions during

the clustering procedure. For each variable, a gene is

defined by its set of experimental repetitions. However, this

approach remains difficult and a few studies followed this

direction (Celeux et al., 2005; Medvedovic et al., 2004).

� The second approach involves evaluating the effect on

clustering induced by poor estimation of the expression

level resulting from the average of repetitions.
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In this article, we explore this second approach by assessing

the stability of clusters derived from hierarchical clustering

using a bootstrap procedure.
Several papers use stability or bootstrap to deal with the

optimal number of clusters. In Dudoit and Fridlyand (2002)

and Lange et al. (2003), the authors propose a stability criterion

based on supervised classification. In Dudoit and Fridlyand

(2002), a resampling-based prediction method estimates the

number of clusters by repeatedly and randomly dividing the

original dataset into two non-overlapping sets. In Lange et al.

(2003), a stability measure is introduced for supervised learning

and is generalized to semi-supervised and unsupervised cluster-

ing. Yeung et al. (2001) apply a clustering algorithm to all but

one experimental condition in a dataset, and use the left-out

condition to assess the predictive power of the clustering

algorithm. Herrero et al. (2001) propose a divisive hierarchical

clustering algorithm, called SOTA, which stops tree growing

thanks to a shuffling-based approach.
Several factors influence cluster stability: size of the cluster

versus total number of genes, proximity of the genes in the

cluster versus their distance to the other genes, variability of the

repetitions for a given gene. For these reasons, clusters do not all

have the same stability. Thus, in an overall unstable clustering,

some stable clusters can nevertheless exist and can be interesting

for further analysis. On the contrary, clusters of an overall stable

clustering do not all have the same quality, and it could be wise

to be wary of some of them. The approach we propose does not

focus on the number of clusters. It is designed to identify stable

gene clusters within a hierarchical clustering.
Some recent papers have addressed a similar problem, but in

the inverse context, i.e. classifying samples (e.g. tumors) using

gene expression measurements. For example, Smolkin and

Ghosh (2003) and Valentini (2006) use perturbations based on

space-dimension reduction. However, this elegant approach is

of no use when the space dimension is reduced to a (few)

dozen(s) or even less, as in the case here (e.g. 6 in our experi-

ments, see below). In McShane et al. (2002), data perturbations

are achieved by adding independent normal errors to the

original data, with the variance of these errors being equal to

the variance of the experimental data.
Moreover, two approaches have been proposed to assess

cluster validity in the context of gene classification. Zhang and

Zhao (2000) introduce a parametric bootstrap approach to

assess the reliability of gene clusters identified by hierarchical

methods. Kerr and Churchill (2001) proposes a ‘residual boot-

straping’ approach that utilizes an analysis of variance model.

The ANOVA model provides an estimate of the relative

expression of the genes. In addition, residuals from the fitted

model provide an empirical estimate of the error distribution,

which is used in a sampling procedure to create new datasets.

The above two references (Kerr and Churchill, 2001; Zhang

and Zhao, 2000) were designed at a time where replicated

microarray experiments were rare. They thus use various

assumptions and models to estimate the error (e.g. ANOVA,

gene independence, homoscedasticity) and simulate new

datasets. In this article, we propose a non-parametric bootstrap

approach, which uses the experimental repetitions to perturb

the data without any error distribution assumption.

2 METHODS

Briefly, our method is as follows. First, an original hierarchical cluster-

ing is computed in the standard way by using the average of experi-

mental repetitions for each gene. Next, the method involves disturbing

the data by resampling the repetitions of each measurement with

a bootstrap procedure; one again computes the averages using the

bootstrap samples, and carries out a new hierarchical clustering that

is compared with the original one, using a natural stability criterion and

a fast dynamic programming algorithm. Repeating this procedure

a number of times enables us to evaluate the stability of each cluster of

the original hierarchy. The general idea is that if resampling disturbance

substantially changes the elements of a cluster, it seems risky to take this

one into account for further analysis. On the contrary, if this cluster is

identified in the new hierarchy with only small differences and in spite

of disturbances, this means that the approximation made by the average

of the repetitions does not have a significant impact on this cluster and

hence that it can be selected.

In the following, we assume that clustering is performed on N genes

or proteins measured for T biological variables (e.g. a kinetic with

T time points). It is assumed that R repetitions of the N measurements

are carried out for each of the T biological conditions (our procedure

is easily extended to the case where the number of repetitions varies

among conditions). The dataset is denoted as D(N,T,R).

2.1 Stability criterion

We define T 0 as the original hierarchical clustering, obtained by averag-

ing repetitions for each gene and for each condition. Typically, we use the

Euclidean distance to estimate the similarity between gene expression

profiles, and infer the hierarchy using the Ward algorithm (Ward, 1963).

We use this approach in the experiments described below, but our

method is independent of these choices and could be used with other

components (e.g. with linear correlation coefficient and average linkage

algorithm). Then, for each condition, R samplings with replacement are

carried out in the R experimental repetitions. We thus obtain a new

dataset, denoted as D1(N,T,R). Repetitions of this new dataset are

averaged and a new clustering T 1 is computed. This procedure complies

with standard bootstrap theory; the R pseudo-repetitions provide a fair

(asymptotically unbiased) view of the variability within the R original

measures for each condition (Efron and Tibshirani, 1986).

The stability criterion we define aims to compare the two clusterings

T 0 and T 1. A hierarchical clustering tree of N genes involves a total of

(2N–1) nodes. For each node i¼ 1, . . . , (2N–1) of T 0, T 0(i) denotes the

cluster (set of genes) associated with i, and jT 0(i)j is the cardinal number

of this cluster. As there is a one-to-one correspondence between the

nodes and clusters defined by a hierarchy, we shall use both terms

indifferently, depending on the context. The same holds for the genes

and the tree leaves. For each node i of T 0, we use the following score

function derived from the Jaccard index:

Sði, T 1Þ ¼ max
j2f1;...;2N�1g

jT 0ðiÞ \ T 1ðjÞj

jT 0ðiÞ [ T 1ðjÞj
: ð1Þ

We obviously have 05S (i, T 1)� 1 for each node i of T 0. The score is

equal to 1 when there is a node j of T 1 that covers the same genes as those

covered by i in T 0, that is T 0(i)¼T 1(j). The criterion tends to 0 when the

number of genes in common tends to 0.

To obtain reliable stability estimates, this procedure is repeated

B times (typically B¼ 30). B datasets D1(N,T,R), . . . ,DB(N,T,R) are

generated from the original dataset with the previously described

sampling procedure, and B scores are computed for each node i of T 0.

Let S(i, T 1), . . . ,S(i, T B) be the B scores associated with node i. We

define the stability criterion for node i of tree T 0 as the average of the
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scores for the different resampled datasets:

SðiÞ ¼
1

B

XB

b¼1

Sði;T bÞ: ð2Þ

Given the properties of the score function S(i,.), we have 05S(i)� 1

for every node i.

Our method has several relevant features:

� The bootstrap sampling is structured: one independent sampling is

done for each of the T variables. This preserves the correlation

structure between genes, and simulates the variability that should

be obtained when performing new experimental measurements.

� Despite the small number of repetitions, the number of datasets

that can be obtained by bootstrap is RR�T. Thus, even if R and T

are relatively low, our bootstrap procedure samples from a very

large population of pseudo-datasets that mimic the variability of

the original data.

� In contrast with previous works (Kerr and Churchill, 2001; Zhang

and Zhao, 2000) on gene cluster validation, the proposed bootstrap

procedure is not based on a statistical model with assumptions such

as homoscedasticity—next relaxed in Kerr et al. (2002)—or gene

independence.

� The use of the Jaccard index instead of the classical stability

measure used in phylogenetic studies—and also proposed in Kerr

and Churchil (2001) and Zhang and Zhao (2000). In phylogenetics,

the stability of a cluster is measured by the ‘bootstrap proportion’,

i.e. the proportion of times this cluster is exactly found in the

bootstrap samples (Felsenstein, 1985). With (highly variable) gene

expression data this approach does not give satisfactory results,

because most of the clusters get stability around 0. This fact is

illustrated in the Experiments below.

2.2 Computing the stability criterion

Our approach requires to calculate, for each node i of T 0 and each node

j of T b, the value of the ratio jT 0ðiÞ \ T bðjÞj=jT 0ðiÞ [ T bðjÞj. Computing

the cardinal number of the intersection/union of two sets involves a

number of operations linear into the sum of their cardinal numbers.

Thus, the computation of the intersection/union cardinal of node i with

every node j takes O(N2) operations, which leads to a total time

complexity of O(N3) to compute Expression (1) for all nodes i. As these

computations are carried out at each iteration of the bootstrap

procedure, a more efficient algorithm is required. Fortunately, this is

allowed by the tree structure of hierarchical clustering. We use a

dynamic programming approach to compute, for each cluster i of T 0

and each cluster j of T b, the value of variables Iij and Cij, which

represents the number of genes that are in i and in j (i.e. jT 0(i)\T b(j)j),

and the number of genes which are in j and not in i (i.e. jT b(j)–T 0(i)j),

respectively. At the end of the algorithm, one computes the value of

jT 0ðiÞ \ T bðjÞj=jT 0ðiÞ [ T bðjÞj using equation

jT 0ðiÞ \ T bðjÞj

jT 0ðiÞ [ T bðjÞj
¼

Iij
jT 0ðiÞj þ Cij

: ð3Þ

The algorithm used to compute the Iij and Cij values is as follows.

First, the values (0 or 1) associated with each leaf j of T b and each node

i of T 0 are computed. This is done by a post-order traversal of T 0: for

each leaf i of T 0, the pair (Iij,Cij) is (1,0) or (0,1) depending on whether i

is equal to j or not (remember that the tree leaves are labeled by the

genes). Then, for an internal node i, the values are obtained by applying

a Boolean recurrence on the values computed on the children i0 and i0 0

of i, that is: Iij¼ Ii 0 j OR Ii 0 0 j and Cij¼Ci 0 j AND Ci 0 0 j (assuming, as usual,

TRUE¼ 1 and FALSE¼ 0). Next, a numerical recurrence is used to

compute the Iij and Cij values associated with each internal node j of T b.

This is done by a post-order traversal of T b that uses values computed

on leaves during the previous step: for every cluster i of T 0, we have

Iij¼ Iij 0 þ Iij 0 0 and Cij¼Cij 0 þCij 0 0, with j 0 and j 0 0 the child nodes of j.

During this tree traversal, we also compute the maximum over j of the

stability criterion (3).

In summary, we have two kinds of tree traversals: the first is

performed on T 0 for every leaf j of T b, the second is performed on T b

for every internal node of T 0. The total time complexity is therefore

O(N2). Note that this complexity is not higher than that of a

hierarchical clustering and does not constitute a handicap for the

bootstrap application. With Ward and average linkage algorithms (in

O(N2T)), application of our bootstrap procedure thus requires

O(N2TB) time, which can be achieved with most datasets.

2.3 Effect of cluster size on the stability criterion

A high-criterion value for a node of the tree indicates that the corre-

sponding cluster is stable. Nevertheless, one issue concerns the effect of

the size of the cluster on the computed stability. Very large clusters are

more likely to have high stability. For example, the criterion is always

equal to 1 at the root of the tree. In the same manner, small clusters also

tend to have high stability (leaves of the tree have stability 1).

This can be assessed by computing the stability criterion for different

cluster sizes under the hypothesis H0 that there is no structure in the

data. This is achieved with the following procedure. For each gene

separately, we randomly permute the T biological conditions, preserv-

ing all repetitions in each condition. Then we perform a new clustering

T
ð1Þ
0 of the permuted data, and compute for each node of T

ð1Þ
0 the

stability criterion with the above bootstrap procedure. This shuffling

procedure is repeated S times (e.g. S¼ 5000) and stability criterion

values are stored as a function of the cluster size. In this way, we build

the empirical distribution of the stability criterion for each cluster size

under the H0 hypothesis. From these empirical distributions, we derive

the critical values t�k , at significance level � (typically �¼ 1%) and for

each cluster size k (2� k�N–1). Once all the different estimations have

been done for each cluster size, the t�k curve is smoothed. This aims to

reduce the variability in t�k estimation. This smoothing is achieved using

a simple algorithm based on a sliding window of variable size

(Cleveland, 1981). This size is enlarged if the number of observations

under H0 is too small to give a reliable estimation of t�k . In this way, we

obtain the confidence region as a function of the cluster size.

The above procedure is time consuming (O(N2TBS)) and hence

cannot be applied in an exploratory analysis. However, as we will see in

the experiments of the next section, only very small (55 genes) and very

large (hundreds of genes) clusters tend to artificially have high stability.

As these clusters are generally not considered in the analysis, the

shuffling procedure is not required in practice if the stability threshold

used to select the clusters is sufficiently high (say 40.8). It can be

reserved to the case where clusters with medium (e.g. in the 0.6–0.8

range) stability have to be analyzed.

Another problem may arise for clusters made up of genes that have,

by chance, low variability among repetitions for all biological variables.

When this happens, these clusters appear stable (by chance). However,

this may only occur for very small clusters. When the number of genes

increases, it is highly unlikely to find a cluster mainly composed of

genes that have (by chance) low variability for all conditions.

3 NUMERICAL EXPERIMENTS

In this section, numerical experiments on simulated data are

reported, with N¼ 80 genes, T¼ 4 variables and R¼ 4 repeti-
tions. Any observation is denoted as yitr, where i, t and r stand

for the gene, the variable and the repetition, respectively.

Hierarchical clustering is achieved using Euclidean distance and

Ward algorithm (Ward, 1963).
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3.1 The simulated data

To simulate observations, we use a Gaussian mixture with K¼ 3

components. Observations for a gene i arise from one of the K

components. This component is denoted k. The observations

of the gene i in component k define a random vector

yki ¼ ðyki11; . . . , y
k
itr; . . . , y

k
iTRÞ of size TR. The vector yki verifies

equation ykitr ¼ �k
t þ �kitr where �k ¼ ð�k

1; . . . ; �
k
TÞ is the mean

vector for component k and �kitr is a random error such that

�kitr � Nð0; ð�kÞ
2
Þ. Parameter values we used in the simulations

are displayed in Table 1.

3.2 Results using the proposed approach

Figure 1A shows the hierarchical clustering that is achieved

with one simulated dataset. Symbols at the tree leaves denote

the class of the observations (Table 1). Note that the

observations are well classified, except two genes from class 3

which are assigned to class 2.
A standard approach in analyzing hierarchical clustering is to

cut the long branches to define the clusters of interest. Based on

this approach, 4 clusters would be distinguished, dividing class 3

(circles) into two sub-clusters. However, when looking at the

stabilities, we see that the two sub-clusters of class 3 are doubtful,

with stabilities around 0.6, and hence can be discarded.
We next compute the stability criterion under theH0 hypothe-

sis using the shuffling procedure of Section 2.3. In Figure 1B,

the curve defines the confidence region for �¼ 1%. Four points

clearly appear significant (above the curve), corresponding

to the 3 classes we generated, plus the union of class 1 and 2.

These two classes are close (Table 1) and are consistently

grouped together.
We also note that the boundary of the confidence region

markedly decreases for cluster sizes between 1 and 10, illustrat-

ing the fact that only very small clusters (less than five genes)

can have high stability underH0. In other words, for reasonable

cluster size and sufficiently high stability threshold (say

above 0.8), stability alone is sufficient to detect good clusters.

However, the smaller the stability threshold, the greater the

probability of selecting clusters with non-significant stability.

3.3 Comparison with SOTA

We analysed these simulated data with the clustering approach

of Herrero et al. (2001), implemented in the SOTA web server1.

This approach uses a divisive scheme: clustering is performed

from top (one cluster with all genes) to bottom (each gene is a

cluster). A variability criterion is used to guide and stop tree

growing. Cluster variability is measured by the pairwise com-

parisons of the expression profiles of the genes within the cluster.

When cluster variability is low (gene profiles are all similar),

cluster division is stopped and the corresponding clusters are

outputted by the program. Else, divisions continue until
homogeneous clusters are found. A shuffling procedure is

used to estimate the confidence level of the variability

criterion (called variability threshold by the program).

Cluster hierarchies found by SOTA are provided in

Supplementary Material.

By using the default value of the stopping criterion

(variability threshold equal to 90%), 20 clusters are identified

(see Supplementary Material). This is far from the three

simulated clusters. Cluster 1 and 2 can be recovered by

empirically decreasing the stopping criterion (see

Supplementary Material, variability threshold equal to 30%),

but in this case, cluster 3 is still divided into two sub-clusters.

Moreover, four genes from class 3 are assigned to class 2. With

a lower value (variability threshold equal to 20%), cluster 1 and

2 are grouped in a single cluster and cluster 3 remains

composed of two sub-clusters. So it seems impossible to

recover the simulated clusters, even by empirically changing

the threshold of the SOTA criterion. This comparison

illustrates how variability problems may lead to wrong

interpretations of the actual cluster structure, and shows the

usefulness of the information brought by the repetitions.

4 APPLICATIONS TO TRANSCRIPTOMIC
DATASETS

In this section, our method is applied to two transcriptomic

datasets. Just as above, hierarchical clusterings are performed

using the Euclidean distance and Ward algorithm (Ward, 1963).

4.1 Transcriptomic study of wood formation

4.1.1 Data Hertzberg et al. (2001) studied wood formation
in poplar by analyzing the profiles of 2995 expressed sequence

tags (EST) with cDNA-microarrays. The high organization of

secondary xylem revealed 6 different developmental zones,

which are ordered from the exterior of the trunk (phloem) to

the core, and are denoted as Phl, A, B, C, D and E. R¼ 4

repetitions were measured for each EST to compare the T¼ 6

conditions to the control sample. The expression ratios (ratio

between the condition and the control) were computed for all

genes at the T¼ 6 conditions. Only genes with a ratio greater

than 2 or less than 1/2 for at least one of the T¼ 6 conditions

were selected. This procedure reduced the size of the dataset to

N¼ 870. We clustered these genes using so-defined log-ratios.

4.1.2 Analysis The results of our approach are shown in
Figure 2. Only clusters with high (40.8) stability and more than

five genes are indicated. A large number of nodes are selected,

which indicates that this dataset is of good quality, with low

experimental and biological variability (compared with the

results of the next dataset). However, some clusters appear less

stable and are likely to be less relevant (e.g. all the clusters

under the left hand cluster with stability 0.9).

Table 1. Parameters of the mixture model for the simulated dataset

Component Component Mean vector Std. dev. Class

proportion �k �k symbol

k¼ 1 1/4 (0, 2, 4, 6) 5 *

k¼ 2 1/4 (0, 2, 4, 0) 5 j

k¼ 3 1/2 (8, 4, 2, 0) 30 �

1http://bioinfo.cnio.es/sotarray
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Let us illustrate the interest of the stability criterion by

focusing on two relatively small clusters (36 and 73 genes),

which cannot be divided into stable sub-clusters and have

a stability of 0.84 and 0.81, respectively. Because of these

features, we assume that these two clusters correspond to

homogeneous groups of coregulated genes. Both are sub-

clusters of the bold subtree in Figure 2, and are shown in more

detail in Figure 3A, along with the profiles of the corresponding

genes (Fig. 3B). We see from these profiles that genes in

Cluster 1 are under-expressed in the phlœm (Phl) and are not

differentially expressed in the other developmental zones.

Cluster 2 correspond to genes that are underexpressed in the

most internal zone. Overall, it is easy to interpret the two

selected clusters in terms of expression level in the different

wood zones, which should provide a starting point for more

in-depth transcriptional and functional studies.

Fig. 2. Hierarchical clustering and cluster stability with the wood

dataset. Clusters with high (40.8) stability are indicated; the bold

subtree is shown in more detail in Figure 3.
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Fig. 1. Analysis on simulated data. (A) Hierarchical clustering obtained using the Euclidean distance and Ward algorithm; nodes with stability

greater than 0.6 are indicated on the tree; nodes with significant stability are in bold. (B) Confidence region inferred by shuffling; horizontal axis

represents the cluster size, and vertical axis the stability criterion. Points above the curve correspond to clusters with significant stability (�¼ 1%),

and points under the curve to clusters with non-significant stability.
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stability of 0.81. (B) Profiles of the corresponding genes.
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Finally, the same analysis was carried out using the classical

phylogenetic bootstrap proportion (see Supplementary

Material). Most of the clusters have very low stability

(below 0.1), and only some very small clusters get moderate

stability, which illustrates the inappropriateness of this measure

when searching for stable clusters with microarray data.

4.2 Transcriptomic study on iron stress for

Arabidopsis thaliana

4.2.1 Data Data have been obtained with DNA chips to
study the response of A.thaliana to an iron excess. The expres-

sion levels of 24 960 probes for a kinetic of T¼ 6 time points

(5min, 15min, 30min, 60min, 6 h and 24 h) were measured.

After a filtering step similar to that of the previous study,

N¼ 733 probes were selected for clustering. The number of

repetitions was R¼ 4.

4.2.2 Analysis Figure 4 provides the results of our
approach. Only a few clusters are stable (40.8). The hierarchy

in Figure 4 thus appears globally unstable and the clusters have

to be considered with care. Few very small (55 genes), one large

(128 genes), and one very large (4400 genes) clusters have

stability above 0.8. Thus, apart from the large cluster, it seems

that this dataset cannot provide much useful information.

We then searched for over-represented Gene Ontology2 terms

among genes within several clusters selected on the basis of

their branch length (indicated by letters A–H in Figure 5).

We used the GOstat3 program of Beissbarth and Speed (2004)

for this analysis, with default parameters (P-value 0.01, and

Benjamini procedure for multiple testing). Interestingly, no

cluster apart from cluster C (the large stable cluster) exhibit

over-represented GO terms, which is in accordance with our

stability analysis.

In such a case, a natural approach is to use a lower stability

threshold, e.g. 0.7 instead of 0.8. However, this has to be done

with care, to avoid selecting non-significant clusters. Figure 5A

shows the clusters with stability above 0.7, while Figure 5B

displays the confidence region and the stability of the different

clusters. According to the latter, we see that all clusters with

reasonable size (45) and stability above 0.7 are actually

significant, and can be considered for further analysis. A few

significant clusters are thus added when dropping the stability

threshold from 0.8 to 0.7: some very small and uninteresting,

and one cluster with 12 genes and stability 0.77, which is

included in the large cluster C with stability 0.8 discussed

previously. A detailed analysis of this cluster and of cluster C

is presented in Supplementary Material. Basically, results

indicate that both cluster C and this sub-cluster contain

over represented GO terms; C terms correspond to heat and

light stresses, while sub-cluster terms correspond to heat stress

only.

Fig. 4. Results with Arabidopsis transcriptomic data. Clusters with

high (40.8) stability are indicated.
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Fig. 5. Results for Arabidopsis transcriptomic data. (A) Whole

hierarchy; cluster stabilities above 0.7 are indicated. (B) Decision

boundary under H0 (�¼ 1%); each point corresponds to one cluster in

hierarchy (A); points above the curve are significant; the right hand plot

zooms on the small clusters. Arrows indicate the large cluster C and the

small cluster of 12 genes (analysed in Supplementary Material).

2http://www.geneontology.org/
3http://gostat.wehi.edu.au/
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5 SOFTWARE

The programs used for these analyzes were developed in C and
R (http://cran.r-project.org) languages. Source code is available

at http://www.lirmm.fr/�brehelin/Stability/. The figures pres-
ented in this article were obtained directly with this code.

6 CONCLUSION AND DISCUSSION

In this work, we have dealt with the validation of clusters
derived from hierarchical clustering. In most cases, clustering
is based on averages from several experimental repetitions.

Such approaches are too direct due to the variability of
experimental measurements. The approach we propose uses
experimental repetitions, which provide information on the
variability of measurements across genes and conditions. Our

approach is non-parametric and based on bootstrap sampling
to measure cluster stability. Moreover, data shuffling can be
used to assess the significance of this measure. Experiments

with simulated data show that our approach is able to recover
the true cluster structure. Moreover, we illustrated its
capabilities on two different situations. First, when the whole

clustering is globally stable, the procedure points out the
doubtful clusters. Second, when the clustering is globally
unstable, it enables the discovery of some interesting clusters.

Our approach shares several features with the approaches
proposed by Kerr and Churchill (2001) and Zhang and Zhao
(2000), but also bears several differences. First, as already
discussed, our method uses non-parametric bootstrap, without

error modelling (e.g. ANOVA) and strong assumptions, such as
the independence of the error measurements among genes.
Second, the use of the Jaccard index avoids the low stabilities

obtained with standard phylogenetic bootstrap proportions,
due to the high variability of expression data. Finally, contrary
to Kerr and Churchill (2001) which takes place in a general

clustering framework, our approach is designed for hierarchical
clustering. Our dynamic programming algorithm enables to
rapidly compute the stability of all clusters of a hierarchy (e.g.
with the wood experiment, less than 2min are required on a

standard laptop), which allows the method to be used in the
context of exploratory analysis.
Concerning the P-value computation, from a practical

standpoint, the shuffling procedure is too time consuming to
allow an intensive and systematic application. However,
considering only clusters with high stability and reasonable

size allows this shuffling procedure to be avoided. The use of
the shuffling procedure should be reserved to cases requiring a
study of clusters with moderate stabilities.

Several directions deserve further investigations. The main
improvements would concern the statistical significance of our
stability criterion. An efficient procedure is clearly needed, in
place of our time-consuming shuffling method. Testing multiple

and (hierarchically) correlated class stabilities can also be an
important issue when the number of nodes selected for P-value
computation is large.
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L.Bréhélin et al.

688

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/5/682/202947 by IN
R

A Avignon user on 10 O
ctober 2023

http://cran.r-project.org
http://www.lirmm.fr/

