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Abstract

Finlay–Wilkinson regression is a popular method for analysing genotype–environment

interaction in series of plant breeding and variety trials. It involves a regression on the

environmental mean, indexing the productivity of an environment, which is driven by

a wide array of environmental factors. Increasingly, it is becoming feasible to charac-

terize environments explicitly using observable environmental covariates. Hence,

there is mounting interest to replace the environmental index with an explicit regres-

sion on such observable environmental covariates. This paper reviews the develop-

ment of such methods. The focus is on parsimonious models that allow replacing the

environmental index by regression on synthetic environmental covariates formed as

linear combinations of a larger number of observable environmental covariates. Two

new methods are proposed for obtaining such synthetic covariates, which may be

integrated into genotype-specific regression models, that is, criss-cross regression and

a factor-analytic approach. The main advantage of such explicit modelling is that pre-

dictions can be made also for new environments where trials have not been con-

ducted. A published dataset is employed to illustrate the proposed methods.

K E YWORD S

factor-analytic model, factorial regression, partial least squares, reduced rank regression,
singular value decomposition, synthetic covariate

1 | INTRODUCTION

The main challenge in the analysis of multienvironment trials (MET) in

plant breeding and variety testing is modelling and exploiting

genotype–environment interaction. One of the most popular methods

for this purpose is a regression of genotype performances in the indi-

vidual environments on the environmental mean. This method was

originally proposed by Yates and Cochran (1938) and later popularized

by the seminal paper by Finlay and Wilkinson (1963). We will hence-

forth refer to this approach as Finlay–Wilkinson (FW) regression. In this

regression, the environmental mean serves as an index for the environ-

mental conditions. These conditions are determined by a large array of

environmental variables, and it therefore seems natural to replace the

environmental mean with measurable environmental covariates. Early

treatments of such regression models for MET, also known as factorial

regression (FR) (Denis, 1988), are found in Abou-El-Fittouh et al. (1969)

and Freeman and Perkins (1971). The main challenge with FR is that

the number of environmental covariates may be large, which makes the

FR model very complex. Conversely, the kernel approach (Jarquin

et al., 2014) is based on a mixed model including an environmental

covariance matrix that is computed from the environmental covariates,

in the same way as a kinship matrix is computed from genotypic marker

data. This model leads to the estimation of a single variance parameter

for the genotype–environment interaction variance. Somewhere
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between the FR approach at the complex end of the scale and the ker-

nel approach at the simplistic end of the scale lies the idea to regress

the environmental mean on covariates, instead of regressing the

genotype–environment means on covariates separately for each geno-

type. This idea is so natural that it is hard to say who originally invented

it. It is probably fair to say that the idea underlies and motivates the use

of FW regression, even in cases where observable environmental cov-

ariates are not used in the analysis (Piepho, 2022). A rigorous treatment

of the idea in an MET context was first put forward by Hardwick and

Wood (1972), who showed how to estimate the model parameters by

the method of least squares. A partial least squares (PLS) approach to

fit the same kind of model was proposed by Aastveit and Martens

(1986), and this may be of particular interest when the number of cov-

ariates exceeds that of the environments. Van Eeuwijk (1992, 1995)

pointed out that these models are related to what is known as redun-

dancy analysis in psychology and as reduced rank regression in other

applied areas such as engineering (Davies & Tso, 1982). An early mathe-

matical treatment of the approach is found in Rao (1964).

All of the references considered so far assume that the genotype–

environment classification is complete and that the residuals from the

regression are independent with constant variance so that the ordinary

least squares method provides optimal estimates. It must be acknowl-

edged, however, that MET data are often unbalanced. Moreover, the

variance–covariance structure needed to fully represent the experi-

mental design, as well as to meet the objectives of the analysis, may

deviate from the simple structure assumed for ordinary least squares,

calling instead for a linear mixed model with additional random effects.

This may, in fact, be one reason why these methods have not yet

found very widespread use, despite an urgent need for such methods

in an era where environmental information is becoming readily avail-

able and breeders are keenly interested in leveraging such information

to make better selections and predictions (Cooper & Messina, 2021;

Costa-Neto et al., 2021; Diepenbrock et al., 2022; Resende

et al., 2021; Xu, 2016). The purpose of this paper, therefore, is to

review the classical work based on ordinary least squares and to

explore ways in which the approach can be extended to deal with

unbalanced data and the need to use a mixed model framework.

The rest of the paper is organized as follows. In Section 2, we

briefly recapitulate the FW regression model and common methods

for estimating it. Section 3 described the extension where the latent

environmental score is regressed on environmental covariates and

Section 4 considers the extension to more than one latent environ-

mental score. In all three sections, the residual is assumed to be inde-

pendent with constant variance so that ordinary least squares can be

applied. Our exposition in these sections mainly focuses on the

models and only sketches methods of estimation. In Section 5, we

consider the extension to mixed models and focus on those estima-

tion approaches in the preceding sections, which seem most suitable

for this extension. For these select methods, we then provide more

details of the estimation steps. An example is presented in Section 6

to illustrate and compare the methods. The paper ends with a discus-

sion in Section 7.

2 | FINLAY–WILKINSON REGRESSION

The FW model assumes that the response of different genotypes in

varying environments can be modelled using the linear predictor

(Mandel, 1961, eq. 12)

ηij ¼ αiþβiwj ð1Þ

where ηij is the expected performance of the i-th genotype (i=1, …, n)

in the j-th environment ( j=1, …, m), αi and βi are intercept and slope

for the i-th genotype and wj is a latent effect of the j-th environment.

The slope βi can be interpreted as a measure of sensitivity with small

absolute values indicating stable responses over changing environ-

ments (Becker & Leon, 1988). If the latent effect wj is mean-centred,

then the intercept αi assesses a genotype's mean performance. The

observed data are assumed to be genotype–environment means yij,

for which the model is yij ¼ ηijþeij, where eij are independently and

identically distributed residuals. For balanced data, Finlay and

Wilkinson (1963) estimated wj by the arithmetic mean of all observed

genotype mean yields, yij, that is, they used the estimator bwj ¼ y • j.

This, however, does not yield the least-squares fit of (1). The least

squares fit can be obtained by a singular value decomposition (SVD)

of the matrix yij�yi •
� �

, extracting the first singular vector for envi-

ronments (Hardwick & Wood, 1972; Williams, 1952; Yan &

Kang, 2003). Again, this assumes balanced data.

For unbalanced data, Digby (1979) proposed obtaining the least

squares fit by alternating least squares, also known as criss-cross

regression (CCR) (Gabriel & Zamir, 1979), and Ng and

Grunwald (1997; also see Ng & Williams, 2001) showed how to do this

using nonlinear least squares. The model is not linear in the parameters,

and some restrictions on the parameters is needed for the multiplicative

term βiwj. A further method that can be interpreted as an

expectation–maximization (EM) algorithm initially replaces the empty

cells of the two-way classification with initial values, then applies SVD

to the completed table, re-estimates the empty cells from the fitted

model, and so forth until convergence (Gauch & Zobel, 1990). We

here focus on the CCR and EM methods because they are easily gen-

eralized to mixed models and a regression on covariates.

3 | MODELLING THE ENVIRONMENTAL
MEAN USING ENVIRONMENTAL
COVARIATES

A downside of model (1) is that it cannot be used to predict the per-

formance in unseen environments. If wj can be replaced by an observ-

able covariate, such predictions become possible. However, a single

covariate rarely provides good predictions. Thus, a natural extension

is to do a multiple regression on several covariates (Denis, 1988;

Hardwick & Wood, 1972). Such an FR model quickly becomes very

complex, because each genotype needs to have a separate regression

coefficient for each environmental covariate.
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For these reasons, it is desirable to consider more parsimonious

alternatives. Specifically, one may consider regressing wj on p observ-

able covariates xjk (k=1, …, p), that is (Guo et al., 2021; Li et al., 2018),

wj ¼ θ0þθ1xj1þθ2xj2þ…þθpxjp ð2Þ

Importantly, this is just one multiple regression, instead of

n multiple regressions for n genotypes. Inserting this into (1), we find

ηij ¼ αiþβi θ0þθ1xj1þθ2xj2þ…þθpxjp
� � ð3Þ

It is seen that the regression model is not linear in the parameters

either, and there is an overparameterization that needs to be resolved.

Specifically, the intercept term αi is fully confounded with the multipli-

cative term βiθ0. In fact, because of this is confounding, we may drop

the intercept term θ0 without loss of generality, as this term will then

be absorbed by the intercept αi. The only caveat when dropping θ0 is

that the model no longer involves a regression on the environmental

mean. Instead, we have a regression on a synthetic covariate formed

as a linear combination of observable environmental covariates. As

this view is the most useful one for several of the methods considered

below, especially when extending the models to comprise more than

one synthetic environmental covariate (Section 4), we here also state

the corresponding reparameterized (and equivalent) model explicitly.

Thus,

ηij ¼ αiþβizj ð4Þ

where

zj ¼ θ1xj1þθ2xj2þ…þθpxjp ð5Þ

is a synthetic covariate. Note that when suitable observable covariates

are chosen, zj can be regarded as a stress index (Chapuis et al., 2012).

Several methods are possible to fit this regression model, and they differ

in the way they deal with the overparameterization. Here, we will con-

sider several options, starting from simple but approximate methods

assuming balanced data and ending with an approach that will yield the

least squares fit, which also works for unbalanced data, and is readily

extended to mixed models. Intermediate approaches give up optimality

of the final estimate, with the benefit of a simplification of the pivotal

step to find the values of the coefficients θk k¼1,…,pð Þ for the

synthetic covariate zj. In this section, it will be assumed that all

effects except the residual error term are fixed.

3.1 | Balanced data

(i) Consider the environmental averages based on (3):

η • j ¼ α • þβ • θ0þθ1xj1þθ2xj2þ…þθpxjp
� � ð6Þ

This model for environmental means suggests that a multiple

regression of observed environmental means y • j on the covariates

provides estimates of slopes eθk ¼ β • θk for covariates xjk k¼1,…,pð Þ

and the intercept α • þβ • θ0. Without loss of generality, we may then

use

zj ¼eθ1xj1þeθ2xj2þ…þeθpxjp ð7Þ

as our predictor for the environmental index in (4). This approach does

not yield a least squares fit.

(ii) Instead of using environmental means, we can use CCR

(Digby, 1979; Gabriel & Zamir, 1979; Hadasch et al., 2018) to iter-

atively estimate θ1,…,θp based on (5) in the criss step, then pre-

tend that these estimates are known constants, and estimate αi

and βi in the cross step until convergence. This method provides a

least squares fit.

(iii) We may fit the FR model

ηij ¼αiþ γi1xj1þ γi2xj2þ…þ γipxjp ð8Þ

and subsequently subject the matrix of fitted terms

bγi1xj1þbγi2xj2þ…þbγipxjp
� �

to an SVD. The first term of this

decomposition provides the least squares fit for βizj in (1) with zj

as given in (5) (Davies & Tso, 1982; Hardwick & Wood, 1972; van

Eeuwijk, 1992; Wood, 1976). The least squares fit for αi in (1) is

that obtained from the fit of (8). This approach is also known as

reduced rank regression or redundancy analysis (RA).

(iv) We fit (4) using the first factor extracted by partial least squares

(PLS; Aastveit & Martens, 1986; Vargas et al., 1998), regarding

the genotypic responses in an environment as a single multivari-

ate response. PLS is usually performed scaling both the response

variables and the covariates to zero mean and unit variance. For

MET data, it is preferable to preserve the original scale of the

genotypic responses. When using a multivariate PLS routine that

allows scaling to be suppressed, this analysis may be obtained by

scaling the covariates but not the responses before submitting

the data to the PLS routine with the scaling option switched off.

(v) We may fit (4) directly by nonlinear least squares (Ng &

Grunwald, 1997; Ng & Williams, 2001). We do not use this

method in the worked example in Section 6, because it is tedious

to implement for more than one synthetic covariate.

3.2 | Unbalanced data

Among the five methods for balanced data reviewed in Section 3.1,

method (i) cannot be used with unbalanced data. Methods (ii) and

(v) work equally with unbalanced data. Methods (iii) and (iv) can be

used with modification as described below.

(iii) Fit the FR model (8) and obtain the matrix of fitted terms

bγi1xj1þbγi2xj2þ…þbγipxjp
� �

of all cells, including the ones with no

data. Then proceed with RA as in (iii) in Section 3.1.

PIEPHO and BLANCON 623
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(iv) We can use a method akin to the EM method for fitting the

AMMI model (Gauch & Zobel, 1990). The method starts by filling

the empty cells of the genotype–environment classification with

some plausible values, for example, the genotype means. Then

multivariate PLS is applied to the completed data and predictions

are obtained to update the imputed values for the cells with miss-

ing data. This is repeated until predictions for the cells with miss-

ing data converge. For details, see Nelson et al. (1996). This EM

method is implemented in the PLS procedure of SAS. It does not

seem to be available in R but is easily programmed using any PLS

package for complete data.

4 | MORE THAN ONE SYNTHETIC
ENVIRONMENTAL COVARIATE

The model (4) may be extended as

ηij ¼ αiþβi1zj1þ…þβiqzjq ð9Þ

where zj1,…,zjq are the q synthetic environmental covariates and

βi1,…,βiq are the corresponding genotype-specific slopes. This model

may be estimated using the same methods as those in Section 3,

excluding method (i). The only additional requirement is that estim-

ability constraints, such as orthogonality, need to be imposed on esti-

mates of both zj1,…,zjq and βi1,…,βiq, when fitting explicit regressions

on observable environmental covariates of the form

zjh ¼ θ1hxj1þθ2hxj2þ…þθphxjp h¼1,…,qð Þ ð10Þ

Note that we have dropped the intercept terms θ0h, as these will

be confounded with the genotype-specific intercepts. Where an SVD

is used (methods iii and iv), constraints are automatically imposed

as part of the decomposition, and we here extract the first

q multiplicative terms. Where CCR or nonlinear least squares are used

(methods ii and v), the constraints need to be actively imposed on the

q multiplicative terms, e.g., by subjecting current estimates to an SVD

on each iteration (Hadasch et al., 2018). Below, we propose an

adaptation of CCR (ii in Section 3.1) to impose such constraints when

multiple synthetic environmental covariates are estimated.

To initialize the algorithm, an SVD is applied to the residuals

matrix from the additive model ηij ¼ αiþuj to obtain initial values

for zjh from the q first right vectors. In the last step of initialization,

zjh are fixed while αi and βih are estimated. Iterations start with the

criss step applied to shifted environment-genotype means

yij*= yij� ~αi, where ~αi is the current estimate of αi. An SVD is then

applied to the matrix of fitted terms for βi1zj1þ…þβiqzjq using (10),

and right vectors of an SVD provide an estimate of the q values of zjh.

Similarly, for the cross step, zjh are fixed while αi and βih are re-

estimated. An SVD is then applied to the matrix of fitted terms for

βi1zj1þ…þβiqzjq and left vectors of an SVD multiplied by singular

values provide estimates of βjh. Criss and cross steps are repeatedly

iterated until convergence. This procedure adequately imposes

orthogonality constraints that ensure estimability of the multiplicative

terms.

5 | RANDOM-EFFECTS EXTENSIONS OF
THE MODEL

If the regression model comprises random effects, it is referred to as a

mixed model. There are various reasons why random effects may be

needed with MET. Here, we will generally regard environments as a

random factor, assuming that trial environments represent a random

sample from a target population of environments (TPE). The assumption

of random environments is at the heart of different concepts of pheno-

typic stability, among which FW regression and its extensions are one

of the most prominent examples (Becker & Leon, 1988; Piepho, 1998).

Furthermore, this assumption is needed to project the model to unseen

environments in the TPE (Buntaran et al., 2021). This assumption will

therefore be made throughout this section. A second reason for intro-

ducing random effects is to allow genetic markers to be used for model-

ling genotypic effects as in genomic prediction (Bernardo & Yu, 2007;

Meuwissen et al., 2001). In this case, which is considered in Section 5.2,

the genotype factor needs to be modelled as random as well.

5.1 | All parameters in ηij are fixed

When modelling the variance over random environments, there are

different aspects calling for random-effects modelling. For example,

observed data may display heterogeneity of variance between geno-

types in the deviations from the regression line. This genotype-

specific variance has been proposed by Eberhart and Russell (1966) as

an additional stability parameter to the regression coefficient βik . Fur-

thermore, a covariance must usually be expected between genotypes

in the same environment due to a residual main effect for the shared

environment. This can be modelled, for example, by a random envi-

ronmental main effect. Thus, our model for the mean response yij of

the i-th genotype in the j-th environment may be written as

yij ¼ ηijþujþeij ð11Þ

where ηij is as defined in (9), uj is the random environmental main

effect with variance σ2u , and eij is a random with stability variance σ2e ið Þ
for the i-th genotype (Eberhart & Russell, 1966; Shukla, 1972).

Of course this is just one possible mixed-model extension. The

random deviations from the regression in (9) may be modelled in dif-

ferent ways depending on the data structure. For example, so far, we

have assumed that the model is fitted to genotype–environment

mean responses yij. Alternatively, replicate plot data may need to be

modelled, requiring additional random design effects. With perennial

crops or in long-term trials, it may be necessary to model serial corre-

lation of observations on the same plot (Macholdt et al., 2023). All of

these mixed-model extensions are straightforward with the general

approaches suggested in this section. The distinction between

624 PIEPHO and BLANCON
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balanced and unbalanced data becomes a moot point here, because

the variance–covariance structure used in the mixed model usually

implies that ordinary least squares estimation and the use of simple

arithmetic means for genotypes or environments in the estimation

process are not usually a good option even when the data are bal-

anced. Hence, we focus on the methods presented in Section 3.2. We

do not present an adaptation of the PLS method (iv) to mixed models,

because we are not aware of any proposed method or package that

would provide this. Thus, we focus on methods (ii), (iii), and (v).

(ii) Following Nabugoomu et al. (1999), the CCR approach of Digby

(1979) is easily extended in a mixed model framework. In the criss

step, estimating θhk k¼1,…,p;h¼1,…,qð Þ, we fix the variance

parameters at their current estimates to save computing time

because this usually has fewer parameters to be estimated as

fixed effects than the cross-step. These variance parameters

are re-estimated in the cross step, estimating αi and

βih i¼1,…,n;h¼1,…,qð Þ, using residual maximum likelihood (REML).

For an application of this method, see Macholdt et al. (2023).

(iii) We may fit FR model (8) under our assumed random-effects spec-

ification in (11) using REML. From the fitted model, we obtain the

matrix of fitted terms bγi1xj1þbγi2xj2þ…þbγipxjp
� �

of all cells,

including the ones with missing data. This matrix is subjected to

an SVD to estimate the parameters in (9) and (10). Next, we com-

pute zjk according to (10) and refit (9) to estimate αi and

βih i¼1,…,n;h¼1,…,qð Þ. As a refinement, we can consider a

weighted SVD using the approach of Hadasch et al. (2018), taking

into account the variance–covariance matrix of predictions

bγi1xj1þbγi2xj2þ…þbγipxjp
� �

.

(v) Fit (9) with (10) directly using full maximum likelihood

(ML) (e.g., using NLMIXED in SAS; also see Piepho, 1999). Note

that we cannot use REML because the model is nonlinear in the

parameters for ηij and hence the fixed effects cannot be

removed by linear contrasts as required in REML. Full ML does

not account for the degrees of freedom and hence leads to

more biased variance parameter estimates than REML with lin-

ear mixed models. These problems are expected to carry over to

the nonlinear mixed model (9) with (10). There is no REML

equivalent because the model is intrinsically nonlinear. The

important consequence is that in order to avoid the bias issues

with full ML, we need to resort to approximate methods such as

(ii) to (iv) that make use of REML.

Apart from the above modifications for mixed models, there is

always the option to use methods (ii) to (v) in the same way as in Sec-

tions 3.2 and 4 but applying these to fitted means ηij using a suitable

mixed model for the variation of the observed data around these

means. The main objective of applying those methods is to get coeffi-

cients θkh so we can compute the synthetic covariates zjh in (10). Once

these are available, we simply treat them as if they were known cov-

ariates. While this only constitutes an approximation and cannot be

optimal, partly because the fact is ignored that zjh involves coefficients

estimated from the data, it does have the advantage of simplicity. So

despite imperfections, this may be the most easily implemented

approach in practice.

5.2 | Some or all genotypic parameters in ηij are
random

When the number of genotypes is large, it may be advantageous to fit

both αi and βih as random. This may be particularly worthwhile when

marker information is available so kinship information can be used to

perform genomic prediction of both αi and βih by GBLUP (Resende

et al., 2021). Furthermore, genotypes need to be modelled as random

in case TPE is stratified into zones and we want to borrow strength

across zones (Buntaran et al., 2021).

It is not as straightforward as it may seem to simply switch from

fixed to random genotypes. This is because mixed model packages

assume that all random effects have an expected value of zero. This is

not a realistic assumption if we postulate the FW model (1) and its

extensions as considered so far, such as model (4). To see this, assume

the response indeed obeys (4); that is, we only have one synthetic

environmental covariate, and we now take both the intercept αi and

the slope βi to be random. We can assume that αi has expected value

μα and hence set αi ¼ μαþai with E aið Þ¼0 and var aið Þ¼ σ2a ¼ var αið Þ.
This can be fitted with a linear mixed model package because the

intercept enters the model linearly. We may consider the same

approach for the slope, setting βi ¼ μβþbi with E bið Þ¼0 and

var bið Þ¼ σ2b ¼ var βið Þ. The model (4) may then be rewritten as

ηij ¼ μαþaiþμβzjþbizj ð12Þ

The main challenge with this model is that the latent score, zj,

now appears both in the fixed-effects term μβzj and the random effects

term bizj (Piepho, 1999). The key point is that we cannot assume

μβ ¼0 without loss of generality, because there is no fixed environ-

mental main effect in (12) that would absorb this term. Also, μβzj is a

multiplicative regression term that may be worth fitting explicitly

rather than absorbing it into an environmental main effect. Further-

more, to ensure invariance to shift transformations (translations) of

the observable covariates, we need to allow for a covariance

between intercept and slope, that is, cov ai,bið Þ¼ σab (Piepho, 1999).

Either genotypes are modelled as independent or they are modelled

as correlated by kinship for GBLUP (Resende et al., 2021).

Two methods seem feasible for fitting this model and its exten-

sions to more than one synthetic environmental covariate. We may

apply a stage-wise approach by which we first model all parameters in

(9) and (10) as fixed, using either of the methods (ii) to (iv). This pro-

vides estimates of zj , which may then be held fixed and used in place

of zj in (12), using REML to fit μα , ai, σ
2
a , μβ , bi , and σ2b . Extension to

models with more than one latent environmental scale is straightfor-

ward. The other method is CCR, adapting the approach of

Nabugoomu et al. (1999).

A further option is to model the genotype-specific intercepts ai in

(12) as fixed, while modelling the slopes bi as random, thus obviating
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the need to fit a covariance between intercept and slope (Piepho &

Ogutu, 2002). This approach will be the focus of the remainder of this

section. We further add a fixed environmental main effect εj that

absorbs μβwj. Hence, the only random effect in ηij is the slope bi, and

the model can be written as

ηij ¼ αiþεjþbizj ð13Þ

with E bið Þ¼0 and var bið Þ¼ σ2b ¼ var βið Þ. This model is readily

extended to comprise several synthetic environmental covariates:

ηij ¼ αiþεjþbi1zj1þ…þbiqzjq ð14Þ

It will now be shown how (14) can be cast as a random-coefficient

FR model for the observed covariates, in which a factor-analytic

(FA) variance–covariance structure is assumed for the random regres-

sion coefficients. Let xj ¼ xj1,xj2,…,xjp
� �T

, so that zjh ¼ xTj θh with

θh ¼ θ1h,θ2h,…,θph
� �T

. Moreover, rewrite the random terms in (14) as

bi1zj1þ…þbiqzjq ¼ zTj bi ð15Þ

where zj ¼ zj1,zj2,…,zjq
� �T

and bi ¼ bi1,bi2,…,biq
� �T

. Now first consider

a random coefficient regression of the form

ηij ¼ αiþεjþxTj ci ð16Þ

where ci ¼ ci1,ci2,…,cip
� �T

with E cið Þ¼0 and var cið Þ¼Σc

(Longford, 1993). Next assume that we approximate the variance–

covariance matrix Σc by the model

Σc ¼ΛΛT ð17Þ

where Λ¼ λkhf g is a p�q matrix of factor loadings (Buntaran

et al., 2021; Tolhurst et al., 2022). This amounts to an FA structure of

order q for the regression coefficients ci without residual effects and

associated specific variances. To ensure estimability, we impose the con-

straints λkh ¼0 for h> k (Jennrich & Schluchter, 1986). This structure is

straightforward to fit using some mixed model packages. For example,

in SAS, this is the FA0(q) structure (we use this acronym henceforth

to denote the structure), and in ASReml-R, it is the rr() structure.

With this approximation, the regression term can be rewritten as

xTj ci ¼ xTj Λvi ¼ zTj vi ð18Þ

where vi ¼ vi1,vi2,…,viq
� �T

with E við Þ¼0 and var við Þ¼ Iq, and

zj ¼ΛTxj ð19Þ

Comparing coefficients between (15) and (18), it emerges that,

apart from a difference in scaling, we can equate vi with bi and Λ with

Θ¼ θkhf g. The important practical consequence of this observation is

that we can simply fit (16) with an FA0(q) structure for ci, extract the

estimate of Λ and use this in (19) to compute the q synthetic covari-

ates zj for any environment j, including unobserved ones, so long as

we have their covariate values xj. Furthermore, with this approach we

can subsequently set var bið Þ¼ Iq, if genotypes are to be modelled as

random. The full model (12) can then be refitted, taking intercepts ai

as random as well and allowing for a covariance among ai and bi. Alter-

natively, we may model genotypes as fixed for the final analysis and

regard the random-effects analysis as a convenient intermediate tool

for obtaining zj. In either case, the fixed regression term μΤ
β zj can now

be estimated explicitly in the final step, rather than absorbing this into

an environmental main effect as in (13). This approach for the final

step is approximate, as it treats zj as if these were observable covari-

ates not involving parameters.

6 | EXAMPLE

To illustrate the random-effects modelling discussed in Section 5, we

consider the lettuce data reported in van Eeuwijk (1992) as means per

genotype and environment. All analyses were implemented in both

SAS and R, and the full code for both packages is found in the

Supporting Information. The response is nitrate concentration. The

data is balanced and stems from a single replicated trial, in which eight

genotypes were evaluated at 18 points in time, which are regarded as

environments for our analyses. The data comprise eight observed

environmental covariates, which are scaled here to zero mean and

unit variance for all regression analyses. We start by fitting model

(16), dropping the covariate terms, leaving the structure αiþεj. Our

baseline model in Table 1 has independent (ID) residual effects eij with

constant variance. Replacing this by an AR(1) model for serial correla-

tion of observations on the same genotype across the 18 times (envi-

ronments) leads to a substantial drop in the Akaike information

criterion (AIC) (Wolfinger, 1996), indicating that serial correlation is

important for this repeated measures data. Next, we add random

effects xTj ci as in model (16) and fit an FA0(1) structure for the

TABLE 1 Model selection of covariance structure for lettuce data using fixed effects αiþεj.

Model Random effectsa Structure for random effects Residual error structure �2 � residual log-likelihood (deviance) AIC

M1 - - ID 52.2 54.2

M2 - - AR(1) 4.4 8.4

M3 xTj ci FA0(1) AR(1) �36.2 �16.2

M4 xTj ci FA0(2) AR(1) �52.0 �18.0

aThe covariates were standardized to zero mean and unit variance.
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covariance among random slopes ci. This leads to a further marked

drop in AIC, showing that the covariates are important. The variance

parameter estimates of the FA0(1) model are given in Table 2 for illus-

tration. The serial correlation of 0.40 is non-negligible. The estimated

loadings are used to compute the synthetic variable z1= λ1x1+…

+ λ8x8 (see Equation 19). With this, we then fit model (4), adding a

random main effect uj �N 0,σ2u
� �

for environments and using the

AR(1) model for the residual. Regression with this covariate has a sig-

nificant interaction with genotype (Table 3), indicating there are dif-

ferences in sensitivity. The sensitivities (slopes) as well as the

intercepts for the eight genotypes are shown in Table 4. The variance

explained is substantial, as a comparison of the models with and with-

out covariate shows (Table 5). Adding a second latent factor using

FA0(2) leads to a further improvement in fit (Table 1). Detailed results

are omitted here for brevity.

For comparison, we also used CCR, PLS, and RA to obtain the

synthetic environmental covariate z1 (Tables 4 and 5). For further

comparison, we also included classical FW regression results in

Table 4, centring the environmental mean by subtracting the overall

mean. The different methods result in very similar intercept estimates

with a correlation equal to 1 between all methods. Even though there

are differences of scale, the results in terms of sensitivities are also

very similar, except for FW and RA which show some more notable

differences (Table 4, Figure 1). The variance explained is also compa-

rable between the different approaches (Table 5).

Table 6 gives an overview of the fits obtained by the different

methods and models when using the full likelihood, thus permitting

comparison of models with different fixed effects (Wolfinger, 1996).

We followed Verbyla (2019) and plugged the REML estimates of the

variance parameters into the full likelihood. The AIC values in Table 6

reveal that CCR provides the best fit among the methods using a sin-

gle synthetic covariate (z1) or two (z1, z2), closely followed by

FA. These fits are also better than FR, which has a large number of

parameters. Leave-one-environment-out cross-validation confirms

that models with two synthetic covariates have an edge compared

with models with just one synthetic covariate and outperform FR

(Figure 2).

TABLE 2 REML estimate of variance parameters in Model M3 of
Table 1 (q = 1) for lettuce data.

Parameter Estimate S.E.

λ1 0.009574 0.02459

λ2 �0.06102 0.06146

λ3 0.2711 0.1355

λ4 �0.2763 0.1173

λ5 0.07636 0.07623

λ6 0.01464 0.03586

λ7 0.09994 0.06392

λ8 0.07464 0.04965

ρ 0.3999 0.1128

σ2 0.02897 0.005395

TABLE 3 Wald-type F tests for
regression with synthetic variable z
obtained from FA0(1) model. Lettuce
data.

Effect Numerator d.f. Denominator d.f.a F-value p-value

Genotype 7 15.5 166.54 <0.0001

z 1 16.7 8.10 0.0113

Genotype � z 7 42.3 12.58 <0.0001

aDetermined using the Kenward–Roger method.

TABLE 4 Intercepts and slopes of regression with a single synthetic environmental covariate z1 = λ1x1 + … + λ8x8 computed using different

methods (FW, FA, PLS, CCR, RA). Lettuce data.

FW FA PLS CCR RA

Genotype Intercept Slope Intercept Slope Intercept Slope Intercept Slope Intercept Slope

DM 3.0522 0.9742 3.0839 �2.9612 3.0875 0.2329 3.0858 1.9170 3.0873 2.2339

GT 2.4108 1.0172 2.4167 �1.0517 2.4188 0.1054 2.4163 0.7356 2.4187 1.7344

Ls 2.7496 1.2349 2.7131 �0.4989 2.7115 0.08166 2.7122 0.4153 2.7303 1.7400

Pa 3.4514 0.8500 3.4619 �2.6359 3.4601 0.1842 3.4632 1.6925 3.4651 1.8102

Pi 2.8582 0.8485 2.8677 �1.9980 2.8673 0.1589 2.8680 1.2769 2.8616 1.4612

RW 2.5074 0.9231 2.4858 �0.05262 2.4832 0.02304 2.4840 0.08799 2.4824 1.0372

Tr 1.7710 1.2111 1.7689 �1.9027 1.7700 0.1555 1.7697 1.2987 1.7886 2.3813

Wi 2.6687 0.9410 2.6687 �0.8141 2.6688 0.07303 2.6680 0.5761 2.6646 1.3852

Standard errora 0.1262 0.1156 0.1076 0.5911 0.1024 0.04263 0.1036 0.3485 0.1046 0.3531

aIn each column for a parameter, the standard error is the same for all genotypes. Standard errors were adjusted using the Kenward–Roger method.
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7 | CONCLUDING REMARKS

Among the different methods for obtaining synthetic environmental

covariates to be used in model (4), the FA, CCR, and PLS approaches

did best in the example. However, the FA approach, which models

genotype-specific regression coefficients ci for the observed environ-

mental covariates xj as random, is much easier to implement than the

closest competitor, CCR, especially when use of more than one syn-

thetic covariate is considered. Both of these methods for obtaining

the synthetic covariates use a mixed model that is commensurate with

the model finally fitted once the synthetic covariates are obtained. By

contrast, the PLS and RA approaches do not fully take the final mixed

model into account when estimating the synthetic covariates, as they

essentially assume i.i.d. residual errors. The main advantage of the PLS

approach over all other approaches considered here is that it can han-

dle a larger number of observed covariates.

Using synthetic environmental covariates zjh allows fitting more

parsimonious regression models than when regressing directly on

observed environmental covariates. Not only does this allow a more

efficient analysis, but it also facilitates interpretation. When there are

p observed environmental covariates xjk, FR involves p regression

coefficients for each genotype, which may be difficult to interpret

when p is large. By contrast, if these p observed covariates are used

to form a single synthetic covariate, a single regression coefficient is

involved per genotype, and this can be interpreted as a sensitivity

parameter, as with FW regression. It may be reiterated that in terms

of numbers of parameters, our extended FW models with syntheticT
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F IGURE 1 Correlation between genotypic slopes (βi) estimated
with different models. The lower triangle shows the link between the
slopes estimated with the different approaches, with the regression
line in red, while the upper triangle shows the corresponding
coefficient of correlation. [Color figure can be viewed at
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covariates fall between FR (Denis, 1988) at the complex end of the

scale and reaction-norm models (Jarquin et al., 2014), which essen-

tially fit a single ‘environmental kinship’ matrix computed from all

covariates, at the parsimonious end.

Our FA model in Section 5.2 has similarities with the model pro-

posed by Tolhurst et al. (2022). Those authors initially model environ-

ments as fixed (see their model (1)), whereas we model environments

as random throughout (except when extracting synthetic covariates

using FA). When extending their model to allow for environmental

covariates, the authors do consider a random environmental effect for

deviations from the fixed-effects regression on covariates xj to model

the environmental main effect. The regression on observed covariates

xj would absorb our term μβzj. However, their model does not employ

the more parsimonious regression on the synthetic covariates in the

fixed part of the model, which is a major difference from our model.

Also, synthetic variables zj do not feature explicitly in the random part

of their model, but they do so implicitly. Conversely, one aspect of

our approach is that not only synthetic variables zj, but also the geno-

typic sentivities βi and the genotypic mean performance αi emerge

directly from the model, which eases the interpretation of genotype–

TABLE 6 Deviance (full likelihood) and Akaike information criterion (AIC) for different models, plugging in REML estimates of variance
parameters (Verbyla, 2019). Lettuce data.

Environmental covariates Method to obtain synthetic covariate(s) Deviance Number of parameters AIC

z1 FA �70.5 26 �18.5

z1 PLS �53.0 26 �1.0

z1 CCR �71.5 26 �19.5

z1 RA �37.0 26 15.0

z1, z2 FA2 �113.2 33 �47.2

z1, z2 PLS2 �66.9 33 �0.9

z1, z2 CCR2 �116.2 33 �50.2

z1, z2 RA2 �106.2 33 �40.2

x1–x8 - �142.7 75 7.3

- - 11.1 11 33.1

F IGURE 2 Predictive ability of
different models for new environments,
evaluated as the correlation coefficient
between predicted and observed nitrate
concentration in a leave-one-
environment-out cross-validation scheme.
RA2, FA2, CCR2, and PLS2 correspond
respectively to RA, FA, CCR, and PLS
models with two synthetic covariates.
Horizontal lines in the box correspond to
the medians, and circles indicate outliers.
The box spans the interquartile range, and
the whiskers correspond to 1.5 times the

interquartile range.
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environment interactions and the variety evaluation. Another differ-

ence is that Tolhurst et al. (2022) model genotypes as random

throughout. Specifically, they fit random intercepts ai (our notation)

throughout, allowing for a covariance with slopes ci. Hence, the inter-

cept is included in their FA structure for the random regression on the

observed covariates (see their eq. (17)). From this, one could also

extract coefficients for zj, but because of the presence of the random

intercept, these would be different from the method used in the pre-

sent paper. By contrast, in our example, we only fit random effects for

slopes ci, while modelling intercepts αi as fixed, thus obviating the

need to fit the covariances among ai and ci, which can be

numerically challenging (Buntaran et al., 2021). The primary purpose

of fitting our random-effects regression on observed environmental

covariates is to estimate coefficients for the synthetic environmental

covariates zj in Equation (19). This is just an intermediate step before

fitting the final model, which may have fixed genotypic slopes for the

regression on zj.
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