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Abstract 
Precision feeding is a strategy for supplying an amount and composition of feed as close that are as possible to each animal’s nutrient require-
ments, with the aim of reducing feed costs and environmental losses. Usually, the nutrient requirements of gestating sows are provided by a 
nutrition model that requires input data such as sow and herd characteristics, but also an estimation of future farrowing performances. New 
sensors and automatons, such as automatic feeders and drinkers, have been developed on pig farms over the last decade, and have produced 
large amounts of data. This study evaluated machine-learning methods for predicting the daily nutrient requirements of gestating sows, based 
only on sensor data, according to various configurations of digital farms. The data of 73 gestating sows was recorded using sensors such as 
electronic feeders and drinker stations, connected weight scales, accelerometers, and cameras. Nine machine-learning algorithms were trained 
on various dataset scenarios according to different digital farm configurations (one or two sensors), to predict the daily metabolizable energy and 
standardized ileal digestible lysine requirements for each sow. The prediction results were compared to those predicted by the InraPorc model, 
a mechanistic model for the precision feeding of gestating sows. The scenario predictions were also evaluated with or without the housing 
conditions and sow characteristics at artificial insemination usually integrated into the InraPorc model. Adding housing and sow characteristics 
to sensor data improved the mean average percentage error by 5.58% for lysine and by 2.22% for energy. The higher correlation coefficient 
values for lysine (0.99) and for energy (0.95) were obtained for scenarios involving an automatic feeder system (daily duration and number of 
visits with or without consumption) only. The scenarios including an automatic feeder combined with another sensor gave good performance 
results. For the scenarios using sow and housing characteristics and automatic feeder only, the root mean square error was lower with gradient 
tree boosting (0.91 MJ/d for energy and 0.08 g/d for lysine) compared with those obtained using linear regression (2.75 MJ/d and 1.07 g/d). The 
results of this study show that the daily nutrient requirements of gestating sows can be predicted accurately using data provided by sensors 
and machine-learning methods. It paves the way for simpler solutions for precision feeding.

Lay Summary 
New technologies, such as sensors and automatons, are being developed in agriculture to reduce workload or help farmers make management 
decisions. The most common approach to the analysis of the huge amount of data generated by these technologies is to use machine-learning 
algorithms, to detect health or welfare problems for example. The hypothesis was that these automatically collected data and algorithms could 
also serve to predict the nutrient requirements of gestating sows, usually calculated based on complex models that require a lot of on-farm input 
data. The predictions of 22 scenarios were compared based on different combinations of sensor data, with the prediction of a nutritional model 
for gestating sows. The results of nine algorithms applied to the different scenarios were also compared. The results suggested that feeder 
data, alone or in combination with another sensor, predicted nutrient requirements with high accuracy. Data from other sensors combined with 
additional information about the sow (i.e., age and body weight) also led to high prediction accuracy. The difference between the algorithms eval-
uated was relatively significant, but all showed acceptable prediction results, especially non-linear algorithms. In conclusion, this work demon-
strated the possibility of accurately predicting daily nutrient requirements for each sow using sensor data and machine-learning algorithms.
Keywords: artificial intelligence, automaton, behavior, model, pig, precision feeding
Abbreviations: BT, backfat thisckness; ESF, electronic sow feeder; GTB, gradient tree boosting; KNN, k-nearest-neighbors; LASSO, linear regression with a 
LASSO regularization; LR, linear regression; MAPE, mean absolute percentage error; ME, metabolizable energy; MLP, multilayer perceptron; PR, polynomial 
regression; RF, random forest; R2, coefficient of determination; RFID, radio frequency identification; RIDGE, linear regression with a RIDGE regularization; RMSE, 
root mean square error; SID Lys, standard ileal digestible lysine; SVR, support vector machine for regression

Introduction
Precision feeding can be defined as a nutritional strategy 
aimed at matching feed supply as close as possible to an indi-
vidual’s nutrient requirements, to prevent nutrient supply 

deficit and excess (Pomar et al., 2019). For gestating sows, 
this strategy reduced lysine intake by 25%, nitrogen excretion 
by 18.5% (Gaillard and Dourmad, 2022), and feed costs by 
3.4€ per gestation (Gaillard et al., 2020a) without impacting 
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sow performances. Precision feeding is based on the avail-
ability of smart feeders that make it possible to supply feed 
at individual or small group levels, based on the accurate 
prediction of nutrient requirements and the determination of 
the nutritional value of feed ingredients. Electronic feeding 
stations allow individual feed supply (Gaillard et al., 2020b), 
and tables are available for determining the nutrient value of 
feed (Sauvant et al., 2004). The nutrient requirements of ges-
tating sows are usually provided by a mechanistic nutrition 
model that requires inputs such as herd performances, sow 
age, and body condition at artificial insemination, but also an 
estimation (or actual data a posteriori) of farrowing perfor-
mances (Cooper et al., 2001; Hansen et al., 2014; Gaillard et 
al., 2019).

Sensors and automatons are being increasingly used on 
farms (Galaz et al., 2021) to automatize tasks, manage large 
groups of animals in real time, or help optimize production 
costs (Berckmans, 2017; Neethirajan, 2020; Siegford and 
Guzhva, 2021). These technologies allow individual monitor-
ing thanks to Radio Frequency Identification (RFID) (Mahfuz 
et al., 2022). The huge amount of real-time data collected, 
especially behavioral data, requires efficient approaches to 
classification or prediction issues, such as machine learning 
(Neethirajan, 2020; Llonch et al., 2022). Indeed, machine 
learning uses methods that learn from data to solve a specific 
task, such as classification or clustering, prediction, anomaly 
detection, or recommendation (Géron, 2019). These algo-
rithms have already been used on pig feeder data to predict 
biting outbreaks with an accuracy of 96% (Ollagnier et al., 
2023) and to predict body weight with an accuracy of 89% 
(He et al., 2021).

This study aims to explore the prediction of daily and indi-
vidual nutrient requirements (here defined as metabolizable 
energy [ME] and standardized ileal digestible amino acids) of 
gestating sows based on data measured by sensors (electron-
ics feeder and drinker, automatic weighting system, camera 
and accelerometer). This study also proposes to test various 
digital farm configurations and to compare the results accord-
ing to the number and type of sensors (22 scenarios), as well 
as nine different machine-learning algorithms (linear-based, 
polynomial, Tree-based, support vector machine, nearest 
neighbor, and neural network).

Materials and Methods
This study was carried out from July to April 2021, at the Pig 
Physiology and Phenotyping Experimental facilities (UE3P, 
doi: 10.15454/1.5573932732039927E12) of the French 
National Research Institute for Agriculture, Food and the 
Environment (INRAE) located in Saint-Gilles (France). Ethi-
cal approval concerning the French legislation on experimen-
tal animal care was given by the Ethics Committee for Animal 
Experimentation in Rennes, France (authorization for exper-
iments on living animals No. 25883-2020070711528084). 
The data used in this study is available for public access and 
described in the data paper (Durand et al., 2023).

Overall approach
The study was designed to evaluate the prediction of the 
nutrient requirements of sows based on sensor data and 
machine-learning methods. The first question to be answered 
is the following: “What is the best sensor(s) that may be 
required on a farm for correctly predicting sow nutrient 

requirements?” Other questions regarding algorithm optimi-
zation are considered: (i) “Which is the best algorithm, i.e. 
with the highest accuracy, for predicting those requirements?” 
(ii) “Does the integration of sow and housing characteristics 
into the predictive variables improve prediction?”

Predicting nutrient requirements is a regression problem 
since it is needed for predicting continuous values. For that 
purpose, nine supervised algorithms were chosen for their 
high performance in regression tasks as well as their repre-
sentability of the diversity of machine-learning algorithms 
(Géron, 2019). A linear regression (LR), the LR with a LASSO 
regularization (LASSO), the LR with a RIDGE regularization 
(RIDGE), a polynomial regression (PR), a support vector 
machine for regression (SVR), a random forest (RF), a k-near-
est-Neighbors (KNN), a gradient tree boosting (GTB), as well 
as a multilayer perceptron (MLP), were therefore evaluated.

The supervised machine-learning algorithms were trained 
on different scenarios to represent digital farm configurations 
with one or two sensors, to limit investment costs for farmers. 
Five sensors were considered for their availability during the 
study:

• The presence of an electronic sow feeder (ESF) for re-
cording feeding behavior (scenario 1).

• The presence of an automatic weighing system in the ges-
tation room (scenario 2).

• The presence of accelerometers (scenario 3i) or cameras 
(scenario 3g) for measuring individual or group activity, 
respectively.

• The presence of electronic drinkers for recording drink-
ing behavior (scenario 4).

A total of 11 scenarios were defined (Figure 1) depending on 
farm sensor configurations (a single sensor, or a combination 
of two sensors). Each scenario was tested with the possible 
addition of sows and housing characteristics (11 scenarios) or 
without (11 scenarios). The sow and housing characteristics 
included the average temperature measured in the gestation 
room (throughout the gestation), body weight, backfat thick-
ness, and the age of the sow on the day of the artificial insem-
ination. In all scenarios (with or without sow and housing 
characteristics), the “Day of gestation” variable was consid-
ered to take into account the “bump feeding” (i.e., an increase 
in feed supply) after 85 d of gestation.

Nutrition model INRAPorc (Dourmad et al., 2008) mod-
ified by Gaillard et al. (2020a) produced reference values of 
ME (in MJ/d) and standard ileal digestible lysine (SID Lys, 
in g/d) (Figure 2). These reference values have been used to 
evaluate the results provided by machine-learning techniques. 
These values were calculated ex-post, by taking into account 
the average daily temperature measured in the gestation room, 
the daily individual time spent in a standing position (given 
by accelerometers), the farrowing performances (number and 
weight of piglets), and the daily body weight (Table 1).

Data collection and pre-processing
A total of 73 crossbred sows (8 primiparous and 65 multip-
arous), housed in four gestation rooms, were studied from 
a few days after artificial insemination to nearly the end of 
their gestation (104 d). The ambient temperature (°C) was 
continuously measured (every 5 min) in the gestation rooms 
thanks to sensors set up at 1.8 m above (Lascar Electronics, 
Salisbury, United Kingdom, precision ± 0.45 °C).
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Feeding behavior, including each visit to the feeder, the 
number and duration (in minutes) of feeding visits (and 

the amount of feed consumed), the number and duration 
of non-feeding visits (without consumption), and the feeder 
access order, was collected thanks to two self-locking ESF 
(Gestal, JYGA Technologies Inc, Quebec, Canada) and 
by identifying the sow using their RFID ear tag (Table 2, 
scenario 1). The body weight of each sow was measured 
weekly using a scale (Schippers, Hapert, the Netherlands, 
precision ± 5 kg) and uniformly distributed on a daily basis 
using the Weibull equation (Quiniou, 2021) (Table 2, sce-
nario 2).

Sows were also equipped with a tri-axial accelerometer 
(RF-Track, Rennes, France), to record their physical activities 
on an individual scale: the time (in minutes) spent lying down, 
standing, moving, and the number of posture changes (Table 2, 
scenario 3i). Two cameras (RS-CCPOE280IR4-DH, Ro-main 
Inc., Quebec, Canada) mounted on the gestation room ceiling 
continuously recorded the sow pen. The physical activities of the 
sows were evaluated on a group scale by automatically analyzing 
videos with a convolutional neural network algorithm (Dilepix, 
Rennes, France; Durand et al., 2021). Both tools, the accelerom-
eter and algorithm, produced data every 30 minutes, as a repre-
sentative summary of the last 30 min. This algorithm’s outputs 
were the proportion of sows in different positions: ventral lying, 
lateral lying, standing, sitting, eating, and drinking (Table 2, sce-
nario 3g). Another RFID ear tag was used to record the drinking 
behavior of sows at two electronic drinkers (Asserva, Lamballe, 

Figure 1. Creation of scenarios with or without sow and housing characteristics based on various sensors (one only or two combined) used in the study.

Figure 2. Evaluation of the algorithm’s performance with the nutrition model.

Table 1. Description of the daily variables predicted and used in the 
nutritional model as well as sow and housing characteristics

Variables Primiparous Multiparous

Number of sows 8 65

Nutritional model inputs

  Age at insemination, d1 275.30 ± 15.30 821.63 ± 322.85

  Body weight of sows, kg1 163.30 ± 7.70 238.14 ± 37.08

  BT2 of sows, mm1 17.125 ± 2.62 15.52 ± 3.13

  Daily temperature, °C1 19.60 ± 2.47 20.38 ± 2.30

  Time in standing position, h/d 4.26 ± 1.28 3.93 ± 1.99

  Number of piglets stillbirth 15.60 ± 3.18 16.35 ± 4.40

  Weight of litter, kg 21.80 ± 3.90 23.94 ± 4.88

Predicted

  SID LYS3, g/d 10.29 ± 2.30 8.76 ± 2.62

  ME4, MJ/d 32.40 ± 2.92 36.03 ± 4.06

1Features defining “sow and housing characteristics” on the model.
2Back fat Thickness.
3Standard ileal digestible lysine.
4Metabolizable energy.
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France): the number and duration of visits with or without water 
consumption, and the total quantity of water drunk (in L) (Table 
2, scenario 4).

Sensor data was cleaned to avoid outliers and regrouped 
on a daily scale (Table 2). All visits to the ESF lasting over 6 
h (less than 1% of observations) and all hourly accelerometer 
data with a sum different from a 1 h duration (less than 1% 
of observations) were removed from the dataset.

Algorithm hyper-parameter tuning and evaluation 
of performances
The supervised machine-learning algorithms were imple-
mented in Python using the scikit-learn library (Pedregosa et 
al., 2011). The 8,323 observations (an observation being a 
sow per day of gestation, ‘n’ in the metrics formula) were ran-
domly split 100 times (‘t’ in the metrics formula) into a train-
ing dataset (70% of the original dataset) and a test dataset 
(30%), to avoid possible overfitting of the predictive learning 
model. A K-fold learning strategy was also tested without giv-
ing better results, these K-fold results are therefore not pre-
sented in this paper.

To optimize the performance the hyper-parameter tuning 
(detailed in Table 3) was evaluated through a 3-fold cross-val-
idation method on the training dataset due to the limited 
amount of data (70% of the global dataset) (Pedregosa et 
al., 2011). Hyper-parameter tuning was carried out for each 
tested ML algorithm and each scenario.

The relevance of sow and housing characteristics vari-
ables (Table 1) was tested in an ablation study for the best 
algorithm and scenario (one sensor). These variables were 

excluded from the dataset one after the other, and the perfor-
mance results were compared.

Three metrics were used to evaluate the performances of the 
prediction model ( in the metrics formula) applied to the test 
dataset: the coefficient of determination R2 score (between 0 
and 1), the root mean square error (RMSE, in the unit of the 
predicted variable), and the mean absolute percentage error 
(MAPE, in %). Let us recall that the reference values (‘y’ in the 
metrics formula) are given by the INRAPorc nutrition model 
applied to individual sows (Gaillard et al., 2020a). The R2 score 
measures the quality of the regression prediction and allows 
a comparison between models. The RMSE and MAPE values 
were used to measure the accuracy and prediction errors of the 
models. The higher the R2 score, and the lower the RMSE and 
MAPE values, the higher the accuracy of the prediction. A mean 
value of the metrics was calculated based on the 100 validation 
steps of the split dataset, to increase the repeatability of the pre-
sented results and avoid overfitting.

R2 = 1−
∑n

t=1 (yt − ŷt)
2

∑n
t=1 (yt − ȳ)2

RMSE =

Ã
1
n

n∑
t=1

(yt − ŷt)
2

MAPE =
100
n

n∑
t=1

∣∣∣∣
yt − ŷt
yt

∣∣∣∣

Table 2. Description of the variables studied per scenario, as a daily mean value by parity (primiparous and multiparous sows)

Scenario Variables Primiparous Multiparous

n = 8 65

1 (feeder) Number of NNV1 3.93 ± 2.77 5.27 ± 3.60

Number of NV2 1.01 ± 0.14 1.02 ± 0.16

Duration of NNV1, min 21.75 ± 37.25 31.63 ± 42.14

Duration of NV2, min 33.80 ± 15.79 33.81 ± 25.33

Feeder order 15.81 ± 2.07 8.84 ± 3.73

2 (weight scale) Live body weight mean, kg 191.17 ± 22.47 266.23 ± 35.43

3i (accelerometer) Lying time, h 17.28 ± 3.10 18.12 ± 3.17

Standing time, h 4.26 ± 1.28 3.93 ± 1.99

Moving time, h 1.29 ± 0.75 1.10 ± 0.77

Postures changes, n 39.77 ± 14.70 34.46 ± 17.98

3g (camera) Side lying time, % 54.96 ± 9.42

Ventral lying time, % 19.89 ± 5.18

Standing time, % 20.71 ± 5.36

Sitting time, % 1.11 ± 0.88

Eating time, % 2.68 ± 1.94

Drinking time, % 0.62 ± 0.34

4 (drinker) Number of NNV1 3.51 ± 4.50 3.04 ± 5.01

Number of NV2 10.13 ± 7.20 11.27 ± 7.72

Duration of NNV1, min 1.07 ± 2.08 0.90 ± 1.91

Duration of NV2, min 5.92 ± 4.23 8.49 ± 7.09

Water drunk, mL 5.92 ± 4.21 8.81 ± 7.89

1Non-nutritive visit (without consumption of feed or water).
2Nutritive visit (with consumption of feed or water).
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Results
Overall, sensor-based scenarios with sow and housing char-
acteristics had lower RMSE and MAPE mean values for stan-
dard ileal digestible lysine (SID Lys) than scenarios without 
that information (0.70 vs. 1.28 g/d, and 5.54% vs. 11.12%, 
respectively). When using data from a single sensor, the pre-
diction for ME was more accurate for scenarios with sow and 
housing characteristics (Table 4) than for scenarios without 
(Table 5), while it was similar when using data from two sen-
sors (Tables 4 and 5). First, the results of the scenarios that 
only use data from sensors were presented, followed by those 
of scenarios that include sow and housing characteristics. The 
latter was developed based on an ablation study.

Sensor-based scenarios without sow or housing 
characteristics
Among these scenarios, the differences in MAPE values 
between scenarios 3i (individual level) and 3g (group level) 
were small, with a slight superiority of individual levels 
(14.81% vs. 15.45%, respectively, for SID Lys and 7.52% vs. 
7.76%, respectively, for ME Table 4). For that reason, only 
scenario 3i with the combination of two sensors was used.

For SID Lys, the scenarios combining feeder data with data 
from another sensor (1 + 4 drinker, 1 + 3i accelerometer, and 
1 + 2 scale, in order of performance) had the highest R2 score 
(0.88 to 0.91, Table 4) and lowest RMSE and MAPE values, 
followed by the scale data only (2, Table 4). For ME, the 
1 + 3i (R2 = 0.75) followed by the 1 + 4 scenarios (R2 = 0.73) 
gave the best performances for two sensors, and scenario 1 

(feeder, R2 = 0.50) among the single-sensor scenarios (Table 
4).

The lowest MAPE and RMSE values (Table 6) and the 
highest R2 scores (0.78 to 0.80 for SID Lys and 0.60 to 0.65 
for ME) were obtained with GTB first, followed by RF, then 
MLP. The lowest prediction performances for SID Lys and 
ME were obtained with LR, LASSO, and RIDGE (Table 6).

Sensor-based scenarios with sow and housing 
characteristics
Among these scenarios, the differences in MAPE values 
between scenarios 3i (individual level) and 3g (group level) 
were small, with a superiority of individual levels (5.41% 
vs. 6.92%, respectively, for SID Lys and 4.26% vs. 4.31%, 
respectively, for ME Table 5). That is why only scenario 3i 
with the combination of two sensors, was used.

For SID Lys, scenarios 1 (feeder) and 2 (weighing scale) using 
unique sensors had the highest R2 score (0.92, Table 5) and 
lowest RMSE and MAPE values (Table 5). These results are 
followed by scenario 1 + 2 which combines feeder and scale 
data (MAPE = 5.31%, Table 5). For ME, the most accurate 
predictions were obtained for scenarios 1 + 2 (feeder + scale), 
1 + 3i (feeder + accelerometer), and 1 + 4 (feeder + drinker, 
R2 = 0.75, Table 5), and finally 1 (feeder, R2 = 0.74, Table 5).

The lowest MAPE and RMSE values (Table 6) and the 
highest R2 scores (0.97 to 0.99 for SID Lys and 0.89 to 0.95 
for ME) were obtained with GTB first (Figures 3 and 4, in 
red), followed by RF (Figure 3 and 4, in light purple), then 
MLP (Figure 3 and 4, in brown). The lowest prediction 
performances for SID Lys and ME were obtained with LR, 

Table 3. Hyper-parameters tested on the selected supervised learning algorithms

Algorithms Hyper-parameters Description Values

Linear regression

LASSO regression alpha Constant that controlling the regularization strength. [10−5 ; 101]

RIDGE regression alpha Constant that controlling the regularization strength. [10−5 ; 101]

Polynomial regression degree Degree of the polynomial features. 2, 3

Random forest Bootstrap Whether bootstrap samples are used when building 
trees.

True

max_depth The maximum depth of the tree. 80, 90, 100, 110

max_features The number of features to consider when looking for the 
best split.

2, 3

min_samples_leaf The minimum number of samples required to be at a 
leaf node.

3, 4, 5

min_samples_split The minimum number of samples required to split an 
internal node.

8, 10, 12

n-estimators The number of trees in the forest. 100, 200, 300, 1000

Support vector machine kernel Specifies the kernel type to be used in the algorithm. Linear, rbf

gamma Kernel coefficient for ‘rbf’, Scale, 1, 0.1, 0.001, 0.0001

C The strength of the regularization is inversely propor-
tional to C.

0.1, 1, 10, 50, 80, 100

K-nearest-neighbors n_neighbors Number of neighbors to use. [1 ; 50]

Gradient tree boost n_estimators The number of boosting stages to perform. 1, 8, 16, 32,64, 100, 1000

learning rate Learning rate shrinks the contribution of each tree. 0.01, 0.05, 0.1, 0.25, 0.5, 1

max_depth Maximum depth of the individual regression estimators. 1, 2, 3, 4, 5, 6, 7, 8

Multilayer perceptron hidden_layer_sizes The number of neurons in the hidden layer. 2, 10, 20, 30, 40, 50, 80, 100, 200

activation Activation function for the hidden layer. Tanh, relu, logistic

solver The solver for weight optimization. sgd, adam, lbfgs
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LASSO, and RIDGE (Table 6). All the algorithms showed low 
variations between the 100 validation steps (Figures 3 and 4), 
except for PR (in dark blue).

Due to their higher R2 result with the single-sensor scenario, 
the ablation study was carried out on scenario 1 (feeder) using 
the gradient tree boosting (GTB) algorithm for SID Lys and 
ME. Excluding ‘rank_cat’ from the feeder features in scenario 
1 increased the MAPE values for SID Lys by 0.22% (Figure 
5A), compared to scenario 1 with all the features (feeder with 
sow and housing characteristics). Only the exclusion of ‘nb_
NNV’ decreased the MAPE values of SID Lys (Figure 5A). 
For ME, all the features excluded increased the MAPE values, 
the highest increase being 0.11% with the exclusion of ‘time_
NV’ (Figure 5B). Among the sow and housing characteris-
tics, the exclusion of ‘day’ and ‘body -weight’ from scenario 1 
increased the MAPE values by 2.41% and 0.60% (Figure 5A) 
for SID Lys, respectively. For ME, excluding the ‘temperature’ 

and ‘day’ features increased the MAPE values by 0.29% and 
0.69% (Figure 5B), respectively.

Discussion
Overall performances
Digestible lysine and ME are key components of the sows’ 
feed costs during their gestation. A requirement prediction 
error under 5% is considered relatively satisfactory. The 
MAPE values showed that the machine-learning methods 
gave low prediction errors (under 5 and 7% for ME and 
SID Lys, respectively). The coefficient of determination (the 
R2 score) showed that the nine supervised algorithms offered 
accurate prediction, especially for scenarios with sow and 
housing characteristics with all of the sensor data, for SID Lys 
(0.88 to 0.92) as well as ME (0.71 to 0.76). This study high-
lights the fact that predicting the daily nutrient  requirement 

Table 4. Prediction performances (RMSE, MAPE, R2) of standard ileal digestible lysine (SID Lys) and metabolizable energy (ME) with sensor-based 
scenarios (one or two) only (as a mean value ± SD of the 9 algorithms)

One sensor Two sensors*

1 2 3i 3g 4 1 + 2 1 + 3i 1 + 4 2 + 3i 2 + 4 3i + 4

SID Lys

  RMSE, 
g/d

1.39 ± 0.21 1.00 ± 0.20 1.65 ± 0.07 1.71 ± 0.06 1.68 ± 0.07 0.85 ± 0.30 0.71 ± 0.32 0.69 ± 0.33 1.72 ± 0.07 1.65 ± 0.09 1.71 ± 0.07

  MAPE, 
%

11.49 ± 2.28 7.92 ± 2.01 14.81 ± 0.82 15.45 ± 0.45 15.80 ± 0.81 6.78 ± 2.86 6.18 ± 2.90 5.48 ± 2.94 14.83 ± 2.92 15.31 ± 1.09 15.95 ± 0.49

  R2 0.71 ± 0.08 0.85 ± 0.06 0.60 ± 0.03 0.58 ± 0.03 0.59 ± 0.03 0.88 ± 0.07 0.91 ± 0.06 0.91 ± 0.07 0.58 ± 0.03 0.60 ± 0.05 0.58 ± 0.03

ME

  RMSE, 
MJ/d

2.88 ± 0.42 3.10 ± 0.51 3.31 ± 0.26 3.40 ± 0.25 3.36 ± 0.30 2.46 ± 0.76 2.03 ± 0.66 2.01 ± 0.66 3.49 ± 0.19 3.36 ± 0.31 3.41 ± 0.24

  MAPE, 
%

6.24 ± 1.08 6.87 ± 1.32 7.52 ± 0.58 7.76 ± 0.54 7.62 ± 0.72 5.27 ± 1.82 4.23 ± 1.56 4.23 ± 1.60 8.04 ± 0.40 7.60 ± 0.74 7.73 ± 0.56

  R2 0.50 ± 0.15 0.42 ± 0.19 0.35 ± 0.10 0.31 ± 0.10 0.32 ± 0.12 0.61 ± 0.22 0.73 ± 0.15 0.73 ± 0.16 0.28 ± 0.08 0.33 ± 0.12 0.31 ± 0.10

Sensors: sensor 1 = feeder; sensor 2 = weight scale; sensor 3i = accelerometer; 3g = camera; sensor 4 = drinker.
*Only activity scenarios 3i was tested due to their higher performances compared to 3g.
Bold values indicate the best result of prediction on the table.

Table 5. Prediction performances (RMSE, MAPE, R2) of standard ileal digestible lysine (SID Lys) and metabolizable energy (ME) with sensor-based 
scenarios (one or two) including sow and housing characteristics (as a mean value ± SD of the 9 algorithms)

One sensor Two sensors*

1 2 3i 3g 4 1 + 2 1 + 3i 1 + 4 2 + 3i 2 + 4 3i + 4

SID Lys

  RMSE, 
g/d

0.64 ± 0.36 0.65 ± 0.39 0.70 ± 0.33 0.86 ± 0.23 0.70 ± 0.34 0.67 ± 0.36 0.69 ± 0.32 0.68 ± 0.33 0.96 ± 0.17 0.79 ± 0.31 0.89 ± 0.17

  MAPE, 
%

5.10 ± 3.17 5.16 ± 3.46 5.41 ± 2.93 6.92 ± 2.01 5.44 ± 3.07 5.31 ± 3.11 5.44 ± 2.88 5.40 ± 2.99 7.70 ± 1.61 6.24 ± 2.97 6.97 ± 1.61

  R2 0.92 ± 0.07 0.92 ± 0.07 0.91 ± 0.06 0.88 ± 0.05 0.91 ± 0.07 0.92 ± 0.07 0.92 ± 0.06 0.92 ± 0.06 0.86 ± 0.05 0.89 ± 0.07 0.88 ± 0.05

ME

  RMSE, 
MJ/d

1.99 ± 0.70 1.96 ± 0.83 2.00 ± 0.77 2.02 ± 0.73 2.01 ± 0.79 1.94 ± 0.70 1.94 ± 0.68 1.95 ± 0.70 2.37 ± 0.49 2.11 ± 0.73 2.22 ± 0.58

  MAPE, 
%

4.17 ± 1.67 4.15 ± 2.03 4.26 ± 1.90 4.31 ± 1.79 4.22 ± 1.93 4.04 ± 1.70 4.07 ± 1.66 4.03 ± 1.63 5.16 ± 1.20 4.49 ± 1.77 4.73 ± 1.44

  R2 0.74 ± 0.16 0.73 ± 0.20 0.73 ± 0.18 0.73 ± 0.18 0.73 ± 0.19 0.75 ± 0.16 0.75 ± 0.15 0.75 ± 0.15 0.65 ± 0.13 0.71 ± 0.18 0.69 ± 0.16

Sensors: sensor 1 = feeder; sensor 2 = weight scale; sensor 3i = accelerometer; 3g = camera; sensor 4 = drinker.
*Only activity scenarios 3i was tested due to their higher performances compared to 3g.
Bold values indicate the best result of prediction on the table.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skad337/7287508 by guest on 28 M

ay 2024



Durand et al. 7

Table 6: Prediction performances (RMSE, MAPE, R2) of metabolizable energy (ME) and standard ileal digestible lysine (SID Lys) per algorithm (as a 
mean value ± SD of the 22 scenarios with or without sow and housing characteristics)

LR LASSO RIDGE PR RF SVR KNN GTB MLP

Scenario sensors with sow and housing characteristics

  SID Lys

   RMSE, g/d 1.09 ± 0.03 1.09 ± 0.03 1.09 ± 0.03 0.86 ± 0.05 0.44 ± 0.12 0.51 ± 0.12 0.65 ± 0.12 0.12 ± 0.04 0.48 ± 0.07

   MAPE, % 9.15 ± 0.33 9.15 ± 0.32 9.15 ± 0.32 7.09 ± 0.53 3.22 ± 0.94 3.19 ± 0.83 4.53 ± 0.93 0.82 ± 0.18 3.56 ± 0.51

   R2 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.89 ± 0.01 0.97 ± 0.02 0.96 ± 0.02 0.94 ± 0.02 0.99 ± 0.01 0.97 ± 0.01

  ME

   RMSE, MJ/d 2.86 ± 0.08 2.84 ± 0.10 2.84 ± 0.10 2.30 ± 0.15 1.15 ± 0.12 1.73 ± 0.18 1.85 ± 0.16 0.91 ± 0.02 1.37 ± 0.09

   MAPE, % 6.39 ± 0.23 6.32 ± 0.28 6.31 ± 0.28 4.93 ± 0.33 2.25 ± 0.26 3.39 ± 0.43 3.46 ± 0.36 1.55 ± 0.21 2.78 ± 0.22

   R2 0.52 ± 0.03 0.52  ± 0.03 0.52  ± 0.03 0.69  ± 0.04 0.92  ± 0.02 0.82  ± 0.04 0.80  ± 0.03 0.95  ± 0.01 0.89  ± 0.02

Scenarios sensors without sow and housing characteristics

  SID Lys

   RMSE, g/d 1.50 ± 0.29 1.49 ± 0.29 1.49 ± 0.29 1.37 ± 0.34 1.13 ± 0.47 1.18 ± 0.44 1.22 ± 0.42 0.99 ± 0.58 1.13 ± 0.46

   MAPE, % 13.29 ± 3.16 13.25 ± 3.14 13.26 ± 3.16 12.22 ± 3.47 9.76 ± 4.68 9.43 ± 4.30 10.25 ± 4.42 8.79 ± 5.54 9.80 ± 4.53

   R2 0.66 ± 0.12 0.67 ± 0.12 0.67 ± 0.12 0.71 ± 0.13 0.78 ± 0.14 0.77 ± 0.14 0.76 ± 0.14 0.80 ± 0.15 0.78 ± 0.14

  ME

   RMSE, MJ/d 3.44 ± 0.36 3.43 ± 0.37 3.43 ± 0.38 3.11 ± 0.43 2.36 ± 0.72 2.70 ± 0.55 2.68 ± 0.49 2.29 ± 0.80 2.52 ± 0.63

   MAPE, % 7.76 ± 0.89 7.73 ± 0.94 7.73 ± 0.94 6.91 ± 1.05 5.17 ± 1.82 5.76 ± 1.38 5.75 ± 1.42 4.99 ± 2.03 5.56 ± 1.55

   R2 0.29 ± 0.14 0.30 ± 0.14 0.29 ± 0.14 0.42 ± 0.15 0.64 ± 0.18 0.55 ± 0.16 0.56 ± 0.15 0.65 ± 0.19 0.60 ± 0.17

LR, linear regression; LASSO, linear regression with a LASSO regularization, RIDGE, linear regression with a RIDGE regularization, PR, polynomial 
regression, SVR, support vector machine for regression, RF, random forest, KNN, k-nearest-neighbors, GTB, gradient tree boosting, MLP, multilayer 
perceptron.
Bold values indicate the best result of prediction on the table.

Figure 3. Evaluation of the 11 scenarios with sow and housing characteristics: R2 scores for SID Lys prediction, according to the 9 algorithms evaluated, 
with 1 or 2 sensor(s).

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skad337/7287508 by guest on 28 M

ay 2024



8 Journal of Animal Science, 2023, Vol. 101 

of gestating sows is possible using data measured by sensors 
and machine-learning methods. Moreover, in the case of two 
sensors, the prediction was conducted without requiring 
information on sow characteristics (such as their farrowing 
performance), which allows the integration of new sows into 
the herd for future application. A simple application of pre-
cision farming at an individual level in farms equipped with 
sensors or automatons is possible, despite using a complex 
mechanistic model that requires several data inputs and a 
prediction of farrowing performances (based on historical 

data). Such use of only one or two sensors, already used for 
other tasks on the farm, paves the way for a ‘Green Artifi-
cial Intelligence’ (Ferrag et al., 2020; Sharma et al., 2022). 
Sensors could be expensive for farmers, but also expensive in 
terms of valuable metal resources with complicated recycling 
processes, therefore optimizing the use of existing on-farm 
sensors is relevant. In addition, the nutrition prediction algo-
rithms used in this work consume little energy, with no need 
for the cloud or internet, and could be run on any basic com-
puter available on a farm.

Figure 4. Evaluation of the 11 scenarios with sow and housing characteristics: R2 scores for ME prediction, according to the 9 algorithms evaluated, 
with 1 or 2 sensor(s).

Figure 5. Ablation study: MAPE values (%) of GTB for standard ileal digestible lysine (SID Lys) and for metabolizable energy (ME) according to the all 
the features excluded from scenario 1 (feeder data) with sow and housing characteristics.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skad337/7287508 by guest on 28 M

ay 2024



Durand et al. 9

The learning process was based on the outputs of the 
InraPorc model (Dourmad et al., 2008) modified by Gail-
lard et al. (2020a) for gestating sows. This model was set up 
thanks to numerous validated equations determined by inva-
sive measures such as the metabolic chamber. The use of these 
techniques is increasingly limited in research, which reinforces 
the use of models such as this one. However, the question of 
genetic progress and its possible impact on these equations, 
determined several decades ago, could be raised. In this case, 
the model will be improved, or the learning process will have 
to be carried out again to predict other nutrient requirements 
(e.g., mineral requirements).

Different prediction results due to diverse digital 
farm configurations
The overall results showed that the feeder alone (scenario 1) 
or combined with other sensors (such as body weight scales) 
gave higher performance results for predicting ME or SID Lys. 
The diurnal pattern of sow physical activity (especially the 
time spent in a standing position) was linked to the daily feed-
ing behavior pattern and meal schedule (Haskell et al., 2000; 
Chapinal et al., 2010). This feeding behavior could thus be 
used as a proxy of the time spent in a standing position, a key 
predictor of daily requirements in ME (Gaillard et al., 2019). 
The importance of the time spent eating (for feeding visits) on 
the best model was shown by the ablation study results. The 
lysine requirement of the model was calculated based on body 
weight and parity (Gaillard et al., 2019). In fact, Lanthony et 
al. (2022) showed that the feeder order could be an indicator 
of dominance hierarchy, which is linked to parity (or sow age) 
and body weight. That is why combined feeder data and daily 
body weight had approximately the same level of prediction 
performances with scenarios with or without sow and hous-
ing characteristics. This dominance hierarchy was also shown 
in the ablation study as a principal component of the best 
prediction model for lysine.

Moreover, the electronic feeder (best sensor performance) 
may possibly use precision feeding, which could decrease feed 
costs by $3.67 per gestation (Gaillard et al., 2020a). A reno-
vation of gestation rooms from individual stalls into a group 
pen with electronic feeder costs between $108 and 210 (Tur-
cotte, 2015). The return on investment was estimated as being 
between 9 and 18 yr.

Scenario 3i, which included individual activity measures, 
gave a better performance for SID Lys than a prediction based 
on group data (scenario 3g). This could be explained by the 
fact that the group activity values were considered to be the 
same for primiparous and multiparous sows (one value for 
all the sows within a group), while other studies showed that 
there was a difference in activity between parities (Chapinal 
et al., 2010), as with the accelerometer in this study. However, 
this difference was slight for ME, which is relatively surpris-
ing. However, the group activity measures give more detailed 
information than individual measures, with the ventral and 
lateral lying positions, and the drinking and eating activities. 
This lateral/ventral lying behavior is linked to thermoregula-
tion mechanisms (Geers, 2007). Therefore, room temperature 
could affect nutrient and energy requirements (Gaillard et 
al., 2021), as also shown in the ablation study (MAPE values 
increased by 0.21% without it). An improvement of the indi-
vidual level with more details on activity may thus improve 
prediction performances.

Importance of sow and housing characteristics for 
prediction
Including sow and housing characteristics are relevant when 
only one sensor or automaton is available on the farm. It will 
give more accurate prediction results. When two sensors are 
used for prediction, these characteristics are not needed, and 
even decrease the prediction performance. These variables 
were also inputs of the model due to their impact on the calcu-
lation of requirements. The ‘Day of gestation’ variable had an 
effect on prediction, as the requirements for energy and lysine 
(showed with the ablation study) increased during gestation 
due to the fetus’s growth (Trottier et al., 2015). Despite the 
scenario or algorithm chosen, this variable had to be included 
in the dataset for prediction. The ‘Backfat thickness’ and 
‘Body Weight’ variables at insemination were also important 
predictors because they are indicators of the body’s reserves 
status before gestation, and the calculation of requirements 
was based on this information (Gaillard et al., 2019). Real-
time technology for measuring this feature would also be a 
good scenario to test in terms of prediction, as detailed in the 
study of Fernandes et al. (2020).

Different prediction results due to various 
supervised algorithms
The most accurate algorithms were GTB and RF followed by 
MLP (R2 = 0.97 to 0.99 for SID Lys and 0.89 to 0.95 for ME, 
for scenarios with sow and housing characteristics). The GTB, 
RF, or MLP machine-learning algorithms were also used in 
some studies, with good results. For instance, Kleanthous et al. 
(2018) obtained good performances with RF, GTB, and MLP 
algorithms (especially with RF, accuracy = 96%) to classify 
livestock behavior, based on accelerometer data. Moreover, 
training GBT and RF models can be computationally expen-
sive and time-consuming. GBT models have several hyper-pa-
rameters that need to be tuned and are sensitive to noisy data. 
Despite these limitations, these techniques are widely used 
and highly effective in various machine learning applications 
due to their higher performances, simplicity, and interpret-
ability (Schapire, 1999; Breiman, 2001; Valetta et al., 2017). 
Their interpretability may be a key determinant of the adop-
tion of these algorithms for users in non-informatics domains, 
such as animal nutritionists or breeders. For example, with a 
particularly low amount of ME requirements, farmers may 
need to check why the algorithm gave this specific value and 
increase their trust in the system used.

The algorithms of linear regression (LR, LASSO, and 
RIDGE) obtained the worst prediction performances (R2 = 
0.83 for SID Lys and 0.52 for ME, for scenarios with sow and 
housing characteristics), which means that the relationship 
between predictors and nutrient requirements was not linear. 
Misiura et al. (2021) also obtained accurate results with a 
non-linear model compared to a linear model for precision 
feeding for growing-finishing pigs, by predicting feed intake 
and growth. The prediction of the body weight of piglets at 
30 d had a MAPE value of 11.0% with the linear model, and 
2.1% with the allometric model.

Conclusion
This study showed that using machine-learning methods on 
behavioral data to predict the daily nutrient requirements of 
sows is possible and accurate. Among the different digital 
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farm configurations tested, the feeder data (alone or com-
bined with another sensor) obtained better performances for 
predicting ME and for standard ileal digestible lysine. The 
inclusion of sow and housing characteristics in the sensor 
data improves prediction performance. However, the two 
pieces of equipment combined without these characteristics 
obtained the same level of performance as the one obtained 
using data from one equipment and these characteristics. 
When the linear regression models obtained the worst accu-
racy and highest prediction error, the GTB, RF, and MLP 
obtained high prediction performances. This study paves the 
way for an easier application of precision feeding on farms 
with available sensors.
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