

Health risks resulting from the use in irrigation of water contaminated by viruses; impact of irrigation modes Pierre Renault

▶ To cite this version:

Pierre Renault. Health risks resulting from the use in irrigation of water contaminated by viruses; impact of irrigation modes. Agronomy Symposium, Fondation France-Israël, Nov 2019, Lille, France. pp.1-21. hal-04237470

HAL Id: hal-04237470 https://hal.inrae.fr/hal-04237470v1

Submitted on 11 Oct 2023

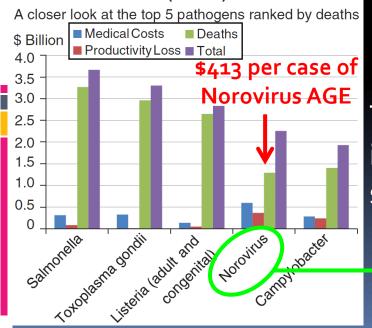
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

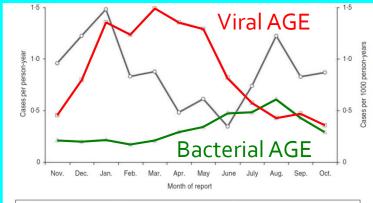
HEALTH RISKS RESULTING FROM THE USE IN IRRIGATION OF WATER CONTAMINATED BY VIRUSES; IMPACT OF IRRIGATION MODES

Pierre Renault INRA – UMR 1114 EMMAH (Avignon, France) (pierre.renault@inra.fr, +33 (0)4.32.72.22.23)

The importance of foodborne transmission of viral Acute Gastro-Enteritis (AGE) diseases

Acute gastroenteritis: aetiology, frequency, cost


AGEs affect one third of the French population each year Chikhi-Brachet et al. (2002)


Various AGE aetiologies:

- Viruses; _ _ _ _ > 59%
- Bacteria; ----> 39%
- Unicellular parasites; -> 2%
- Undefined

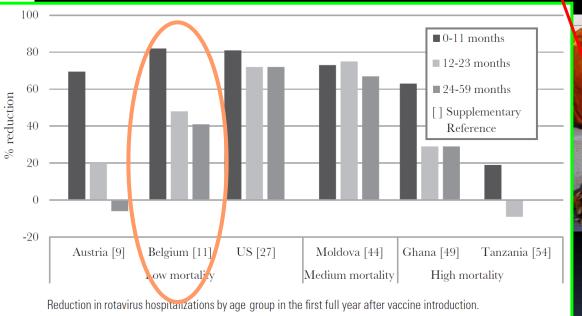
in the USA *Esseili et al. (2012)*

Total mean cost of foodborne illnesses in the United States (2013 \$)

-O- Community AGI / person-year -O- Reported viral AGI / 1000 person-years -O- Reported bacterial AGI / 1000 person-years

Incidence of self-reported acute gastrointestinal infection (AGI) in the population; calculated for bacterial and viral intestinal infections reported to surveillance, by month, Poland, November 2008 to October 2009.

In Poland Baumann et al. (2012)


The cost of AGE and other foodborne illnesses depends on the aetiology, the subject age and the geographical area *Hoffmann et al. (2015)*

Norovirus AGEs represent 58.2% of foodborne illness cases in the USA

Viral AGEs: their importance and specificities

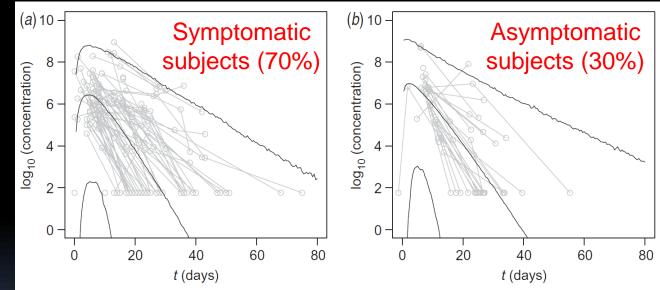
Various viruses: rotavirus **norovirus**, sapovirus, enterovirus (echovirus, coxakievirus), adenovirus ...

Before vaccination, the most important for young children

Possible clinical symptoms:

- diarrhoea,
- vomiting,
- nausea,
- abdominal pain,
- (fever) ...

Causative agents of most of viral AGE (40-80%) ... whatever the subject ages.


Burnett et al. (2017)

Noroviruses: **200 000 deaths per year worldwide** due to dehydration and malnutrition complications, especially for the young, elderly and immunocompromised *Mallory et al.* (2019)

Noroviruses: shedding and infectious dose

Norovirus shedding with faecal excretion:

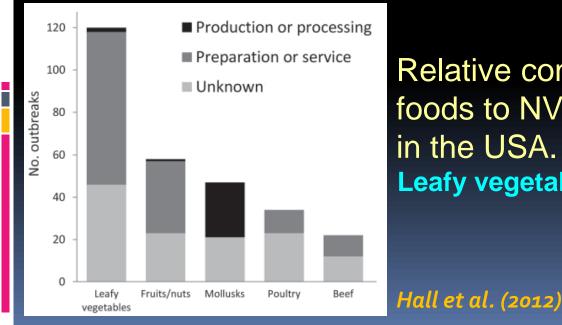
- Up to 10⁺¹² viruses per gram of faeces;
- Shedding starts before the onset of clinical symptoms, and stops well after the end of these symptoms;

Time-course of virus shedding. Median and 95% interval of the predicted virus concentration (log₁₀ numbers of viruses/g stool) are shown.

Teunis et al. (2015)

Low infectious dose: ~18 to 1000 viral particles

Teunis et al. (2008)


Direct / indirect transmission of NV in the USA

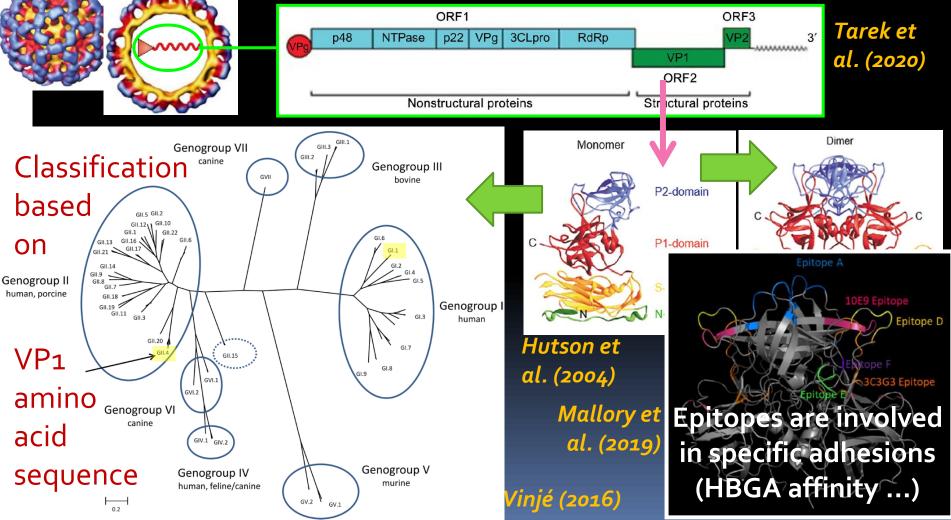
Primary mode of transmission of NV infections in the USA:

Primary mode of transmission among outbreaks reported through the National Outbreak Reporting System (NORS), 2009-2012

Primary Mode of Transmission	Confirmed Norovirus	Suspected Norovirus	Confirmed Non-Viral	Unknown
Animal Contact	0 (0%)	0 (0%)	105 (7%)	4 (0.1%)
Environmental	12 (0.4%)	3 (0.2%)	7 (0.4%)	5 (0.1%)
Food	644 (22%)	355 (27%)	926 (59%)	1006 (27%)
Indeterminate/Other	220 (7%)	86 (7%)	262 (17%)	426 (12%)
Person-to-person	2063 (70%)	877 (66%)	273 (17%)	2253 (61%)

Lively et al. (2018)

Relative contributions of various foods to NV foodborne outbreaks in the USA. Leafy vegetables > Fruits/nuts > Mollusks


Prevalence of NV contamination in France

Assessment of the occurrence of NoVs on 493 food matrices

Frozen marketed mussels supplied by French importers or recovered from different retail outlets. From Chile, Pacific Ocean, Spain, New Zealand, North West Atlantic		using RT-qPCR							
		Category of food matrix	Nature	No. of samples tested	% positive for GI NoV	% positive for GII NoV			
		Bivalve	Mussel	83	8.4	14.4			
		molluscs		107	11.0	0.0			
00	cean, Vietnam, Ireland.	Lettuces	Chicory	107	11.2	- 0.9			
			Lettuce	77	13.0	0			
	Fresh lettuces provided by		Mash	26	11.5	0			
	industrial producers.		All salads	210	11.9	0.5			
	From Spain, Italy, Belgium,	Red fruits	Raspberry	162	16.8	· 0			
	France and Tunisia.	$\overline{}$	Strawberry	32	9.4	3.1			
			Blackberry	2	50.0	0			
i			Mix	4	0	0			
	Frozen berries provided by		All red	200	15.5	0.5			
	industrial producers.		fruits						
	From Serbia, Chile, Bulgaria, Poland, Spain, Morocco,	All matrices		493	13.0	2.9			
	Turkey and France;				Loutreul e	t al. (2014)			

Norovirus: structural/functional properties

- A non-enveloped icosahedral virus, ~40nm in size.
 - isoelectric point (iep) \approx 4-4.5; surface wettability?
 - a single-stranded positive-sense RNA genome (7.5 kb)

Norovirus: mutations affecting HBGA affinity

Mutations over a few weeks:

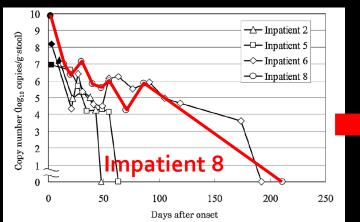
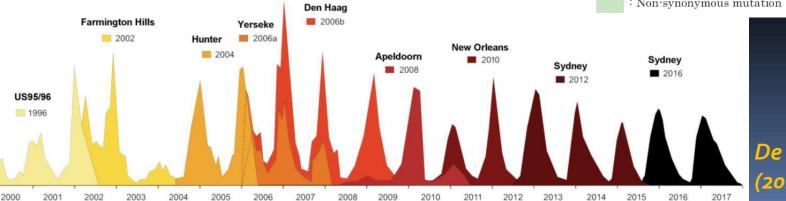
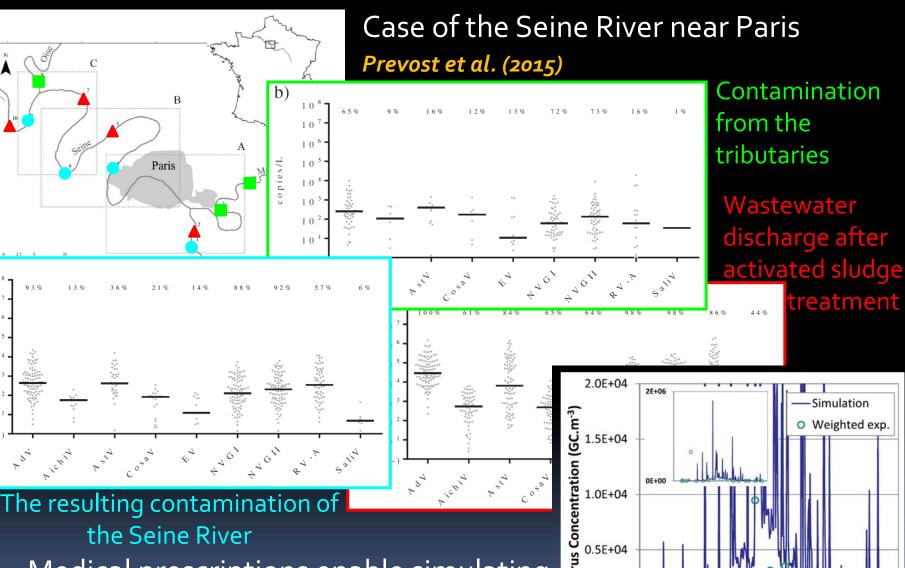



Fig. 3. Viral shedding in four inpatients (infants) in outbreak episode 1. The quantity of NoV genome segments was measured by real-time RT-PCR. Open and closed symbols indicated asymptomatic and symptomatic, respectively.

Miyoshi et al. (2015)

New pandemic strains every 2-3 years:



Impatient 8

domain	cleot	eleotide						amino acid				
uomam	position	1d	5	29d		ł	54d		position	1d	29d	54d
\mathbf{S}	412	G	G	or	А		G		138	Val	Val or Ile	Val
2	429	Т	Т	\mathbf{or}	С		Т					
	880	С	Т	\mathbf{or}	С	С	\mathbf{or}	Т	294	\mathbf{Pro}	Ser or Pro	Pro or Ser
	883	А		G		Α	or	G	295	\mathbf{Ser}	Gly	Asn or Gly
	884	G	_	G		Α		G			Giy	
	889	С	Α	or	С		С		297	Arg	Ser or Arg	His
	890	G		G			А			1119		
	1,008	А	G	\mathbf{or}	Α		Α				_	_
	1,102	G		G		Α	or	G	368	Ala	Ala or AspThr or Ala	Thr or Ala
Р	1,103	С	С	\mathbf{or}	Α		С				ina a risp	ini inu
1	1,114	G	G	\mathbf{or}	А	G	\mathbf{or}	А	372	Asp	Asp or <mark>Asn</mark>	Asp G or
	$1,\!123$	Т	Т	\mathbf{or}	С		Т		375	Phe	Phe or <mark>Leu</mark>	\mathbf{Phe}
	$1,\!178$	G	_	G		Α	\mathbf{or}	G	393	\mathbf{Ser}	\mathbf{Ser}	Asn or Ser
	1,180	А	G		-	G		-				
	1,181	G	G	\mathbf{or}	-	G	\mathbf{or}	-	394	\mathbf{Ser}	Gly or -	Gly or -
	1,182	Т	Т		-	Т		-				
	1,231	А	_	А		G	or	Α	411	Arg	Lvs or Arg	Gly or Lys
	1,232	G	Α	or	G	G		А	111	1119	1 ,0 ~ 11g	
Contribute : Synonymous mutation : Mutant amino acid												
to epitope A												
	:]	: Non-synonymous mutation					 Deletion 					
w Orleans												
■ 2010 Sydney Sydney ■ 2016												
									De	Rol	igemo	nt
										0		

Environmental fate of viruses after wastewater discharge

Contamination of rivers by wastewater discharge

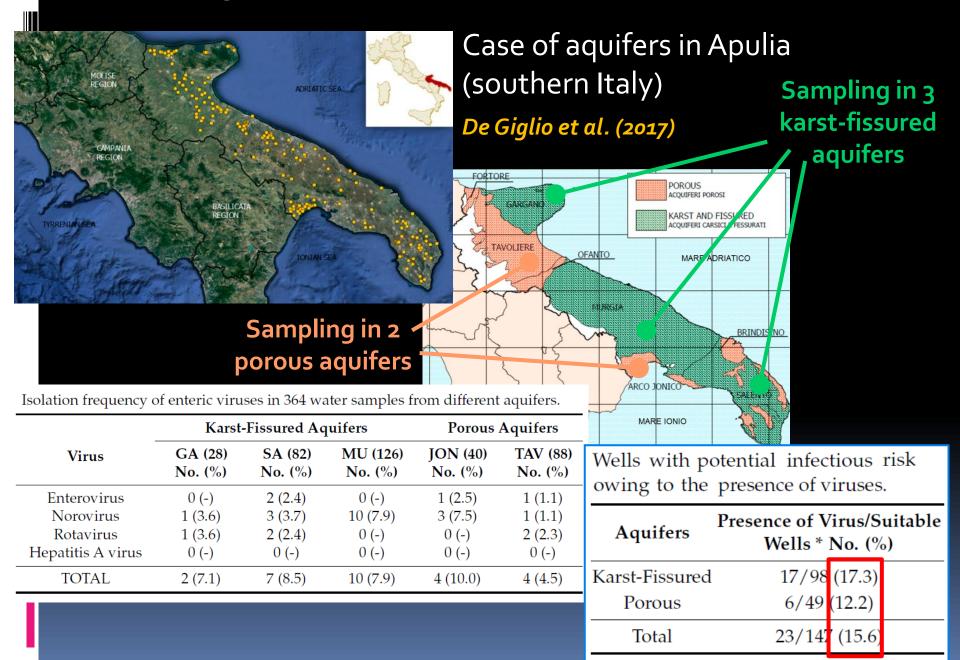
0.0E+00

615125/14/15/23/25 112/26/12/20/26/29/26

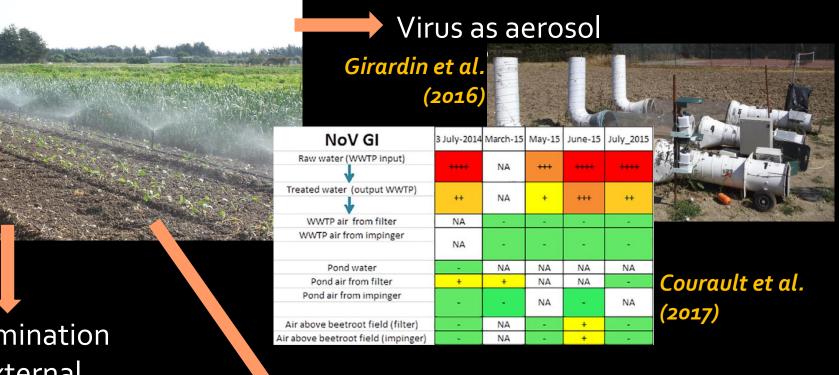
Date

Medical prescriptions enable simulating the contamination of the Artière River *Tesson et al.* (2019)

a)


copies/l

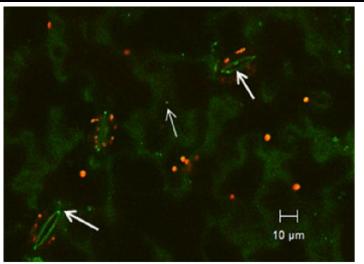
1010


1.0

10

Underground water contaminations

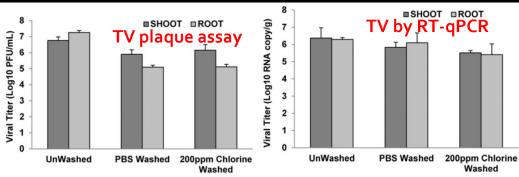
Environmental virus fate during/after irrigation


Contamination of external surfaces of crops

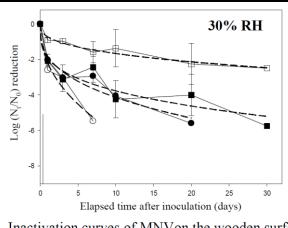
Virus flow in the soil with water infiltration

Virus internalization in plants via their roots

Attachment on external surface or plant materials


Murine NV (MNV-1) observed on lettuce surface, inside open cuts, and within stomata

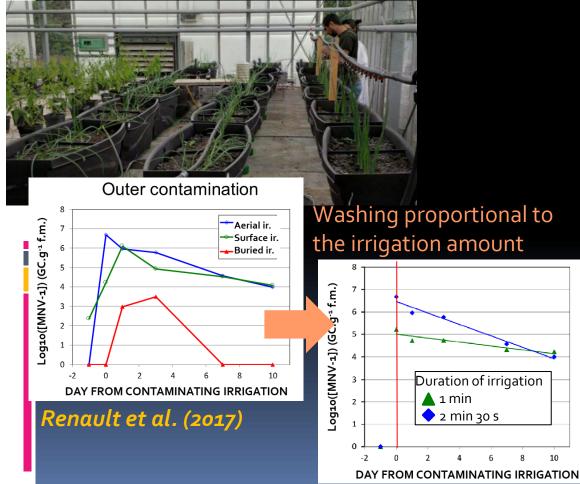
Confocal microscopy images of MNV attached to Romaine lettuce leaves. The arrows indicate MNV. Green indicates plant cell walls, and red indicates autofluorescence from plant chlorophyll.


Wei et al. (2010)

MNV inactivation on inert surface varies with the surface type, and the air temperature and relative moisture

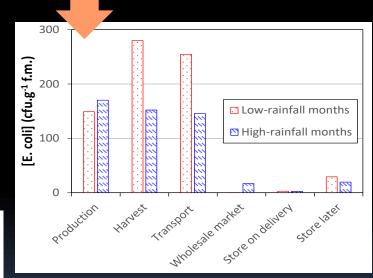
Effect of washing on the removal of TV from Romaine lettuce

DiCaprio et al. (2015)


Inactivation curves of MNVon the wooden surface. $15^{\circ}C(\blacksquare)$, $25^{\circ}C(\Box)$, $32^{\circ}C(\bullet)$, and $40^{\circ}C(\circ)$ conditions.

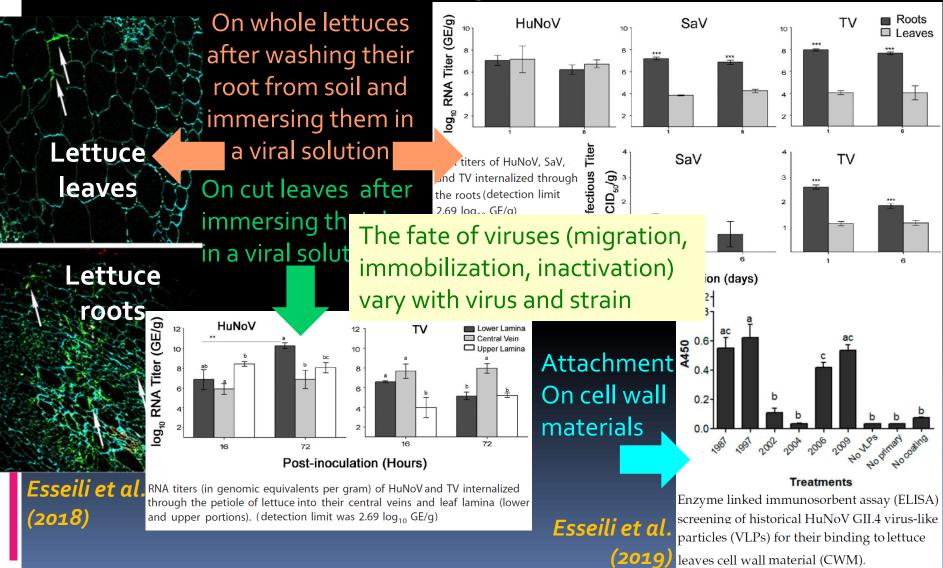
Kim et al. (2012)

Irrigation/handling impact on outer contamination


Initial contamination + Decay (inactivation ...) + Washing (rain ...)

Green onion outer contamination varies with irrigation mode (buried, surface or aerial drip irrigation), as well as washing

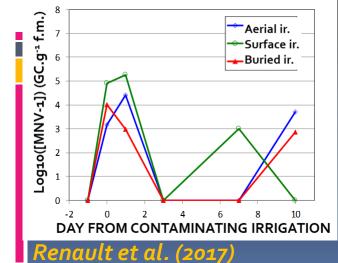
But handling may explain most of vegetable and fruit contamination.

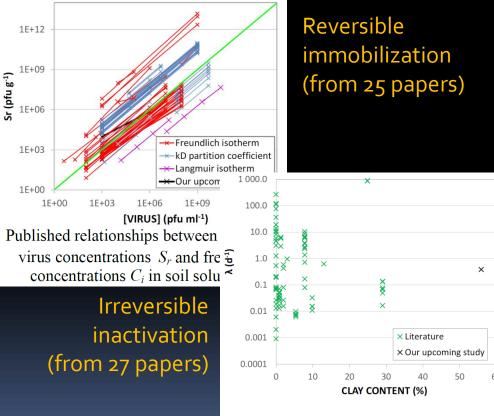


Chards produced in *La Ramada* near *Bogotá* (Colombia) are contaminated by irrigation, "washing" and handling. *Jordan Lozano* (2020)

Virus internalization in vegetables and fruits

Internalization *via* the roots followed by migration without inactivation to parts eaten raw observed on lettuce, green onion, spinach and strawberry.


Irrigation mode and soil impact on internalization


Internalization of MNV-1 doesn't vary with irrigation mode (aerial, surface, buried) as long as contaminated water reach absorbing roots of green onions

But the soil may affect the fate of viruses (immobilization, inactivation) *Tesson and Renault (2019)*

Internalized contamination

Daily removal rates as reported in literature

Main topics to explore

They include:

- Additional knowledge on the fate of human enteric viruses;
- The development of systemic models to be combined with Quantitative Microbial Risk Assessment (QMRA)
- The development of new methods and probes for scientific research as well as the monitoring in real times of contaminations.

Thank you for your attention