
HAL Id: hal-04237955
https://hal.inrae.fr/hal-04237955v1

Submitted on 11 Oct 2023 (v1), last revised 25 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Comparison of metabarcoding taxonomic markers to
describe fungal communities in fermented foods

Olivier Rué, Monika Coton, Eric Dugat-Bony, Kate Howell, Françoise Irlinger,
Jean-Luc Legras, Valentin Loux, Elisa Michel, Jérôme Mounier, Cécile

Neuvéglise, et al.

To cite this version:
Olivier Rué, Monika Coton, Eric Dugat-Bony, Kate Howell, Françoise Irlinger, et al.. Comparison of
metabarcoding taxonomic markers to describe fungal communities in fermented foods. Peer Commu-
nity Journal, 2023, 3 (e97), pp.1-25. �10.24072/pcjournal.321�. �hal-04237955v1�

https://hal.inrae.fr/hal-04237955v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


 1 

 2 

Comparison of metabarcoding taxonomic 3 

markers to describe fungal communities in 4 

fermented foods 5 

Olivier Rué1,2, Monika Coton3, Eric Dugat-Bony4, Kate Howell5, Françoise 6 

Irlinger4, Jean-Luc Legras6, Valentin Loux1,2, Elisa Michel6, Jérôme 7 

Mounier3, Cécile Neuvéglise6, Delphine Sicard6* 8 

 9 

1 Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France 10 

2 Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, 78350, Jouy-en-Josas, France 11 

3 Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France 12 

4 Université Paris Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France 13 

5 School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, 14 

Parkville, Victoria, Australia 15 

6 SPO, Univ Montpellier,  INRAE, Institut Agro, Montpellier, France 16 

*Corresponding author 17 

Correspondence: delphine.sicard@inrae.fr 18 

 19 

 20 

ABSTRACT 21 

Next generation sequencing offers several ways to study microbial communities. For agri-food 22 

sciences, identifying species in diverse food ecosystems is key for both food sustainability and 23 

food security. The aim of this study was to compare metabarcoding pipelines and markers to 24 

determine fungal diversity in food ecosystems, from Illumina short reads. We built mock 25 

communities combining the most representative fungal species in fermented meat, cheese, wine 26 

and bread. Four barcodes (ITS1, ITS2, D1/D2 and RPB2) were tested for each mock and on real 27 

fermented products. We created a database, including all mock species sequences for each 28 
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barcode to compensate for the lack of curated data in available databases. Four bioinformatics 29 

tools (DADA2, QIIME, FROGS and a combination of DADA2 and FROGS) were compared. Our 30 

results clearly showed that the combined DADA2 and FROGS tool gave the most accurate results. 31 

Most mock community species were not identified by the RPB2 barcode due to unsuccessful 32 

barcode amplification. When comparing the three rDNA markers, ITS markers performed better 33 

than D1D2, as they are better represented in public databases and have better specificity to 34 

distinguish species. Between ITS1 and ITS2, differences in the best marker were observed 35 

according to the studied ecosystem. While ITS2 is best suited to characterize cheese, wine and 36 

fermented meat communities, ITS1 performs better for sourdough bread communities. Our 37 

results also emphasized the need for a dedicated database and enriched fungal-specific public 38 

databases with novel barcode sequences for 118 major species in food ecosystems. 39 

 40 
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Introduction 46 

In the field of microbial ecology, amplicon-based metagenomic analysis (also named metabarcoding) is one 47 

of the most popular routes to describe microbial communities as it is a high throughput method with relatively 48 

low-cost nowadays. This approach relies on amplifying a phylogenetic biomarker from total community DNA 49 

purified from the samples to be characterized, followed by massive amplicon sequencing (Shokralla et al., 50 

2012), usually with Illumina MiSeq technology (Caporaso et al., 2012). For bacteria, the SSU rRNA gene is 51 

commonly accepted as the most suitable biomarker for metabarcoding studies although different variable 52 

regions can be targeted (Zhang et al., 2018). For fungal communities, there is still no international consensus 53 

regarding the choice of the best phylogenetic biomarker for such an approach.  54 

Ten years ago, the Fungal Barcoding Consortium recommended the use of the Internal Transcribed Spacer 55 

(ITS) region as the primary marker for fungal identifications due to superior species-level resolution compared 56 

to LSU and SSU rRNA genes, and higher amplification success compared to protein coding genes (Schoch et al., 57 

2012). However, amplicon-based metagenetic analysis using MiSeq sequencing imposes more constraints than 58 

classical species identification. Most importantly, the typical amplicon size (~500bp) will not provide complete 59 

ITS region sequences or full length rRNA or protein coding genes. Consequently, the most popular barcodes 60 

currently used for fungal community analysis by metabarcoding are ITS1, ITS2 and the LSU D1/D2 domain (R. 61 

Henrik Nilsson et al., 2019). 62 

Amplicon-based metagenetic analyses using these markers has been largely facilitated over the past few 63 

years by the availability of a broad range of high-quality reference sequences in public databases from different 64 

sequencing initiatives of collection strains (Vu et al., 2016).  65 

However, the multicopy nature of the rDNA operon negatively affects fungal community compositions 66 

detected in complex samples by metabarcoding (Lavrinienko et al., 2021). In addition, using the entire ITS 67 

region barcode leads to additional bias resulting in lower representation of species with longer amplicons in 68 

the datasets (Ihrmark et al., 2012). Nevertheless, using only ITS1 or ITS2, which produce shorter amplicons, 69 

was shown to represent the quantitative composition of the sample (Ihrmark et al., 2012). Several very 70 

promising single-copy marker genes were thus proposed to overcome these limitations, including the rpb2 71 

gene, encoding for the second largest ribosomal polymerase II subunit (Větrovský et al., 2016). In addition to 72 

the above-mentioned specificity, the species-resolving power of rpb2 was found to be higher than rDNA genes 73 

and ITS regions. This marker was also found to be particularly suited to study basal fungal lineages. Yet, due to 74 

the lack of universality and lower specificity of RPB2 primers (when compared to others) as well as the lower 75 

numbers of rpb2 gene sequences in public databases, further applications to study fungal communities from 76 

food ecosystems may be limited. 77 

Some authors evaluated the reliability of different markers (ITS1-2, D1/D2 LSU and SSU) to describe fungal 78 

diversity by amplicon-based metagenomic analysis (De Filippis et al., 2017). A mock community, composed of 79 

19 strains representative of common fungal species, as well as environmental samples including soil, human 80 

saliva, human feces and grape must were used. Although all markers were able to correctly detect the different 81 

species in the mock community, the results suggested that there was an important quantification bias when 82 

using ITS1-2. This could be due to the high heterogeneity in marker length across fungal species. However, 83 

marker performance is likely to be highly influenced by fungal species composition of the sample (e.g., 84 

composed mainly of Basidiomycota versus Ascomycota) which, in turn, depends on the studied environment. 85 

Numerous tools are available for fungal metabarcoding data analyses from Illumina sequencing technology 86 

(R. Henrik Nilsson et al., 2019) but many differences between pipelines exist (Anslan et al., 2018) which 87 

highlights the need to pay attention to the choice of the tool. Indeed, amplicon length is one crucial 88 

characteristic to consider. Using an in silico approach for fungal sequences, a recent showed that the length of 89 

the extracted ITS1 portions from UNITE ranged from 9 bp to 1181 bp, with an average length of 177 bp while 90 

the extracted ITS2 portions ranged from 14 bp to 730 bp, with an average of 182 bp (Yang et al., 2018). For 91 
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D1/D2 and RPB2 amplicons, lengths are often above 600 bp; in this case, common strategies that merge paired-92 

end reads are not suitable because Illumina sequencing, the most used technology in metabarcoding analyses, 93 

provides paired-end reads of maximum 2 x 300 bp. 94 

Among bioinformatics solutions for fungal communities with short reads, some are dedicated to ITS such 95 

as PIPITS (Gweon et al., 2015) or DAnIEL (Loos et al., 2021) while others are more generic (Bernard et al., 2021; 96 

Bolyen et al., 2019; Callahan et al., 2016; Edgar, 2010; Escudié et al., 2018; Özkurt et al., 2022). However, one 97 

downside is that few of them can process short and long amplicons simultaneously. PIPITS and DAnIEL reject 98 

non-overlapping reads, so long amplicons will be excluded. QIIME2 and DADA2 require a choice to be made 99 

between merging reads or keeping only R1 reads. USEARCH recommends taking into account merged 100 

sequences and 5′ R1 reads of non-overlapping paired-end sequences. FROGS deals with mergeable reads and 101 

creates artificial sequences from non-mergeable reads, therefore all sequenced information is kept throughout 102 

the pipeline. It is worth mentioning that FROGS has shown better results than QIIME2, DADA2 and USEARCH  103 

on simulated data (Bernard et al., 2021). 104 

Another important aspect in metabarcoding data analysis is the way to build representative biological 105 

sequences from reads. It can be under the form of Operational Taxonomic Units (OTUs), Amplicon Sequence 106 

Variants (ASVs) or zero-radius OTUs (ZOTUs) depending on tools. Numerous studies have compared the results 107 

from OTU-based and ASV-based approaches (Callahan et al., 2017). Using mock communities, ASV-based 108 

methods had higher sensitivity and detected bacterial strains present, sometimes at the expense of specificity 109 

(Caruso et al., 2019). However, a different study concluded that for broadscale (e.g., all bacteria or all fungi) α 110 

and β diversity analyses, ASV or OTU methods often provided similar ecological results (Glassman and Martiny, 111 

2018). From a practical point of view, an important advantage of ASV-based approaches is the consistent labels 112 

with intrinsic biological meaning identified independently from a reference database. Thus, ASVs 113 

independently inferred from different studies and different samples (for the same targeted region) can be 114 

compared. 115 

In this study, we compared the performance of four phylogenetic markers (ITS1, ITS2, D1/D2 LSU and RPB2) 116 

for metabarcoding analysis of complex fungal communities in different fermented foods, after assessing which 117 

bioinformatic strategy was most suitable for analyzing such datasets. To perform these analyses, we compared 118 

seven strategies based on commonly used tools for metabarcoding data (QIIME2, DADA2, USEARCH, FROGS) 119 

and a combination of DADA2 and FROGS (named DADA2_FROGS) by analyzing four separate mock 120 

communities’ representative of the fungal diversity found in meat sausage (fermented meat), cheese, grape 121 

must (wine) and sourdough (bread), for a total of 118 species, as well as 24 real fermented food samples. 122 

Methods 123 

Mock community sample preparation 124 

Species diversity 125 

For each fermented food type, representative species were selected based on an inventory of the most 126 

frequently described species in the literature. One strain (mainly available type-strains) was included for each 127 

selected species. The complete list of strains used for mock community design is available on Recherche Data 128 

Gouv platform (https://doi.org/10.57745/AZNJFE) and a summary is presented in Table 1. 129 

 130 

Table 1 - Number of Species, Genus and Family in each mock community 131 

 Bread Cheese Meat Wine 
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Species 27 25 40 60 

Genus 15 16 14 37 

Family 4 11 8 8 

 132 

Figure 1 shows the species distribution at the genus level in the different mock community samples.  133 

 134 

Figure 1 - Genus and species diversity in mock community samples. Each point corresponds to a genus. The number of 135 

species per genus is indicated on the vertical axis. For example, in meat, one genus is represented by 19 species in the mock 136 

community (upper point) and 8 genera are represented by a single species. 137 

The sourdough bread mock community was composed of 27 strains, 26 belonged to Ascomycota phylum 138 

while one was a Basidiomycota. At the genus level, 7, 5 and three species belonged to Kazachstania, Pichia 139 

and Candida spp. respectively, while all others belonged to a distinct genus. The choice of these species was 140 

based on a review paper on sourdough yeasts (Von Gastrow et al., 2023). 141 

The cheese mock community contained 25 strains including 19, 5 and one from the Ascomycota, 142 

Mucoromycota and Basidiomycota phylum, respectively. Six strains belonged to Penicillium, 4 to Mucor and 2 143 

to Clavispora spp. while the others belonged to a distinct genus. This choice of fungal species was based on 144 

the reviews by Montel et al. 2014 and Irlinger et al., 2015. 145 

Among the 40 strains composing the fermented meat mock community, 36 and 4 belonged to the 146 

Ascomycota and Basidiomycota phylum, respectively. Nineteen, 4, 3, 2, 2 and 2 strains were affiliated to 147 

Penicillium, Yarrowia, Cladosporium, Aspergillus, Rhododotorula and Candida, respectively. All others 148 

belonged to a distinct genus. This choice was based on litterature data on fermented meats (Coton et al., 2021; 149 

Franciosa et al., 2021; Berni, 2014 and Selgas and Garcia, 2014). 150 

For the wine mock community, it contained 60 strains belonging to Ascomycota (45 strains) and 151 

Basidiomycota (15 strains). Six strains were affiliated to Hanseniaspora, 6 to Pichia, 5 to Candida, 4 to 152 

Rhodotorula, 3 to Papiliotrema and 2 to Clavispora, Cystobasidium, Metschnikowia and Meyerozyma. All others 153 

belonged to a distinct genus. The selection was made from a review of papers investigating grape and wine 154 

microbiota (Setati et al., 2012; Rossouw and Bauer, 2016; Jolly et al., 2003; Setati et al., 2015; Bokulich et al., 155 

2013 and Garofalo et al., 2016). 156 

Twenty-seven of the 118 strains were common to at least 2 different mock communities (Bread, Cheese, 157 

Meat, Wine). One, i.e. Torulaspora delbrueckii, was present in all mocks. 158 

 159 

DNA extraction from single strains 160 
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Bread and wine 161 

Each strain was grown overnight at 25°C in 15 mL of YEPD before centrifuging for 10 minutes at 1,500 × g. 162 

The cell pellet was resuspended in one mL of sterile water and transferred to a 2 mL tube. After a second 163 

centrifugation at 11,800 × g for 2 minutes, the pellet was resuspended in the yeast cell lysis solution from the 164 

MasterPure Yeast DNA extraction kit (Epicentre) and DNA was extracted according to the kit procedure. 165 

 166 

Cheese  167 

Each strain was grown overnight at 25°C under agitation at 200 rpm in 10 mL of YEGC. One mL of the culture 168 

was centrifuged at 10,000 × g for 10 minutes and the cell pellet was used for DNA extraction using the FastDNA 169 

SPIN Kit (MP Biomedicals). 170 

Fermented meat  171 

DNA was extracted from scraped colonies for yeasts or mycelial plugs for molds using the FastDNA SPIN Kit 172 

(MP Biomedicals) according to the manufacturer's instructions. 173 

 174 

 175 

 176 

Mock community design 177 

For each food environment (bread, wine, cheese, fermented meat), two different mock communities were 178 

prepared, a “DNA” mock community and a “PCR” mock community. For the DNA mock community, genomic 179 

DNA from each strain was quantified using the Qubit DNA Broad Range assay (ThermoFisher Scientific), diluted 180 

to the same concentration (10 ng/µL) and pooled. Then, the four markers were amplified in separate reactions 181 

from 20 ng of pooled DNA. For the PCR mock community, the four markers were individually amplified from 182 

each strain using 20 ng of genomic DNA as input, and PCR products were quantified using the Qubit DNA Broad 183 

Range assay (ThermoFisher Scientific). Then, 300 ng of PCR-product from each strain were pooled and diluted 184 

to a final concentration of 10 ng/µL before metabarcoding analysis. All mock community samples were 185 

prepared in triplicate. 186 

 187 

 188 

Real samples preparation 189 

DNA extraction was performed for each food environment (bread, wine, cheese, fermented meat) 190 

according to different protocols adapted for each matrix. DNA concentration was determined using a Qubit 191 

fluorometer (Life Sciences) according to the Broad Range DNA assay kit protocol. 192 

 193 

Bread 194 

Three types of sourdough coming from different French bakeries were analyzed. All sourdoughs were made 195 

of wheat flour. Sourdough 1 was sampled from an artisanal bakery in Azillanet (Occitanie Region), sourdough 196 

2 from a local baker in Assas (Occitanie region) and sourdough 3 from a local baker in Amilly (Centre-Val de 197 

Loire region). For each sourdough, DNA extraction was performed from 200 mg of three independent samples 198 

using the MO BIO’s Powersoil DNA isolation kit procedure (Qiagen 12888-100) as described previously (von 199 

Gastrow et al., 2022). 200 

 201 
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Cheese 202 

Three ready-to-consume cheeses, namely Saint-Nectaire, Livarot and Epoisses, were analyzed. For each 203 

cheese type, three independent cheeses from the same producer were purchased on the same date. Rind was 204 

gently separated from the core using sterile knives, and only the rind fraction was analyzed. Rind samples were 205 

diluted 1:10 (w/v) in sterile distilled water and homogenized with an Ultra Turrax® (Labortechnik) at 8,000 rpm 206 

for 1 min to obtain a homogeneous mixture. DNA extraction was performed on 0.5 mL using the bead beating-207 

based protocol detailed in a previous study (Dugat-Bony et al., 2015). 208 

 209 

Fermented meat 210 

DNA extractions were performed on casing samples obtained from French fermented sausages as 211 

described previously (Coton et al., 2021). Briefly, 5 cm × 1 cm casing samples were mixed with 9 mL sterile 212 

Tween (0.01% v/v) water followed by vigorous vortexing, before removing the casings. After centrifugation at 213 

8,000 × g for 15 min, cell pellets were stored at −20°C until use. For DNA extractions, slightly thawed cell pellets 214 

were resuspended in 500 μL yeast lysis solution, divided in two, and DNA extracted using the FastDNA spin kit 215 

(MP Biomedicals) as described by the manufacturer. After extraction, DNA samples were purified using the 216 

DNeasy Tissue Kit silica-based columns (Qiagen) according to the manufacturer’s instructions. 217 

 218 

Wine 219 

Cells from 1 liter of a grape must were collected after centrifugation for 15 min at 10,000 × g. The pellet 220 

was resuspended in 10 mL YPD supplemented with 20% glycerol and stored at -80°C. Three samples of 221 

Sauvignon (1) and Viognier (2) grape must from the INRAE experimental wineries in Gruissan (France) were 222 

chosen. For DNA extraction, 1 mL of this cell suspension was sampled and centrifuged, then cells were 223 

resuspended in 1 mL of freshly prepared PBS supplemented with 1% Polyvinylpyrrolidone 25 to remove 224 

polyphenolic compounds that could further inhibit target amplification. After a second centrifugation at 15,000 225 

× g for 10 minutes, DNA was extracted with the DNeasy Plant kit (QIAGEN, Hilden, Germany) with some 226 

modifications. The pellet was resuspended in 0.5 mL AP1 buffer and 4 μL of RNAse A solution and 300 μL of 227 

0.3 mm glass beads were added. Cells were disrupted in a Precellys grinder (6,000 rpm, 320 seconds - 3 times). 228 

After centrifugation for 5 minutes at 15,000 × g, the supernatant was used for the downstream DNA extraction 229 

steps according to the manufacturer’s instructions. The resulting DNA samples were then used for 230 

metabarcoding. 231 

 232 

Library preparation and sequencing 233 

Target markers were amplified with the primers presented in Table 2. The ITS1, ITS2, D1/D2 and RPB2 234 

regions were amplified with the primers F (CTTTCCCTACACGACGCTCTTCCG-forward primer sequence) and R 235 

(GGAGTTCAGACGTGTGCTCTTCCG-reverse primer sequence) using 30 amplification cycles with an annealing 236 

temperature of 48 or 55°C (Table 2), 0.5 U MTP Taq (Sigma-Aldrich), 1.25 µL each primer (20 µM), 1 µL dNTP 237 

(10 µM each) in 50 µL final volume. 238 

Single multiplexing was performed using an in-house 6 bp index, which was added to the reverse primer 239 

during a second PCR with 12 cycles using forward primer 240 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC) and reverse primer 241 

(CAAGCAGAAGACGGCATACGAGAT-index-GTGACTGGAGTTCAGACGTGT). The resulting PCR products were 242 

purified and loaded onto the Illumina MiSeq cartridge according to the manufacturer instructions, and paired-243 

end read sequencing was performed for 2 × 250 cycles. The quality of the run was checked internally using 244 

PhiX as a control, and then each paired-end sequence was assigned to its sample with the help of the previously 245 
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integrated index. The sequencing data from this study are available in NCBI SRA repository under the Bioproject 246 

number PRJNA685292. 247 

 248 

Table 2 - Description of the primers used to target ITS1, ITS2, D1/D2 and RPB2 regions. 249 

Targeted 

region 

Fwd 

name 

Fwd sequence Rv 

name 

Rv sequence Tm Reference 

D1/D2 NL1 5’-

GCATATCAATAAGCGGAGGAAAAG-

3’ 

NL4 5’-GGTCCGTGTTTCAAGACGG-3’ 48°C (O’Donnell, 1993) 

RPB2 RPB2-

6F 

5’-TGGGGYATGGTNTGYCCYGC-3’ RPB2-

7R 

5’-

GAYTGRTTRTGRTCRGGGAAVGG-

3’ 

55°C (Matheny, 2005) 

ITS1 ITS1F 5’-CTTGGTCATTTAGAGGAAGTAA-3’ ITS2 5’-GCTGCGTTCTTCATCGATGC-3’ 55°C (Gardes and Bruns, 

1993; White et al., 

1990) 

ITS2 ITS3 5’-GCATCGATGAAGAACGCAGC-3’  ITS4Kyo 5’-TCCTCCGCTTWTTGWTWTGC-

3’ 

55°C (Toju et al., 2012; 

White et al., 1990) 

 250 

Bioinformatic analysis 251 

Construction of the reference databank for mock community analysis 252 

For each reference strain (118 in total), the sequence of the four phylogenetic markers (ITS1, ITS2, D1/D2, 253 

RPB2) was obtained from public databases or from unpublished sequences obtained in our labs. Only 3 RPB2 254 

sequences were not available and missing due to PCR amplification failure (Cryptococcus neoformans, Mucor 255 

lanceolatus and Rhodotorula glutinis). The length distribution of the 469 sequences is represented in Figure 2. 256 

As expected, variations in length are visible, ranging from 70 to 835 bp. On average, ITS1 sequences are 257 

shortest, followed by ITS2, D1/D2 and RPB2 sequences. 258 

 259 

 260 

Figure 2 - Sequence length distribution of the four markers for the 118 strains present in mock samples inferred from the 261 

reference database.. 262 

 263 

From all sequences and for each marker, we built phylogenetic trees with FastTree (Price et al., 2010) and 264 

Phangorn R package (Schliep, 2011) after a multiple alignment of sequences with Mafft (Katoh et al., 2009). 265 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2023. ; https://doi.org/10.1101/2023.01.13.523754doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523754
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3 shows the diversity of the 118 ITS1 sequences from a phylogenetic point of view. Phylogenetic trees 266 

for other markers are available on Recherche Data Gouv platform (https://doi.org/10.57745/AZNJFE). 267 

Database construction was crucial for benchmarking and was necessary in our case because many 268 

sequences are absent in public databanks. Figure 4 shows the best hits of the 469 sequences after a blast 269 

against each representative databank (UNITE v9.0 for ITS, SILVA v138 for D1/D2 and nt release 2021-07-30 for 270 

RPB2). If the sequence is present in the databank, the corresponding point is at the top right of the graph. If 271 

no hit is found, the corresponding point is at the bottom left of the graph. In the middle of the graph are points 272 

corresponding to sequences for which the percentage of identity and coverage are less than one hundred 273 

percent. This result illustrates the incompleteness of public databases for food ecosystems, particularly for 274 

RPB2 sequences.  275 

 276 

 277 

Figure 3 - Phylogenetic tree built from D1/D2 sequences of the 118 strains of the mock samples, colored by Class. Shapes 278 

indicate the presence in bread, cheese, fermented meat or wine mock samples. 279 

 280 

281 
Figure 4 - Representation of blast results (identity and coverage percentage) of the 468 sequences against dedicated databases 282 

(UNITE for ITS, SILVA for D1/D2 and nt for RPB2). The percentage of coverage and percentage identity are shown on the Y and X 283 

axis, respectively. 284 
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 285 

Benchmark of metabarcoding approaches 286 

Full codes and figures are available on Recherche Data Gouv platform (https://doi.org/10.57745/109NNP). 287 

We used FROGS (Bernard et al., 2021), USEARCH (Edgar, 2010), QIIME2 (Bolyen et al., 2019) and DADA2 288 

(Callahan et al., 2016) following their own guidelines, and a custom combination of DADA2 and FROGS that we 289 

named DADA2_FROGS. 290 

One strength of FROGS is the ability to deal with overlapping and non-overlapping reads at the same time. 291 

This tool processes ITS1, ITS2, D1/D2 and RPB2 markers equally by a preprocess step (preprocess.py) to merge 292 

paired-end reads or create “artificial” sequences if they do not merge. In this case, R1 and R2 sequences are 293 

concatenated with a stretch of Ns in the middle. The subcommands preprocess.py, clustering.py with 294 

parameters --fastidious and --distance 1, remove_chimera.py, otu_filters.py with parameter --min-abundance 295 

0.00005, itsx.py, affiliation_OTU.py and affiliation_filters.py with parameters --min-blast-coverage 0.9, --min-296 

blast-identity 0.9 and --delete were used. 297 

DADA2 is a widely used tool for metabarcoding analyses. It infers exact amplicon sequence variants (ASVs) 298 

from amplicon data, resolving biological differences of even 1 or 2 nucleotides. Cutadapt and then the 299 

functions filterAndTrim (maxN = 0, maxEE = 2, truncQ = 2, minLen = 50, rm.phix = TRUE), dada and mergePairs 300 

were used. By default, DADA2 does not deal with overlapping and non-overlapping reads at the same time. 301 

We used single-end and paired-end modes (DADA2-se and DADA2-pe, respectively). For DADA2-se, only R1 302 

reads were taken into account and only overlapping reads for DADA2-pe. Then, for both strategies, 303 

makeSequenceTable, removeBimeraDenovo and assignTaxonomy functions were finally used. 304 

In the same way, QIIME2 was used in single and paired-end modes (QIIME-pe and QIIME-se). The 305 

commands used were qiime cutadapt, qiime dereplicate-sequencesand then we  performed an open-reference 306 

clustering using the qiime vsearch cluster-features-open-reference command to build OTUs with the parameter 307 

--p-perc-identity 0.99. Chimera were removed with vsearch uchime-denovo command and the taxonomic 308 

affiliation was done with qiime feature-classifier classify-sklearn. 309 

For USEARCH, we followed the instructions provided by the author on his website 310 

(https://www.drive5.com/usearch/manual/global_trimming_its.html) by taking into account merged 311 

sequences and 5′ R1 reads of non-overlapping reads and used successively the parameters -fastq_mergepairs, 312 

-search_oligodb, -fastq_filter, -fastx_uniques, -unoise3 and -otutab to produce ZOTUs and  -sintax for 313 

taxonomic affiliation. 314 

For the DADA2_FROGS strategy, the DADA2 recommendations were followed until obtaining the ASV table 315 

(cutadapt, filterAndTrim, dada, mergePairs and makeSequenceTable functions). At this step, we followed the 316 

FROGS guidelines after the clustering step: remove chimera (remove_chimera.py), ITSx (itsx.py) for ITS data 317 

and taxonomic affiliation (affiliation_OTU.py). The aim was to benefit from the denoising algorithm that is, in 318 

theory, able to produce high-resolutive ASVs. As we wanted to keep merged and unmerged reads, we kept 319 

them by using the returnRejects parameter of the dada2 mergePairs function.  320 

For each tool, we used our internal database available on Recherche Data Gouv platform 321 

(https://doi.org/10.57745/AZNJFE), consisting of our mock sequences, for taxonomic affiliation of the 322 

OTUs/ASVs/ZOTUs, as described above. No additional sequence was added to avoid unnecessary noise to 323 

analyze the different mock communities. 324 

Different metrics were computed in order to compare the above-mentioned methods: (i) the divergence 325 

rate, computed as the Bray-Curtis distance between expected and observed abundance profiles at the species 326 

level; (ii) the number of false-negative taxa (FN) corresponding to the number of expected taxa that were not 327 

recovered by the method, (iii) the number of false positive taxa (FP) corresponding to the number of recovered 328 

taxa that were not expected, (iv) the number of true positive taxa (TP) corresponding to the number of 329 

recovered taxa that were expected. From these metrics we computed the precision (TP/(TP+FP)) and the recall 330 
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rate (TP/(TP+FN)). Finally, as we knew the exact expected sequences, we computed the number of sequences 331 

perfectly identified (OTUs/ASVs/ZOTUs with nucleic sequence was strictly identical to the known reference 332 

sequence). For long sequences (i.e. > 500 bp), the middle was not sequenced and only the sequenced part was 333 

used for taxonomic affiliation. In this case, 100% identity between the reference and the OTU/ASV/ZOTU 334 

resulted in a perfect identification. 335 

Analysis of real samples 336 

DADA2_FROGS, the bioinformatics approach with the best results from mock samples, was used to analyze 337 

real samples (Code and figures are available on Recherche Data Gouv platform, 338 

https://doi.org/10.57745/ENE09G). For the taxonomic affiliation of these samples (composition unknown), 339 

and for each marker, we added the 118 sequences from our mock communities to Unite (v. 9,0) (Rolf Henrik 340 

Nilsson et al., 2019) for ITS data and SILVA (v. 138) (Quast et al., 2013) 28S rDNA sequences for D1/D2. For 341 

RPB2, we needed to build an in-house database because no dedicated one was publicly available to the best 342 

of our knowledge. We first extracted sequences from the “Fungi” division from NCBI nt databank (release 343 

2021-07-30) (Sayers et al., 2022) using taxonkit (v. 0.6.0) (Shen and Ren, 2021) and then used cutadapt (Martin, 344 

2011) with RPB2 primers to target sequences of interest. The databases were composed of 206,184 ITS 345 

sequences, 16,293 D1/D2 sequences and 13,055 RPB2 sequences. 346 

For each ASV obtained, the taxonomic affiliation was manually checked and corrected when needed. More 347 

precisely, ASVs were blasted against different databases (e.g., NCBI, YEASTIP) to confirm or correct the 348 

affiliation, and we removed some ASVs (remaining chimera, contaminations). When taxonomic resolution at 349 

the species level was not possible (identical sequences between two or several species), we defined groups of 350 

species and labeled ASVs accordingly. 351 

This manual curation step was performed for the most abundant ASVs (an abundance of at least 150 by marker 352 

and food ecosystem). 353 

Results 354 

In this study, we compare the efficiency of 4 barcodes (ITS1, ITS2, D1D2, RPB2) and seven bioinformatic 355 

workflows to detect the species in microbial community of 4 fermented products (bread, wine, cheese, 356 

fermented meat) using mocks and real samples. The phylogenetic diversity of fungal species analyzed is 357 

illustrated Figure 3. 358 

Choice of the most accurate bioinformatic approach 359 

Our benchmark of tools was only performed on mock community samples, and the results of the four 360 

markers were analyzed together (Figure 5).  361 

Recall rate 362 

The median recall rate (sensitivity), reflecting the capacity of tools to detect expected species, is between 363 

0.75 and 0.8 for FROGS, DADA2_FROGS, USEARCH, QIIME-se and DADA2-se. It is lower (~0.5) for QIIME-pe and 364 

DADA2-pe, due to the fact that these methods always reject reads if they do not overlap (all D1/D2 and RPB2 365 

sequences and some ITS1/2 were always missing). 366 

Precision 367 

Regarding precision, the four methods yield values of 0.95-0.97 (FROGS, DADA2_FROGS, USEARCH and 368 

QIIME-se). QIIME-pe is slightly less efficient (0.92), and both DADA2-se (0.84) and DADA2-pe (0.69) are worse. 369 
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Divergence rate 370 

The divergence rate is computed as the Bray-Curtis distance between expected and observed abundance 371 

profiles at the species level. It therefore reflects the ability of the tool to detect species in the right proportions. 372 

The divergence rates obtained in this study are very high and, as expected, are lower for PCR mocks, as we can 373 

see in Figure 7. FROGS, DADA2_FROGS, USEARCH, QIIME-se and DADA2-se yield equivalent results for this 374 

indicator (~46-47% on average) while DADA2-pe and QIIME-pe show higher divergence rates (65-69%). 375 

Reconstruction of sequences 376 

DADA2_FROGS is able to reconstruct more sequences than the other methods. Indeed, 79.2% of expected 377 

sequences are found without errors. FROGS is very close with 75.9%, followed by DADA2-pe (75.1%) and 378 

QIIME-pe (74.9%). USEARCH (66%), DADA2-se (17.6%) and QIIME-se (1.2%). 379 

 380 

 381 

 382 

 383 

 384 
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Figure 5 - Quality parameters obtained with the seven bioinformatics pipelines. A) Recall rate (TP/(TP+FN)) reflects the 385 

capacity of the tools to detect expected species. B) Precision (TP/(TP+FP)) shows the fraction of relevant species among the 386 

retrieved species. C) Divergence rate is the Bray-Curtis distance between expected and observed species abundance. D. 387 

Percentage of perfectly reconstructed sequences is the fraction of predicted sequences with 100% of identity with the 388 

expected ones. 389 

 390 

Overall, the results obtained with the four indicators reveal that the DADA2_FROGS approach performs 391 

the best for analyzing ITS1, ITS2, D1/D2 and RPB2 mock samples. We thus selected this approach for all 392 

subsequent analysis. Nevertheless, it should be noted that the FROGS tool also performs well as it yields 393 

indicator values that are similar to DADA2_FROGS. The main difference is due to species harboring very similar 394 

sequences, such as those belonging to Penicillium spp. 395 

 396 

Effect of amplicon length on the detected relative abundance 397 

The ITS1 and ITS2 amplicon size is highly variable depending on the considered fungal species, as observed 398 

for those included in our mock communities (Figure 2). The effect of amplicon size on the relative abundance 399 

of the different species was evaluated using the PCR mock dataset (Figure 6) (code and figures are available 400 

on Recherche Data Gouv platform: https://doi.org/10.57745/APNOH8). 401 

 402 

 403 

 404 

Figure 6 - Effect of ITS1  amplicon size on the relative abundance of the It is rather likely that all primers have missmatches 405 

with certain groups of fungi.detected ASVs in the PCR mock datasets. 406 

A significant negative relationship is observed between amplicon length and relative abundance in two out 407 

of four tested mock communities for ITS1 (cheese and bread, but not meat and wine) and ITS2 (meat and wine, 408 

but not cheese and bread). Furthermore, the determination coefficient (R2), which indicates the proportion of 409 

variation in the relative abundance data that is predictable from the amplicon length, is comprised between 410 

0.013 and 0.085. This parameter therefore only has a limited impact on the observed proportions when using 411 

ITS1 and ITS2 as barcode markers. 412 

 413 

Comparison of markers 414 

To compare the capacity of each marker to correctly reflect the fungal diversity present in fermented food 415 

samples, we only focused on the results obtained with the DADA2_FROGS approach. Code and figures are 416 
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available on Recherche Data Gouv platform (https://doi.org/10.57745/X6AXA6). Figure 7 shows the 417 

divergence rate obtained for each marker and mock community type (DNA or PCR mock communities). 418 

 419 

 420 

Figure 7 - Divergence at species level for each tested barcode marker and mock community. DNA mock communities are 421 

colored in red and PCR mock communities are colored in blue. 422 

Figure 8 shows the amount of absent, partially and perfectly reconstructed sequences for each ecosystem. 423 

 424 

 425 

Figure 8 - Heatmap of expected species for each mock community and barcode marker using the DADA2_FROGS approach. 426 

Dark green represents perfectly reconstructed sequences (score of 1), light green partially reconstructed sequences (score of 427 

0.75) and orange species that are missing (0). Density of results is indicated for each line, representing the ability of markers to 428 

be efficient. 429 

 430 

Bread 431 

Regarding the sourdough bread mock community, divergence varies according to the tested barcode 432 

marker. While RPB2 presents the highest divergence (75%), D1/D2 shows the lowest (34%-42%) while ITS1 and 433 

ITS2 show an intermediate level of divergence. Contrary to what was found for cheese and meat mock 434 

communities, divergence is not higher for the mock community DNA mixture than for the mock community 435 

PCR mixture, except for ITS1 where the PCR mock mixture presents 35% divergence while the DNA mock 436 

mixture ranges from 55% to 61%. 437 

ITS1 and ITS2 perform equally well in terms of false negatives (n=6), false positives (n=1) and true positives 438 

(n=21). D1/D2 exhibits one less false negatives (n=5), one more true positives (n=22) and one more false 439 

positives than both ITS barcode markers. RPB2 is the worst performing marker with the highest number of 440 

false negatives (n=12-14), and the lowest number of true positives (n=8-10). 441 

These results show that D1/D2, ITS1 and ITS2 are all relevant for the analysis of sourdough microbiota but 442 

it cannot be concluded which one is best. 443 
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Cheese 444 

Regarding the cheese mock community, D1/D2, ITS1 and ITS2 show comparable performance in terms of 445 

divergence and are more accurate than RPB2. It is noteworthy that divergence is higher for DNA (between 45 446 

and 70%) than PCR (between 15 to 50%) mock communities. ITS2 exhibits less false negatives (only one) and 447 

more true positives (24/25) than other markers. However, it generates two false positives with the DNA mock 448 

community and one with the PCR mock community samples while D1/D2 and RPB2 generates one false positive 449 

with both DNA and PCR samples. Altogether, these results indicate that, according to the four markers used in 450 

this study, ITS2 provides the best compromise to accurately profile cheese fungal communities. 451 

Fermented meat 452 

Regarding the fermented meat mock community, all tested markers show comparable performance in 453 

terms of divergence, ranging from 52 to 56% and 23 to 35% for the mock DNA and mock PCR mixture, 454 

respectively. As observed for the cheese mock community, divergence is 1.5-2 times higher for the mock DNA 455 

mixture than for the mock PCR mixture, the lowest divergence being observed with ITS1 marker in the mock 456 

PCR mixture (23% divergence). D1/D2 exhibits the highest number of false negatives (n=8) as compared to 457 

other markers while for PCR mock community mixture, ITS1 and RPB2 exhibit 4 and 5 false negatives, 458 

respectively. Concerning the true positive metric, all markers perform equally well with between 32 and 33 459 

true positives out of 40 expected species for both mock DNA and PCR mixtures with the exception of ITS1 460 

marker in the mock PCR mixture which yields 36 true positives. Based on the above mentioned results, we 461 

conclude that the ITS1 barcode is slightly more accurate for profiling fermented meat fungal communities, 462 

although ITS2 and RPB2 also performed well. 463 

Wine 464 

RPB2 marker does not detect most species (22/60 not found). In contrast, D1/D2, ITS1 and ITS2 display 465 

similar results to describe the mock community although not completely; ITS2 is slightly better than the other 466 

markers. For the latter three markers, similar performance in terms of divergence is obtained, but better for 467 

the DNA mock community than the PCR mock community. However, at least 7 species out of 60 are not 468 

identified. ITS2 is also shown to be the most efficient. 469 

Similar to the cheese ecosystem, the ITS2 barcode was the most accurate to explore wine mycobiota, 470 

followed by ITS1. 471 

 472 

Analysis of real samples 473 

We then compared the efficiency of the four barcodes to detect species in real samples in order to validate 474 

our mock results and take into account the fermented food matrix. Code and figures are available on Recherche 475 

Data Gouv platform (https://doi.org/10.57745/ENE09G). 476 

Bread 477 

Metabarcoding results from the wheat sourdough sample analyses showed that hits with identities above 478 

80% were not detected using the RPB2 marker. Besides fungal DNA, the other three markers amplified plant 479 

DNA. The number of plant DNA hits was much higher for ITS2 and D1/D2 than ITS1. Moreover, ITS2 and D1/D2 480 

markers amplified DNA from Triticum species (Triticum aestivum, Triticum monococcum, Triticum durum), and 481 

crop weeds, such as Viciae sp., Gallium sp. and Calystegia sp., often found in cereal fields. The ITSx tool 482 

automatically removed plant-derived ASVs in the final ITS1 and ITS2 ASV table whereas those from the D1D2 483 

dataset had to be manually removed.  484 

Regarding filamentous fungi, several genera were not detected with D1/D2 including Aspergillus, 485 

Aureobasidium and Tilletia. Regarding mycotoxin-producing wheat pathogens (e.g., Fusarium and Penicillium 486 
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spp.) or species involved in negatively impacting grain and flour quality for bread making (e.g., rotten fish smell 487 

due to Tilletia sp.), results showed that the ITS1 barcode did not detect Penicillium spp. contrary to D1/D2 and 488 

ITS2 barcode markers. On the other hand, ITS1 allowed a better resolution to the species level within the 489 

Fusarium and Tilletia genus. 490 

Regarding fermenting yeast, the well-known bakery yeast Saccharomyces cerevisiae was detected by all 491 

three markers. In contrast, Wickerhamomyces anomalus, frequently encountered among dominant yeast 492 

species in sourdoughs worldwide, was only detected by the ITS1 and ITS2 markers although not consistently. 493 

It was found in all sourdough samples using the ITS1 marker but only in two out of the three sourdough samples 494 

using the ITS2 marker. 495 

Based on the comparison of the RPB2, ITS1, ITS2, D1/D2 markers on real sourdough samples, ITS1 is the 496 

best adapted marker to describe sourdough mycobiota as lower reads due to plant DNA were observed and 497 

the best detection of sourdough fungal species was obtained. 498 

Cheese 499 

At the genus level, D1/D2, ITS1 and ITS2 all detected Geotrichum and Debaryomyces as the major fungal 500 

genera present on the surface of the three studied cheeses, contrary to RPB2, which placed Debaryomyces and 501 

Kluyveromyces as the dominant taxa and exhibited high variations between biological replicates. So, we 502 

decided to exclude RBP2 from the comparison. Regarding the three other markers, some important 503 

discrepancies were observed. First, Yarrowia and Mucor species were only detected in real cheese samples 504 

with D1/D2 and ITS2. These species are among the most prevalent fungi in cheese products. Secondly, within 505 

Geotrichum, ITS1 detected ASVs affiliated with G. candidum but also with Geotrichum sp. while both D1/D2 506 

and ITS2 only detected G. candidum species. Thirdly, within the Mucor genus, better species level resolution 507 

was observed with ITS2 compared to D1/D2. Similarly, it was possible to correctly assign the species 508 

Kluyveromyces lactis to the corresponding ASV when using ITS1 and ITS2, but the one obtained with D1/D2 509 

could not be differentiated between K. lactis and K. marxianus. As these two species are frequently used as 510 

ripening cultures in cheese production, it may be important to choose the ITS1 or ITS2 primers to discriminate 511 

between them. Finally, Candida, which aggregates with species from different genera including species with 512 

uncertain affiliations, was abundant in sample 1 (Saint-Nectaire cheese) based on both ITS regions but was 513 

only slightly detected with D1/D2. Altogether, these results indicate that ITS2 performs best to describe cheese 514 

fungal communities, followed by D1/D2. 515 

Fermented meat 516 

At the genus level, Debaryomyces and Penicillium, which are major genera on the casings of fermented 517 

meat, were detected with all tested barcode markers. Interestingly, Kurtzmaniella sp. (“Candida” zeylanoides) 518 

was only identified using D1D2 and ITS2 barcodes while Yarrowia and Scopulariopsis sp. were only identified 519 

using D1D2 and ITS2, and, D1D2, ITS2 and RPB2, respectively. Noteworthy, both genera were found in a much 520 

larger number of samples using the ITS2 barcode. At the species level, D. hansenii and Penicillium nalgiovense 521 

were found, as expected, to be the most dominant taxa by all 4 barcode markers. Noteworthy, an unambiguous 522 

assignation of ITS1 and ITS2 ASVs to P. nalgiovense was not possible as these ASVs shared 100% similarity with 523 

other related Penicillium species and with Penicillium melanoconidium for ITS1 and ITS2 ASVs, respectively. 524 

Among other major species in fermented meat, P. salamii, was only identified with ITS1, ITS2 and RPB2 525 

barcodes while P. nordicum, a mycotoxin-producing fungus, was only found using RPB2. ITS2 was the only 526 

barcode that accurately identified Yarrowia species (i.e., Y. deformans and Y. lipolytica). Overall, among the 527 

different tested barcodes, ITS2 was the most efficient for identifying the majority of fungal meat species, the 528 

only exception being for the very diversified Penicillium genus. 529 
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Wine 530 

In comparison to the other studied ecosystems, species diversity in grape must samples was much more 531 

complex. More than one hundred yeast and filamentous fungal species were detected including 33 that were 532 

part of the wine mock. 533 

When comparing the main species encountered, striking differences were observed between ITS1, ITS2 534 

and D1D2 results. Aspergillus and Aureobasidium were detected in all samples, although with large differences 535 

according to barcode. Nearly 50% was identified in the triplicates of sample 1 using ITS2 while only 25% with 536 

ITS1 and about 40% with D1D2 (higher abundances of Aspergillus than Aureobasidium were also noted). An 537 

opposite situation was observed for Botrytis. Indeed, this genus was much more abundant using ITS1 versus 538 

ITS2 and D1D2. In agreement with mock analysis results, Starmerella bacillaris, a major component of grape 539 

must microbiota, was detected at very low abundance in the different samples with ITS1, whereas this species 540 

was detected in all samples with ITS2 and D1D2, and represented up to 40% in sample 2 according to ITS2 read 541 

counts. In a similar manner, Hanseniaspora uvarum was poorly detected with ITS1, well detected with ITS2 542 

and most abundant with D1D2. In contrast, Metschnikowia species were detected in a similar manner with 543 

ITS1 and ITS2 (more than 40% abundance in samples 3.1 and 3.2) despite the short length and the 544 

polymorphism of the amplified sequences. 545 

In conclusion, the ITS2 barcode provides the most comprehensive description of grape must mycobiota. 546 

Discussion 547 

The aim of this study was to compare bioinformatic tools and barcodes used to describe fungal 548 

communities in different fermented foods. Choosing the most robust barcode marker for accurate description 549 

of fungal communities is crucial. However, various challenges/biases have to be addressed or taken into 550 

account for their accurate characterization such as incompleteness of reference databases, low taxonomic 551 

depth and PCR amplification biases. In addition, dedicated pipelines also need to be evaluated. In the present 552 

study, we built mock fungal communities that gathered the most representative species of fermented meat, 553 

cheese, sourdough bread and grape must (wine). These mock communities were used to compare the 554 

performances of the main bioinformatic tools available to the scientific community (FROGS, USEARCH, QIIME 555 

and DADA2) as well as a combination of DADA2 and FROGS using reads obtained from four commonly used 556 

barcodes for fungal community assessment, i.e. ITS1, ITS2, D1D2 of the rDNA as well as RPB2. In addition, to 557 

compare these bioinformatic pipelines, we built an in-house database of barcode sequences as many 558 

sequences from major fungal species found in these fermented foods were missing in currently available 559 

databases. Finally, after selecting the best bioinformatic pipeline, we compared the performances of these 560 

four barcodes using real fermented food samples.  561 

In the first part of this study, we compared several commonly used bioinformatic tools. By combining the 562 

denoising step of DADA2 followed by the FROGS pipeline, we defined a “universal” pipeline for all barcodes. It 563 

combines the advantages of FROGS (dealing with all amplicon lengths) and those of denoising approaches (best 564 

resolution and stable ASVs to compare datasets from different studies). Our pipeline avoids the pitfall of other 565 

tools in which targeting short barcodes rather than long ones is required (Brandon-Mong et al., 2015; Leray et 566 

al., 2013). 567 

One of the main challenges in fermented foods is to characterize microbial communities at the species 568 

level including fungi. Food fungal communities are less diversified at the genus level but diversity within genera 569 

needs to be determined as it can be relatively high. Robust barcode markers are thus required to reach species 570 

level descriptions among genera. Protein-coding genes can be useful to reach this goal and among them, RPB2 571 

is one of the most commonly used taxonomic marker. However, our results clearly highlighted the poor 572 

performance of this gene as a barcode, due to a lack of amplification of the barcode. This might be related to 573 

the choice of primers, which were originally designed for Basidiomycota (Matheny, 2005). To overcome this 574 
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limitation, it would be worth designing new consensus primers suitable for Basidiomycota, Ascomycota and 575 

Mucoromycotina. Alternative protein-coding genes also need to be tested. 576 

Besides protein-coding genes, rDNA barcodes provide a good global view of mycobiota. Previous studies 577 

compared ITS1 versus ITS2 (Bokulich and Mills, 2013) or ITS versus nuclear ribosomal large subunit (LSU) 578 

barcodes (Brown et al., 2014). All studies converged on the proposition of using ITS as the primary fungal 579 

barcode (Schoch et al., 2012). The LSU appeared to have superior species resolution in some taxonomic groups 580 

(Mota-Gutierrez et al., 2019), such as the early diverging lineages and ascomycete yeasts, but was otherwise 581 

slightly inferior to ITS (Schoch et al., 2012). ITS1 and ITS2 are, in general, more resolutive markers than D1D2, 582 

in particular for filamentous fungi (Mota-Gutierrez et al., 2019). ITS1 locus generally has the shortest mean 583 

amplicon lengths for all phyla, the smallest difference between Ascomycota and Basidiomycota amplicon 584 

lengths, and the highest species- and genus-level classification accuracy for short amplicon reads, arguing for 585 

the primacy of this locus, compared to ITS2 (Bokulich and Mills, 2013). However, in the present study, we found 586 

that none of the rDNA markers allowed us to unequivocally discriminate between all species in real fermented 587 

foods. For example, this was emphasized for several mold species, especially species belonging to Penicillium 588 

or Pichia spp. 589 

While D1D2 is among the reference sequences for fungal taxonomy, we found that it had less 590 

discriminating power to differentiate species as compared to ITS1 and ITS2 barcodes. This agrees with the 591 

previous analysis of 9,000 yeast strains, showing that 6 and 9.5% of the yeast species could not be distinguished 592 

by ITS and LSU, respectively (Vu et al., 2016). Indeed, LSU is more conserved than ITS. 593 

The ITS1 and ITS2 markers performed better than D1D2 but their performance varied according to the 594 

tested fermented foods. Indeed, while ITS2 performed better for cheese, meat and wine, ITS1 seems better 595 

for bread. Concerning the latter, ITS2 primers amplified the ITS from wheat and several weeds which hampered 596 

its efficiency for cereal-based products. Besides the fermented product being studied, the choice of the ITS 597 

barcode also depends on the expected species diversity in the ecosystem and may be driven by fungal species 598 

of interest. Moreover, choice of ITS primers can also be adapted to targeted species. Indeed, some ITS 599 

barcoding primers may have mismatches with the sequence of fungal species of interest, such as Yarrowia 600 

species (Ihrmark et al. 2012, Tedersoo and Lindahl, 2016). Finally, although ITS1 and ITS2 seem to be the best 601 

barcodes for distinguishing between species and, according to our results, their variation in size does not 602 

appear to introduce a large bias, their difference in size may hinder sequence alignment and therefore beta 603 

diversity estimates that take phylogenetic distances into account. 604 

One of the limits addressed in the present study was the availability of a complete database adapted to 605 

the chosen fermented foods. We thus developed an in-house sequence database for all four major fermented 606 

foods in order to fill in this gap. This database significantly improved species level affiliations although manual 607 

curation was still required for some genera with complex taxonomy such as Penicillium spp. These results also 608 

illustrate the need to expand public databases with specific databases. 609 

Metabarcoding is known to be a semi-quantitative method. It is considered to suffer from amplification 610 

biases caused by fragment length polymorphism. We did not find evidence for any correlation between 611 

amplicon size and read abundance. The divergence between the expected and observed frequency likely 612 

results from differences in copy number of rDNA genes (Sternes et al., 2017). Normalization of relative 613 

abundance by qPCR targeting a standard reference (Zemb et al., 2020) or by digital PCR (Floren et al., 2015; 614 

Zimmer-Faust et al., 2021) might also correct for DNA extraction bias. 615 

 616 

In conclusion, although ITS2 appears as the most accurate barcode marker for fermented meat, cheese 617 

and wine samples and ITS1 for sourdough bread, no generic recommendation for all fermented food types can 618 

be made. This is mainly due to the fact that taxonomic resolution within some genera is not efficient which 619 

highlights the need to combine metabarcoding with culture-dependent analysis such as culturomic 620 

approaches. The availability of long-read technologies, like Oxford Nanopore Technologies or PacBio 621 
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technology, provides the opportunity to sequence longer fragments of the fungal ribosomal operon, up to 6 622 

Kb (18S-ITS1-5.8S-ITS2-28S) and to improve the taxonomy assignment of the communities up to species level 623 

(D’Andreano et al., 2021) but their current cost is still a brake to replace short reads technologies. Shotgun 624 

metagenomics sequencing is also an alternative or a complementary method to study food fermentations 625 

(Leech et al., 2020). It may provide a less biased vision of food microbiota than metabarcoding (Sternes et al., 626 

2017), a more comprehensive insight into the microbial composition, and functional potential but at a much 627 

higher cost for low abundant species. 628 
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