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5Forêts et Sociétés, Univ Montpellier, Cirad, Montpellier, France,
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Summary: The identification of random factors to include in a linear mixed model is crucial for modeling dependence
structures while avoiding over-fitting. Random e↵ects selection can be achieved by shrinking non-relevant variance parameters
towards zero. We propose extending the horseshoe prior for variance components selection in a folded version. Motivated by
two applications, the folded-horseshoe prior is evaluated either in a genetic breeding or in a functional mapping context. In
the latter, we use a polar parametrization of the correlation matrix of random e↵ects, using sinusoidal priors for angular
parameters. Finally, we design e�cient MCMC algorithms taking advantage of Kronecker product properties. From a
statistical point of view, we show that the folded-horseshoe prior outperforms the folded-Cauchy when the number of
parameters is close to the sample size. For variance component selection, it performs as well as the folded-spike-and-slab but
it is computationally more e�cient. We also show the impact of erroneous dependence structures assumptions on the selection
and the estimation of variance components. From a genetic point of view, the numerical results highlight the e�ciency of
the folded-horseshoe prior. In particular, this prior selects molecular markers already identified in these data but also new
markers. Finally, we discuss how and why linear mixed models are an interesting alternative to usual functional mapping
approaches.

Key words: Angular parametrization; Fixed and random e↵ects selection; Horseshoe prior; Linear mixed model; Quanti-
tative genetics.

1. Introduction

Linear mixed models (LMM) are flexible tools for modeling
data from a wide range of data types in various applied fields
including ecology and evolution (Bolker et al., 2009; Ives
and Helmus, 2011), quantitative genetics (Lynch and Walsh,
1998) or medical research (Brown and Prescott, 2014). An
important practical point when using linear mixed models
is the choice of random e↵ect components. Choosing which
random grouping factors to include is vital to model appro-
priate dependence structures within data. This issue com-
pounds when the possible number of random e↵ects is large,
which also leads to identifiability problems and estimation
instability. With new technologies, high-resolution satellite
images, high-throughput genotyping/phenotyping techniques,
such contexts are now very common. For instance, in quan-
titative genetics, linear mixed models are commonly used
for IBD-QTL mapping (George et al., 2000; van Eeuwijk
et al., 2010; Tisné et al., 2015) or gene-set analyses (GSA)
(Fridley and Biernacka, 2011), allowing to decompose the
global genetic e↵ect as a sum of local/specific e↵ects related
to each position/block considered on the genome. In such

studies, the genetic e↵ects are associated to random e↵ects
that can vary from tens to a few hundreds.

This work has been motivated by two original applications.
The first one takes place in the IBD-QTL mapping context
and aims at identifying QTLs related to the oil palm produc-
tion (Elaeis guineensis, Jacq). In this application, 135 random
e↵ects associated to 135 genetic positions are considered. In
the functional mapping framework, the second application
aims at modeling the e↵ects of 38 genetic markers assumed
varying with time, and at selecting those involved in the
dynamics of shoot growth of Arabidopsis thaliana (L. Heynh)
(Marchadier et al., 2019). While providing an alternative
modeling approach to the usual functional mapping methods
based on non-parametric strategies (Ma et al., 2002), our
work also allows to estimate potential dependencies between
random e↵ects.

The usual solution for dealing with identifiability and/or
inference instability problems is to reduce the number of
variables, using model choice procedures based on information
criteria (Müller, Scealy, and Welsh, 2013). An alternative
strategy relies on regularization approaches (Bickel et al.,
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2006). In linear models (LM), regularization procedures have
been widely studied and a large set of penalty functions has
been proposed (see for example Tibshirani (1996); Desboulets
(2018)). Most regularization methods, initially developed in
a frequentist context, have been proposed in the Bayesian
framework (Kyung et al., 2010). Prior distributions act as
penalty terms in the frequentist approach. A set of priors
has been extensively developed, among others: spike-and-
slab (George and McCulloch, 1993), Bayesian Lasso (Park
and Casella, 2008), Elastic-Net (Kyung et al., 2010), normal-
gamma (Gri�n et al., 2010) or horseshoe (Carvalho et al.,
2009) priors.

In the LMM context, literature is less developed. The first
approaches to simultaneously select fixed e↵ects and variance
components used model choice criteria (Rao and Wu, 1989;
Vaida and Blanchard, 2005; Müller et al., 2013; Delattre and
Poursat, 2020). As in the LM context, penalized likelihood
approaches have also been developed as alternatives,
especially when the number of predictors increases. For
instance, Bondell, Krishna, and Ghosh (2010) and Ibrahim
et al. (2011) combined penalized likelihood techniques,
using adaptive lasso or smoothly clipped absolute deviation
(SCAD) penalties, with the Cholesky decomposition of the
random e↵ects covariance matrix or its modified version. In
the high dimensional context, Fan and Li (2012) proposed a
two steps approach, while Li et al. (2018) proposed a doubly
regularized estimation and selection of fixed and random
e↵ects in longitudinal data. The reparametrization of the
LMM by the use of a modified Cholesky decomposition
of the random e↵ects covariance matrix has initially been
put forward in a Bayesian framework by Chen and Dunson
(2003). Such a technique allows to consider the standard
deviations of random e↵ects as regression parameters.
In their approach, a spike-and-slab prior is used for the
fixed e↵ects and the standard deviations, with a truncated
Gaussian distribution for the slab part associated to the
standard deviations. Frühwirth-Schnatter and Tüchler
(2008) propose a related approach, modeling directly the
Cholesky decomposition elements using a spike-and-slab prior
where the slab distribution is an unconstrained Gaussian
distribution. As for the fixed e↵ect selection, alternative
approaches to spike and-slab priors have also been developed
and compared for the selection of variance components. In
particular, continuous shrinkage priors, or their mixture
versions, such as Student and Cauchy distributions, Bayesian
Lasso and normal-gamma priors have been studied in the
context of random intercept models (Frühwirth-Schnatter
and Wagner, 2011). Finally, we note that the question
of shrinking variance parameters towards zero does not
raise only in the LMM context. Such objectives have
been studied in di↵erent statistical contexts. In structured
additive regression models (Fahrmeir, Kneib, and Lang,
2004) for instance, groups of fixed e↵ects are selected using
a spike-and-slab prior on specific group variance components
based on a mixture of inverse gamma distributions (Scheipl,
Fahrmeir, and Kneib, 2012). In time varying parameters
and state-space models, Bitto and Frühwirth-Schnatter
(2019) and Cadonna, Frühwirth-Schnatter, and Knaus (2020)
propose the use of double or triple gamma priors extending
Normal-Gamma (Gri�n et al., 2010) or more generally the

scaled-Beta distribution class (Pérez et al., 2017).

In this paper, we propose to combine the horseshoe prior
with its folded version to simultaneously select fixed and
random e↵ects. We study the performances of the proposed
prior through the two applications and discuss results in
comparison with the two commonly used alternative priors:
the folded Cauchy prior and the folded spike-and-slab prior.
In the second application, to model dependency structures
between random slopes e↵ects, we apply polar parametriza-
tion (Pinheiro and Bates, 1996) using sinusoidal prior on
angles (Pourahmadi andWang, 2015) to ensure symmetry and
positive-definiteness of the unknown correlation matrix. The
paper is organized as follows. Section 2 presents the general
model, priors formulation, and the specific context associated
with each of the two applications along with their dedicated
models. In section 3, we present the computational aspects
of the Bayesian inference in order to optimize the MCMC
algorithms. In Section 4, we firstly discuss results obtained
by the three priors from a statistical point of view, and we
then interpret results from a biological point of view.

2. Model specification and priors formulation

2.1 General considerations

LMMs can be expressed in the following general form:

y = X� +Zeu+ " (1)

where y is a n-response vector, X a n ⇥ (p + 1)-matrix of p
covariates with a first unitary column for the intercept, Z a
n ⇥ s known sparse random e↵ects design matrix associated
to ũ a s-vector of random e↵ects assumed to be distributed
as a multivariate Gaussian distribution with null expectation
and covariance matrix denoted by ⌦. In the following, ũ and
" are assumed independent. Such a formulation encompasses
a broad set of LMMs. Each model leads to consider di↵erent
design matrices X and Z, and variance matrices ⌦.
For the variance component model, considering q independent
random e↵ects ũl, with cl levels each, following a Gaussian
distribution centered on zero with covariance matrix ⌦l

(l = 1, . . . , q), then Z =
Lq

l=1
Zl with Zl the l

th random
e↵ect design matrix, ũ = (ũ0

1, . . . , ũ
0
q)

0, ⌦ is a block
diagonal matrix where each block is the cl ⇥ cl matrix ⌦l

(⌦ = bdiag(⌦1, . . . ,⌦q)) and s =
Pq

l=1
cl. Here

L
denotes

the column concatenation operator. Zũ can be decomposed
as a sum of random e↵ects Zũ = Z1ũ1 + · · · + Zqũq. Two
special cases of the variance component model may be
considered. The first one is the usual variance component
model where ⌦l = �

2

l Icl with Icl the identity matrix of size
cl. In this case, levels of each random e↵ect are assumed
independent. The second one is the animal model where
cl = n, Zl = In and ⌦l = �

2

lAl, where Al is a known
n⇥ n-IBD matrix.
In the random intercept and slope (RIS) context with one
grouping factor with c levels and p covariates, Z = J • X
where • is the face-splitting product (row-by-row Kronecker
product, see web appendix B for more details), J corresponds
to the n⇥c-0/1-design matrix associated to the random e↵ect
and ⌦ is a block diagonal matrix such as ⌦ = Ic ⌦ ⌦, where

Marie DENIS



Continuous shrinkage priors for fixed and random e↵ects selection in linear mixed models 3

⌦ is a (p + 1) ⇥ (p + 1) unknown correlation matrix related
to dependencies between random intercept and slopes. It is
straightforward to extend to q random e↵ects with cl levels
each.

When p and s are large, such models (see equation 1)
must be regularized. The already proposed approaches are
mainly based on the Cholesky decomposition of ⌦ (Chen and
Dunson, 2003; Bondell et al., 2010). In this paper, we propose
to use this decomposition: ⌦ = ⇤R⇤, where ⇤ is a diagonal
matrix and R the associated correlation matrix. A general
LMM model (see equation 1) can then be reformulated as:

y = X� +Z⇤u+ "

=
⇥
X,

�
u
0 ⌦Z

�
P
⇤  �

�

�
+ " (2)

where � is the unique diagonal elements vector of ⇤ and P

is the matrix that transforms � to vec(⇤) (Ibrahim et al.,
2011). Calculation details are presented in web appendix B.
Now, u is the vector of Gaussian random e↵ects Ns (0,R).
Finally, when ⌦ is supposed to be unknown (RIS models),
we propose to write the correlation matrix R using the polar
parametrization (Pinheiro and Bates, 1996; Pourahmadi and
Wang, 2015). Such an approach ensures that the correlation
matrix R, sampled though the posterior distribution, is a valid
symmetric and positive-definite matrix with 1’s on the diag-
onal. More details are given in section 2.3.2 bellow. Finally,
" is a multivariate Gaussian residual vector assumed to be
independent of u.

2.2 Priors formulation

To achieve the selection of fixed e↵ects (�) and scale param-
eters (�), we consider in this work local-global priors (Polson
and Scott, 2012; Piironen and Vehtari, 2017). Such priors,
initially used for the selection of fixed e↵ects only, consist in
a scale mixture of Gaussian distribution on parameters aj

subjects to selection:

aj |⌧2
,!

2

j ,�
2 ⇠ N

�
0,�2

⌧
2
!

2

j

�
, j = 1, . . . , q, (3)

where �
2 is the residual variance, ⌧2 is the global parameter

while !
2

j are the local ones. ⌧2 allows to shrink all coe�cients
towards zero while local parameters !

2

j highlight non-null
parameters. Such a prior encompasses a large set of well
known priors. Assuming !

2

j ⌘ 1 leads to global priors
such as the well known normal-inverse-gamma (NIG) prior
(Gelman et al., 2004), while assuming ⌧

2 ⌘ 1 leads to local
priors such as the Laplace prior (Park and Casella, 2008),
the student prior (Gelman, 2006) or the normal-gamma
prior (Gri�n et al., 2010) (see table 1 in web appendix
A). Among local-global priors, the horseshoe prior assumes
that local, as well as global parameters, are distributed
from folded-Cauchy distributions (Carvalho, Polson, and
Scott, 2009). The horseshoe prior has demonstrated high
performances for the selection of fixed e↵ects, comparable
to the spike-and-slab prior (van Erp, Oberski, and Mulder,
2019). In this article, we propose to investigate horseshoe
priors to simultaneously select fixed e↵ects and standard
deviations. We note that since �j is positive, the Gaussian
distribution is replaced by a folded-Gaussian distribution

0

2

4

6

0 π

4

π

2
3π

4

π

angle

de
ns
ity

k
0

10

100

Figure 1: Prior density distribution of the angle ✓i,j (see

equation 5) according to di↵erent values of k: 0, 10 of 100.

N+
�
0,�2

⌧
2
!

2

j

�
. The horseshoe prior is systematically

applied to fixed e↵ect. For standard deviations, we evaluate
the folded horseshoe prior (fHS) addressing two specific
questions: (i) what are the performances of such priors to
select random e↵ects, and (ii) which impacts on the fixed
and random e↵ect estimations. These results are discussed
relatively to the use of alternative priors: folded Cauchy (fC)
and folded zero-inflated (spike-and-slab, fSS).

In the specific RIS context, random intercept and slopes
are commonly assumed to be non-independent through an
unknown correlation matrix R such that R = Ic ⌦ R. Dif-
ferent priors have been proposed (Lewandowski et al., 2009;
Pourahmadi and Wang, 2015). Here, we adopt the polar
parametrization introduced by Pinheiro and Bates (1996). It
consists in the use of a hyperspherical parametrization of the
Cholesky factors of the correlation matrix and an appropriate
distribution on related angles. Pinheiro and Bates (1996)
demonstrate that any correlation matrix R can be factorized
as BB

0, with B1,1 = 1, Bi,1 = cos(✓i,1), i = 2, . . . , q and

Bj,i =

( Qj�1

m=1
sin(✓i,m) for i = j,

cos(✓i,j)
Qj�1

l=1
sin(✓i,l) for 2 6 j 6 i� 1,

(4)

Pourahmadi and Wang (2015) proposed the following ✓’s
sinusoidal distribution :

✓i,j / sin(✓)2k+(p+1)�j
0<✓<⇡, i = j + 1, . . . , p, (5)

where k is a non-negative constant. This distribution ensures
that angles are centered on ⇡/2 or equivalently that the
distribution of R is centered on the identity matrix. Moreover
and interestingly, parameter k can be interpreted as a
shrinkage parameter (Ghosh, Mallick, and Pourahmadi,
2020). For instance, if k = 0 then R is distributed as a
uniform distribution on the set of all (p + 1) ⇥ (p + 1)-
positive-definite correlation matrices, while if k tends to
infinity, the distribution of R tends to a point mass on the
unit diagonal (p+ 1)⇥ (p+ 1)-matrix (see Figure 1). In this
work, k is chosen based on cross-validation procedure.
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2.3 Specific applied contexts

2.3.1 The oil palm dataset. We analyse this data set
within the animal model framework and give the results in
section 4.1. Indeed, this first application aims at identifying
the genomic positions involved in the variability of oil palm
production traits. A total of 144 palm trees belonging to
the breeding program of PalmElit, a Cirad subsidiary and
leading oil palm breeding company (www.palmelit.com), were
analyzed. Palm trees were genotyped with 226 molecular
markers and 1, 007 IBD matrices were estimated on a grid
of 3 centimorgan (cM) along the genome (Tisné et al., 2015).
Each genetic position l is associated to a random e↵ect ul with
a variance equal to �

2

ul
and a correlation matrix Al equal

to the identity-by-descent (IBD) matrix (see equation 6).
Then, the identification of the genomic positions is equivalent
to the variance components selection. Due to the genetic
characteristics of the population, i.e. a moderate number of
individuals and generations, a subset of 135 genetic positions,
spaced 10 cM apart, was considered to avoid a redundant
information between consecutive genetic positions. In the next
section, we will present the results for the bunch number trait.

As previously explained in subsection 2.1, the animal model
can be formulated as follows:

y = µ+ u1�1 + · · ·+ uq�q + ", (6)

where µ is an intercept and ul is now assumed to follow
a Gaussian distribution Nn(0, Al), l = 1, . . . , q and �l is
the standard deviation associated to ul. Finally, the matrix
version of the animal model is given by:

y = µ+ U�+ ", (7)

where U is a n⇥ q-matrix of the concatenation of the random
e↵ects U =

Lq
l=1

ul.
In a fully Bayesian framework, the intercept µ is supposed to
be proportional to one and the residual variance �

2 is sup-
posed to follow an inverse-gamma distribution IG(s�2 , r�2)
(shape and rate parametrization). The Bayesian hierarchical
model is presented in web appendix C.

2.3.2 The arabidopsis thaliana dataset. We analyse this
data set within the RIS model framework and give the results
in section 4.2. Indeed, in this second application, we are
interested by disentangling the evolution over time of the
complex genetic architecture of shoot growth of Arabidopsis
thaliana (L. Heynh). Data consists of leaf compactness phe-
notypic trait measured over T = 21 time points on n = 358
individuals. We use genetic covariates X containing p = 38
markers (Marchadier et al., 2019; Heuclin et al., 2020). In
the RIS model framework, we consider time as the grouping
factor. This model is an alternative approach to the usual
non-parametric functional mapping (Ma et al., 2002). It can
be expressed as follows:

yi,t = xi� + xiũt + ↵i + "i,t (8)

where yi,t is the observation of individual i at time t (i =
1, . . . , n and t = t1, . . . , tT ). xi is a (p + 1)-row vector of p

genetic markers (constant over time) associated to the i
th

individual. The first element is fixed to one and is related
to the intercept. � is a (p + 1)-vector of fixed e↵ects, ũt a
(p+1)-vector of random intercept and slopes e↵ects assumed

to follow a Gaussian distribution Np+1(0,⇤R⇤), where ⇤ is
an unknown (p + 1) ⇥ (p + 1)-diagonal matrix of standard
deviation and R is an unknown (p + 1) ⇥ (p + 1)-correlation
matrix. In this application, R is assumed to be block diagonal
where each block is related to one chromosome (Ghosh et al.,
2020). The random intercept is also assumed independent
from the random slopes. ↵i is a Gaussian individual random
e↵ect (N

�
0,�2

↵

�
) not subject to selection. "i,t corresponds to

the residual part such that "i = ("i,t1 , . . . , "i,tT ) is distributed
from a multivariate Gaussian distribution NtT (0,�

2

e�) where
� is a tT ⇥tT -correlation matrix of a first-order autoregressive
structure with unknown parameter ⇢.

Let y = (y0
t1 , . . . , y

0
tT )

0 be the concatenation of all measure-
ments over time for all individuals where yt = (y1,t, . . . , yn,t)

0.
Since the genetic information varies between individuals but
is constant over time, X can be simplified such that X =
( tT ⌦X) where X is the n⇥ (p+1)-matrix containing the p

genetic markers (and the intercept) of all individuals. Matrix
J is here equal to ItT ⌦ n. The random e↵ects design matrix
Z can also be simplified as:

Z = ItT ⌦X. (9)

Calculation details are presented in web appendix B. Finally,
⇤ is decomposed as ItT ⌦⇤ and R = ItT ⌦R. P is the matrix
that transforms � to Vec(⇤) (or equivalently ⇤ = diag(�) and
Vec(⇤) = P�). Then, as proposed in section 2.1, this model
can be expressed as:

y = [ tT ⌦X, (U 0 ⌦X)P ]


�

�

�
+D↵+ ". (10)

Calculation details are presented in web appendix B. U is a
(p+1)⇥ tT -matrix of the collection of the tT reparametrized
vectors of random intercept and slopes associated to each
time U =

LtT
k uk (U follows a matrix Gaussian distribution

MN (p+1)⇥tT (0, R, ItT )). D = tT ⌦ In is the design matrix
associated to the individual random e↵ects. " = ("01, . . . , "

0
tT )

0

is the concatenation of all residuals over time and for all indi-
viduals, where "t = ("1,t, . . . , "n,t)

0 is a n-vector of residuals
associated to all individuals at time t. " is supposed to follow
a Gaussian distribution centered on zero with covariance �

2�
where � = � ⌦ In. While the introduction of time random
e↵ects allows to capture dependencies between observations
within the same time measurement and to model dynamics of
genetic e↵ects through the dependence structure. Moreover,
introducing a random individual e↵ect combined with a spe-
cific residual correlation structure allows to take into account
dependencies between measurements over time.
Finally, in a fully bayesian framework, the variance associated
to the individual random e↵ect �

2

↵ is supposed to follows
an inverse-gamma distribution IG(s↵, r↵), the residual vari-
ance �

2 is supposed to follows an inverse-gamma distribution
IG(s�2 , r�2) and the autoregressive parameter ⇢ is supposed
to follows a uniform distribution U(�1, 1). The Bayesian
hierarchical model is presented in web appendix C.

3. Computational aspects of the Bayesian inference

Both applications raise computational challenges mainly due
to the number of parameters, dependency structures but
also the number of latent variables. In the animal model,
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the number of parameters is equal to 137 (the intercept, 135
standard deviations and the residual variance) and 19440
unobserved latent variables should be updated (number of
elements of U). In the RIS model, the number of parameters
is equal to 214 (39 fixed e↵ects, 39 standard deviations, one
individual and one residual variances, one autoregressive
parameter and 132 angles) and 1176 unobserved latent
variables should be updated (number of elements of U).
While the animal model looks simpler (with a simple
additive form) compared to the RIS model (involving
complex unknown dependency structures), both complexities
are high and the di↵erence between them are not clear.
MCMC algorithms have to be appropriately designed for
optimization purposes. These optimizations are achieved
by reparametrizing standard deviations and by proposing
an e�cient sampling scheme to avoid inversion of dense
posterior covariance matrices.

The first di�culty relies on sampling the standard
deviations �j according to their full conditional distributions.
These distributions are proportional to a non-central
multivariate folded-Gaussian distribution. Such a distribution
does not have a closed form and cannot easily be sampled.
To overcome this challenge, following Gelman’s work, we
propose to reparametrize �l as sign(⇠l)⇠l where ⇠l is a
parameter which can be positive or negative. It follows
that ⇠l is distributed from a Gaussian distribution (and
not from a folded-Gaussian): ⇠l ⇠ N (0,�2

⌧
2
!

2

l ). Thus, to
sample a standard deviation �l from its full conditional
distribution p(�l|.), we can more simply (i) sample ⇠l

from its full conditional distribution p(⇠l|.) which is a
Gaussian distribution and then (ii) compute �l = sign(⇠l)⇠l.
Demonstrations are provided for both models in web
appendix C.
High dimensionality causes a second issue to arise. Indeed,
at each iteration of the MCMC algorithms, the random
e↵ects sampling step involves either the inversion of q

n ⇥ n-dense covariance matrices for the animal model
(complexity O(qn3)) or one tT (p + 1) ⇥ tT (p + 1)-matrix for
the RIS model (complexity in O((tT (p + 1))3)). However,
these covariance matrices have the form ⌃u = (aA + bI)�1

(after a reparametrization under the RIS model), which is
the inverse of the addition of a dense matrix A and a unit
identity matrix (a and b are scalars, a, b and A depend on
the specific context). This form is very convenient because
SVD of the dense matrix A can be used to compute the
Cholesky decomposition of ⌃u e�ciently. Thus, to sample
a random e↵ect u from its full conditional distribution of
the form p(u|.) ⇠ N (⌃uh,⌃u = (aA + bI)�1) (where h

is a vector), we can (i) compute A = WDW , the SVD of
A, where W is an orthogonal matrix of singular vectors
and D is a diagonal matrix of singular values, (ii) compute
L = W (aD+bI)�1/2, the Cholesky decomposition of ⌃u, (iii)
sample z from a standard Gaussian distribution and then
(iv) compute u = L(z + L

0
h). For the animal model context,

dense matrices A are known IBD matrices and SVD can be
computed only once at the beginning of the algorithm. Thus,
the complexity of the sample scheme is in O(qn2). For the
RIS model context, matrix A is unknown. However, using
specific reformulations of matrices B, ⇤ and ⌦ as Kronecker

products, matrix A can be reformulated as a Kronecker
product of two matrices and SVD of A can be computed
using SVDs of both matrices. Thus, the complexity of the
sample scheme is O((p+ 1)3) if p+ 1 > tT , O(t3T ) otherwise.
Such algebraic simplifications considerably accelerate MCMC
algorithms.
The third challenge, specific to the RIS context, is related
to the sampling of fixed e↵ects, �, and of random individual
e↵ects, from their full conditional Gaussian distributions.
Again, algebraic simplifications based on reformulations
of X, D and ⌦ matrices as Kronecker products allow the
simplification of posterior covariance matrices and highly
increase the speed of MCMC algorithms.

All these manipulations allow to deal with full conditional
posterior distributions and to propose an e�cient Gibbs sam-
pler algorithm for the animal model (see web appendix C)
or a faster Metropolis-within Gibbs algorithm in the RIS
context. A Metropolis-Hasting step is proposed to update
angle parameters associated to the correlation matrix between
random intercept and random slopes (see web appendix C).
All results presented in the next section, are based on 3
MCMC chains initialized at random starting values, each with
50,000 iterations, a burn-in of 10,000 iterations and a thinning
of ten. All output statistics are based on the pooled 120,000
posterior samples. The Gelman and Rubin’s Potential Scale
Reduction Factors (PSRF) statistics (Gelman et al., 1992) is
used to evaluate chains convergence. For standard deviation
parameters, estimation is based on the posterior median.

4. Results

In the next subsections, we show that the fHS prior distribu-
tion is e�cient to infer and select fixed e↵ects and variance
component parameters. As expected, when the number of
parameters is large compared to the number of observations
(first application), the fC prior does not shrink enough param-
eters towards zero, leading to clear over-fitting. We highlight
that fHS and fSS priors perform similarly to select variance
components as it has been shown in the multivariate linear
context. In the second application, where the number of
parameters is low compared to the number of observations,
we show that the three priors perform well and no criteria,
based on cross-validation procedure, allows to favour one more
than the other.

4.1 The oil palm dataset (animal model)

Statistical results. Considering the algorithm does not
converge, we adopt a fC prior for standard derivations as
an alternative to the commonly used inverse-Gamma prior
for variance parameters. The fC prior is not dedicated to
selection but should allow for better model regularization
than the inverse-Gamma. However, results show that even
this prior does not shrink enough towards zero leading to
a systematic bias in the estimations (see figure 2), with
posterior medians varying around 0.17. The fC prior leads to
over-fitting, which is particularly noticeable when analyzing
the residual variance: it is estimated around zero (see figure
3) and it has a notable impact on the converge of the Gibbs
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sampling algorithm by leading to a PSRF greater than 2 for
a few continuous parameters. Comparatively, the fHS prior
exhibits a very di↵erent behavior. It shrinks towards zero
most standard deviations and let some of them be far from
zero. Thus, it enables the selection of random e↵ects and
improves the MCMC convergence (PSRFs are always close
to one for all continuous parameters). In this application, we
propose the selection of variance components representing at
least 0.05 percent of the total phenotypic variance (0.0023
or equivalently a threshold of 0.048 on standard deviations).
This threshold leads to select 10 random e↵ects (see figure
2 and table 1). The use of the fSS prior, with marginal
inclusion posterior probability threshold equal to 0.1, leads
to the selection of 7 standard deviations (see figure 2 and
table 1). Six markers are commonly selected by fHS or fSS
priors. The selection of variance components is comparable.
Such similarities have already been observed in the selection
of the fixed e↵ects. Interestingly, the four markers selected
using the fHS prior that are not selected using the fSS prior,
have also been reported to impact phenotypic variability in
di↵erent studies.

Thus, the fHS prior seems to e�ciently shrink towards zero
the non-relevant random e↵ects while properly estimating
relevant parameters. Moreover, it presents better computa-
tional performances than the fSS prior. Indeed, computational
time for the fHS prior is twice faster than the fSS prior (40
and 80 minutes respectively for 50,000 iterations). Then, the
fHS prior should clearly be promoted in a high dimensional
quantitative genetic context.

Biological interpretation. We turn to biological interpre-
tations by focusing on the results obtained by the fHS prior.
Comparing with the Tisné et al. (2015) study that analyzed
the same data using maximum likelihood ratio tests combined
with a forward approach, all but one position identified in the
former study were found. Surprisingly, the common positions
were all identified at the 0.1% threshold selection, but none
for the 0.05% selection. This could be due to the genetic
design of the population studied derived from a breeding
pedigree with unequal contributions of contrasted genetic
groups: among the 144 palm trees, 73% were from La Mé
(LM) genetic background, 15% from Yangambi (YBI) and
3% from their combination. Several other studies analyzed
both genetic backgrounds with di↵erent genetic designs and
common genetic markers. Billotte et al. (2010), with 25% LM
and 25% YBI, found four common positions including two at
the 0.05% threshold, Ukoskit et al. (2014), with 50% YBI,
four common positions including two at the 0.05% threshold
and Seng et al. (2016), three common positions including
two at the 0.05% threshold. The ability of selecting positions
corresponding to YBI QTL that were segregating in a minor
fraction of the population indicates that the method evaluated
in this study performs well even with unbalanced genetic
designs and rare allele segregations. This result highlights that
a multivariate approach increases the power of detection of
subtle e↵ects.

4.2 The arabidopsis thaliana dataset (RIS model)

In this second application, markers are labelled by their
chromosome numbers and their positions (within the whole
dataset of 538 markers) separated by a dash, such that

marker 1-2 corresponds to the second position on the first
chromosome. This notation was used by Heuclin et al. (2020)
and will be used for comparison purposes. We compare our
results with those of Heuclin et al. (2020), which used a non
parametric functional mapping method, but also with the
approach of Marchadier et al. (2019), which is based on a
stepwise strategy. For the three approaches, PSRF statistics
of all continuous parameters are lower than 1.1 indicating
chains’ convergence.

Selection of fixed e↵ects.

Fixed e↵ects are considered selected if zero does not belong
to their credible intervals, leading to three selected markers
(2-32, 2-62 and 5-104). Whatever the prior for variance com-
ponents, the selection of fixed e↵ects using HS priors performs
well and provides the same results (see table 2).

Selection of variance components and impact of the corre-

lation matrix between random e↵ects.

Using fC or fHS priors, a threshold representing 0.1 percent
of the total phenotypic variance (0.0068, or equivalently a
threshold of 0.083 on standard deviations) is used. For the fSS
prior, a threshold of 0.5 is considered. While the time random
intercept is systematically included in the model, the number
of selected random slopes varies according to priors but also
to the correlation matrix prior we use between random e↵ects.
In particular, selection appears sensitive to the assumption we
make on the angle shrinkage global parameter k which plays
an important role on the correlation prior distribution (see
equation 5). For example, when k tends to infinity (identity
case) the number of selected random slopes is equal to 13,
10 and 10 for fC, fHS and fSS priors respectively. When k is
fixed to one, numbers increase to 24, 18 and 11 respectively. To
choose the most appropriate k value for each prior, a 10 cross-
validation scheme is performed. The log pointwise predictive
density (lppd, Gelman, Hwang, and Vehtari (2014)), related
to k = 1, 3, 5, 7, 10 and for independence assumption, are
reported on table 3. Small di↵erences can be observed. For
parsimony reasons, random e↵ects are assumed independent.
In this example, the fC prior leads to select only few more
markers (13) than the fHS or fSS (10) (see figure 4 and table
2). Di↵erences between priors are less pronounced than in
the animal context where the use of the fC prior leads to
an estimation of the residual variance close to zero and then
to over-fitting problems. Here, residual variance is slightly
lower using the fC prior (2), than using fHS or fSS priors
(2.5). These di↵erences cannot be used to evidence one prior
rather than another. To decide if a prior can be promoted, we
compare lppd between models (see table 3). But results are
very close and no clear conclusion can be drawn from these
results.

Selection of variance components and impact of the residual

correlation.

The selection of fixed e↵ects is not impacted by the residual
correlation matrix, on the contrary this dependency structure
impacts the selection of variance components. Such conclu-
sions have already been observed in the functional map-
ping context (Ma et al., 2002; Li and Wu, 2010; Heuclin
et al., 2020). When we compare selection of random e↵ects
taking into account an AR(1) residual correlation structure
or assuming independence between residuals, the number of
selected markers di↵ers. It considerably increases with the
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Figure 2: Posterior median of standard deviation parameters �l for folded horseshoe (fHS) and folded Cauchy (fC) priors

on the oil palm trees dataset. Vertical dotted lines correspond to the selected positions using the fSS prior with posterior

marginal probability of inclusion upper than a threshold of 0.1. The horizontal red dashed line corresponds to a threshold of

0.048 which is the root of 0.05% of the response variance. The alternated white and grey areas delimit the 16 chromosomes.

Table 1: Selected standard deviation parameters �l for the oil palm trees dataset using folded horseshoe (fHS) and folded

spike-and-slab (fSS) priors.

Chromosome 1 4 5 6 8 11 15 nb
HS 1-17, 1-20 4-5, 4-7, 4-28 5-1 6-12 8-13 11-16 15-23 10
SS 1-17, 1-20 4-5, 4-28 11-16 15-21, 15-23 7
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Figure 3: Posterior density of the residual variance parame-

ter for folded Cauchy (fC), folded horseshoe (fHS) and folded

spike-and-slab (fSS) priors on the oil palm trees dataset.

independence assumption, leading to potential over-fitting
problems. Indeed, the 10 cross-validation lppd, considering an
AR(1) residual correlation structure and the fC prior, is equal
to �924, while considering an independent residual structure,
it is equal to �1148. Here, results are clear and the residual
correlation structure has to be included in the model.

Comparison with previous studies.

The initial study identified eight markers using the last time
measurement and a forward likelihood ratio test approach
(Marchadier et al., 2019). In a recent work, Heuclin et al.
(2020) reanalyses this data proposing a non-functional map-
ping technique combined with group spike-and-slab and tak-
ing into account the full phenotypic profile over time. They
identified the same eight markers but also highlighted five
more e↵ects. In our current analysis, all positions already
identified by the previous approaches are selected except two
on chromosome three (3-1 and 3-25), compared to Heuclin
et al.’s approach. And we select two extra positions (2-47
and 5-46). Moreover, in our approach, decomposing e↵ects as
fixed and random allows to more precisely dissociate the type
of e↵ects (null, constant or varying e↵ects). For instance, the
position 5-104 selected as random e↵ect and varying over time
in Marchadier et al. or Heuclin et al. is mostly identified as
fixed e↵ect (see table 2). Finally, comparing the lppd statistics
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Table 2: Selection of fixed e↵ects � and scale parameters � on arabidopsis thaliana dataset using HS-fC, HS-fHS and HS-fSS

approaches. Alternative methods proposed by Marchadier et al. (2019) and Heuclin et al. (2020) are also indicated.

Chromosome 1 2 3 4 5 nb

Marchadier et al. (2019) 1-20 2-62 3-3, 3-91 4-45 5-76, 5-104 8

Heuclin et al. (2020)
1-1, 1-20, 1-79,
1-97, 1-110

2-62 3-1, 3-25, 3-91 4-45 5-33, 5-76, 5-104 13

F
ix
e
d

e
↵
e
ct
s HS-fC 2-32, 2-62 5-104 3

HS-fHS 2-32, 2-62 5-104 3
HS-hSS 2-32, 2-62 5-104 3

S
ca

le
p
a
ra

m
e
te

rs HS-fC
1-1, 1-20, 1-79,
1-97, 1-110

2-47, 2-62 3-91 4-45
5-33, 5-46, 5-76,
5-104 13

HS-fHS
1-1, 1-20, 1-79,
1-97, 1-110

3-91 4-45 5-33, 5-46, 5-76 10

HS-fSS
1-1, 1-20, 1-79,
1-97, 1-110

3-91 4-45 5-33, 5-46, 5-76 10
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Figure 4: Posterior median of standard deviation parameters �l on arabidopsis thaliana dataset. Bullets black and blue

correspond to the HS-fHS and HS-fC approaches. Vertical red dotted lines correspond to the selected positions using the

HS-fSS approach with posterior marginal probability of inclusion upper than a threshold of 50%. The horizontal red dashed

line corresponds to a threshold of 0.083 which is the root of 0.1% of the response variance. The alternated white and gray

areas delimit the 5 chromosomes.

Table 3: Log pointwise predictive density, considering ei-

ther an unknown RIS correlation matrix with di↵erent fixed

shrinkage parameters k, or an identity matrix.

k = 1 k = 3 k = 5 k = 7 k = 10 Identity

HS-fC -925 -923 -923 -923 -923 -925

HS-fHS -923 -924 -925 -924 -925 -926

HS-fSS -925 -925 -925 -925 -926 -927

using 10 cross-validation, favours the RIS model (-925 for the
HS-fC approach with R = I39) to the VCM model (-931).

5. Conclusion

In this paper, we show that the folded horseshoe prior should
be promoted as a prior distribution for regularization in linear
mixed models. Based on two real applications, we demon-
strate that the folded horseshoe prior seems insensitive to
high dimensional problems and leads to unbiased estimation
even in low dimension. In the first example, where the number
of parameters is close to the number of observations, the
folded horseshoe prior shows advantages compared to the
folded Cauchy and to the folded spike-and-slab priors. In
particular, where the folded Cauchy prior does not allow
to shrink parameters towards zero inducing a clear over-
fitting, the folded horseshoe prior performs well. Compared
to the folded spike-and-slab prior, the folded horseshoe prior

Marie DENIS
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presents similar e↵ectiveness in terms of selection but a much
greater computational e�ciency. In the second application,
where the number of observations is much greater than the
number of parameters, no prior seems to take advantage.
Such results observed in multivariate linear regression (van
Erp et al., 2019) can then be extended to the linear mixed
model framework. However, the folded horseshoe prior does
not lead to biased estimations or under or over-fitting of
models compared to the two other priors. Be that as it may,
we recommend to use local-global priors.

We also propose a polar reparametrization of the model
random e↵ect correlation matrix. This approach has received
little attention in the past few decades. While Pourahmadi
and Wang were the first to develop a prior to generate high-
dimensional random correlation matrix, Ghosh et al. were the
first to infer, in a Bayesian framework, a correlation matrix
in a longitudinal context. In this article, we show how this
approach can be used to infer RIS correlation matrix. We also
show that assuming independence or not can impact variance
components selection. However, the number of parameters
(angles) is equal to the number of elements of the sub-diagonal
correlation matrix. Appropriate priors for the selection of
angles such as considered by Ghosh et al. (2020) should be
studied in combination with standard deviations shrinkage
priors.

From a biological point of view, in the palm oil context,
the folded horseshoe prior allows to identify positions which
were segregated in a minor fraction of the population due to
the unbalanced genetic design, while the frequentist stepwise
selection approach considered by Tisné et al. (2015) does not.
In the Arabidobsis context, as already noticed by Heuclin
et al. (2020), we show that a longitudinal approach allows a
better detection of relevant markers compared to an approach
that analyzes a single time point as proposed by Marchadier
et al. (2019). Both applications highlight that multivariate
approaches increase the statistical power.
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