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42 Summary

43  Meloidogyne enterolobii is an emerging root-knot nematode species that 

44 overcomes most of the nematode resistance genes in crops. Nematode effector 

45 proteins secreted in planta are key elements in the molecular dialogue of 

46 parasitism. Here, we show the MeMSP1 effector is secreted into giant cells and 

47 promotes M. enterolobii parasitism.

48  Using Co-IP and BiFC assays we identified glutathione-S-transferase phi GSTFs 

49 as host targets of the MeMSP1 effector. This protein family plays important roles 

50 in plant responses to abiotic and biotic stresses. We demonstrate that MeMSP1 

51 interacts with all Arabidopsis GSTF. Moreover, we confirmed that the N-terminal 

52 region of AtGSTF9 is critical for its interaction, and atgstf9 mutant lines are more 

53 susceptible to RKN infection.

54  Combined transcriptome and metabolome analyses showed that MeMSP1 affects 

55 the metabolic pathways of Arabidopsis thaliana, resulting in the accumulation of 

56 amino acids, nucleic acids, and their metabolites, and organic acids and the down-

57 regulation of flavonoids. 

58  Our study has shed light on a novel effector mechanism that targets plant 

59 metabolism, reducing the production of plant-defence related compounds while 

60 favouring the accumulation of metabolites beneficial to the nematode, and thereby 

61 promoting parasitism.

62

63 Keywords: Arabidopsis thaliana, Effector, Glutathione-S-transferase, Meloidogyne 

64 enterolobii, Pathogen, Plant metabolism, Root-knot nematode.
65
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66 Introduction

67 Plant parasitic nematodes (PPNs) are one of the most economically important plant 

68 pathogens, causing more than 100 billion dollars loss annually worldwide (Abad et al., 

69 2008). Root-knot nematodes (RKNs; Meloidogyne spp.) are one of the greatest threats 

70 to agriculture production. RKNs infect more than 5,500 plant species and cause a global 

71 yield loss of 70 billion dollars every year (Blok et al., 2008; Caboni et al., 2012; Chen, 

72 J et al., 2017). RKNs are sedentary endoparasitic nematodes that induce the formation 

73 of complex feeding cells in the vascular cylinder of host root, known as giant cells, 

74 which serve as the sole nutrient source for the development and reproduction of RKNs 

75 (Favery et al., 2016; Rutter et al., 2022). In order to establish parasitism successfully, 

76 RKNs need to suppress plant defence, induce and maintain the giant cells. They have 

77 evolved numerous secreted effectors that originate from the three oesophageal glands 

78 or other organs like amphids and hypodermis (Favery et al., 2020; Zhao et al., 2019; 

79 Haegeman et al., 2012). Although some effectors have predicted functions, e.g. redox-

80 regulated proteins such as thioredoxins, glutathione peroxidases, glutathione-S-

81 transferases (GST) and protein disulphide isomerases (PDI) (Bellafiore et al., 2008; 

82 Tian et al., 2019, Zhao et al 2021), a large majority of these effectors are pioneers 

83 without known functional domains (Jagdale et al., 2021; Goverse & Mitchum, 2022). 

84 The identification of host targets of these RKN pioneer effectors is one of the strategies 

85 to understand their roles in the parasitism.

86 Only a few plant targets of RKN effectors have been identified (reviewed by Mejias et 

87 al., 2019 and Rutter et al., 2022) and recently several targets involved in defence or 

88 stress response have been characterised. A stress-associated protein from Solanaceae 

89 and Arabidopsis has been shown to be targeted by M. incognita MiPDI1 to establish 

90 disease (Zhao et al., 2020). The C-type lectin effector MiCTL1a interacts with plant 

91 catalases to regulate the redox state in the host (Zhao et al., 2021). Another example is 

92 the M. graminicola MgMO289 effector that interacts with the rice heavy metal-

93 associated plant protein 04 (OsHPP04) to modulate host superoxide dismutase (SOD) 

94 activity and scavenge reactive oxygen species (Song et al., 2021). In addition, the M. 

95 enterolobii translationally controlled tumour protein (MeTCTP) is able to 
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96 homodimerise to bind calcium and prevent cytosolic calcium rise in order to suppress 

97 plant immunity (Guo et al., 2022). However, the targets and functions of RKN effectors 

98 are still largely unknown.

99 Plant metabolism play a central role in the molecular dialogue during plant-pathogen 

100 interactions. Giant cells are a metabolic sink that act as the nutrient source for the 

101 developing nematode. During giant cell formation, RKNs modified physiological and 

102 transport processes of host cells, resulting in altered metabolite production and transport 

103 (Bartlem et al., 2014). Studying the changes in host plant metabolites caused by 

104 nematodes allows a better understanding of the giant cell. An untargeted proton Nuclear 

105 Magnetic Resonance (1H-NMR) analysis of primary metabolites in roots and galls 21 

106 days post infection (dpi) with M. incognita of normal and (homo) glutathione (h)GSH 

107 depleted Medicago truncatula identified 15 metabolites (sugars, organic acids, and 

108 amino acids) significantly different between galls and uninfected roots (Baldacci-Cresp 

109 et al, 2012). This study showed that (h)GSH depletion affects gall metabolism 

110 (Baldacci-Cresp et al., 2012). The metabolite concentration is higher in galls than in 

111 roots at 35 dpi resulting in water potential and osmotic pressure modification in galls 

112 (Baldacci-Cresp et al., 2015). Gas chromatography coupled to mass spectrometry 

113 untargeted fingerprint analysis was also used to analyse metabolites in tomato leaves 

114 and stem upon M. incognita infection (Eloh et al., 2016). However, the effects of RKN 

115 effectors on host metabolism is limited.

116 Meloidogyne enterolobii (syn. M. mayaguensis) is one emergent species, first reported 

117 in 1983, that can overcome RKN resistance genes such as the Mi-1.2 gene (tomatoes), 

118 Mh gene (potato), Mir1 gene (soybean), N gene (bell pepper), Tabasco gene (sweet 

119 pepper) and Rk gene (cowpea) (Yang & Eisenback, 1983; Castagnone-Sereno, 2012; 

120 Philbrick et al., 2020). Utilizing RNA interference (RNAi) to silence M. enterolobii 

121 specific effector genes or the effector targets may be an opportunity to enhance plant 

122 resistance to this uncontrolled RKN. MeTCTP silencing resulted in reduced parasitism 

123 of M. enterolobii on tomato (Zhuo et al., 2017). The EFFECTOR18 (EFF18) protein is 

124 a conserved RKN effector, and both M. incognita and M. enterolobii EFF18 have been 

125 shown to interact with the spliceosomal small nuclear ribonucleoprotein D1 (SmD1) 
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126 from A. thaliana, S. lycopersicum, and N. benthamiana (Mejias et al., 2021; Mejias et 

127 al., 2022). Virus-induced gene silencing of SmD1 in tomato affected giant cell 

128 formation and nematode development (Mejias et al., 2022). Thus, this evidence shows 

129 that modifying the expression of RKN effectors or their target genes to improve plant 

130 resistance to M. enterolobii a promising approach.

131 In this study, we characterised a novel nematode effector mechanism in M. enterolobii. 

132 M. incognita MiMSP1 has been reported as a potential effector, as it is expressed in the 

133 dorsal gland of parasitic RKNs, although there are no further reports on its functional 

134 analysis (Huang et al., 2003). We demonstrated that its ortholog MeMSP1 is secreted 

135 into the host through the stylet, is capable of physically interacting with all Arabidopsis 

136 glutathione-S-transferase phi proteins (AtGSTF), and found that the knockout (ko) 

137 mutant lines of AtGSTF9 were more susceptible to RKN infection. Combined 

138 transcriptome and metabolome analyses revealed that ectopic expression of MeMSP1 

139 in Arabidopsis affected host metabolic pathways and secondary metabolite biosynthesis. 

140

141 Materials and Methods

142 Nematode and Plant materials and growth conditions

143 M. enterolobii were propagated on the susceptible tomato cultivar (Solanum 

144 lycopersicum L. cv. “Baiguo Qiangfeng”) in a greenhouse starting from a single egg 

145 mass. Egg masses were collected and hatched according to Niu et al (Niu et al., 2016). 

146 All seeds of A. thaliana (L.) Heynh were surface-sterilized and then grown on solidified 

147 half-strength Murashige and Skoog (MS) medium with 2% sucrose. The T-DNA 

148 insertion mutant lines of AtGSTF9 (SALK_001519C and SALK_148672C) were 

149 obtained from the Arabidopsis Biological Resource Center (ABRC, USA). Nicotiana 

150 benthamiana plants were grown in pots under long-day conditions (16h light/8 h dark) 

151 at 25oC.

152

153 Sequence analysis, alignment and phylogenetic tree

154 MSP1 sequences were obtained from WormBase Parasite 

155 (https://parasite.wormbase.org/index.html) and Meloidogyne genomic resources 
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156 (http://www6.inra.fr/meloidogyne_incognita/) by blastp against the Meloidogyne 

157 predicted protein database, the protein sequences with a higher identity than 85.5% 

158 were selected. Multiple amino acid sequence alignment analyses of MSP1 proteins 

159 were conducted using DNAMAN V6 (Lynnon Biosof, USA). These MSP1 protein 

160 sequences were aligned with the MAFFT tool on the EBI server 

161 (https://www.ebi.ac.uk/Tools/msa/mafft/). The alignment was then used as input for the 

162 IQTree Web server (http://iqtree.cibiv.univie.ac.at/) to generate the maximum 

163 likelihood phylogenetic tree. The model chosen by the inbuilt model test was Flu+I. 

164 Support for the nodes was calculated with 100 bootstrap replicates. MiMSP12 was used 

165 as the outgroup in the phylogenetic tree for MeMSP1 putative orthologs. The tree was 

166 visualized in iTOL (https://itol.embl.de/).

167

168 RNA isolation and gene amplification

169 The mRNA of M. enterolobii was extracted using an RNAprep pure Micro Kit (Tiangen 

170 Biotech Co., Ltd Beijing), and total RNA of Arabidopsis was isolated from seedlings 

171 using TRIzol Reagent (Invitrogen, USA). Complementary DNA (cDNA) was 

172 synthesized using M-MLV reverse transcriptase (TaKaRa, Japan). MeMSP1 genes 

173 were amplified from cDNA of M. enterolobii by PCR using specific primers (Table 

174 S1). The PCR products were cloned into pMD18-T vector (TaKaRa, Japan) and 

175 sequenced. All primers used in this study are listed in Supplementary Table S1 and 

176 were synthesized by TsingKe Biotechnology Co. Ltd, Beijing, China.

177

178 Developmental expression analysis and in situ hybridisation

179 mRNA samples of M. enterolobii at different life stages were obtained as above. The 

180 cDNA was synthesized using M-MLV reverse transcriptase (TaKaRa, Japan). qRT-

181 PCR was conducted using the SYBR Premix Ex Taq II (Tli RNaseH Plus) (Takara, 

182 Japan). GAPDH gene of M. enterolobii was used as a control. The results were 

183 determined using the 2-ΔΔCT method. Three technical replicates for each reaction were 

184 performed in all experiments, and three independent experiments were conducted.

185 For in situ hybridisation, freshly hatched M. enterolobii pre-J2s were collected on a 0.5 
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186 μm sieve. The primers ISH-MeMSP1-F and ISH-MeMSP1-R were used to amplify the 

187 179 - 491 bp (313 bp) of the MeMSP1 coding sequences (CDS) from cDNA, and the 

188 DIG-labelled sense (negative control) and antisense probes were synthesised by 

189 asymmetric PCR. The hybridisation were performed as described previously (Niu et 

190 al., 2016) and examined using a BX51 microscope (Olympus, Japan).

191

192 Anti-MeMSP1 antibodies production and immunolocalisation analysis

193 The CDS of MeMSP1 without signal peptide was inserted into the pET-28a (+) vector 

194 and expressed in BL21 (DE3) cells. The purified recombinant MeMSP1 protein was 

195 used to produce polyclonal antibodies in rabbits at ABclonal Company (Wuhan, China). 

196 For immunolocalisation, galls of tomato (Solanum lycopersicum var. ‘Baiguo’) were 

197 harvested at 14 dpi, and were then fixed, dehydrated, embedded and sectioned as 

198 previously described (Vieira et al., 2011). Anti-MeMSP1 antibodies and Goat anti-

199 Rabbit Alexa Fluor 488 conjugated antibodies (Thermo Fisher Scientific, San Jose, CA, 

200 USA) were diluted 100- and 500-fold in blocking solution of 1% BSA in 50 mM 

201 piperazine-N, N’-bis (ethanesulphonic acid) (PIPES) buffer (pH 6.9), respectively. 

202 Nuclei were stained with 4’, 6-diamidino-2-phenylindole (DAPI, 1μg/mL in water). 

203 Finally, slides were mounted with ProLong anti fade medium (Invitrogen, USA) and 

204 observed under confocal microscope at an excitation wavelength of 488 nm (Leica SP8, 

205 Germany).

206

207 Protein extraction and western blot analysis. 

208 Total proteins of N. benthamiana leaves or A. thaliana seedlings were extracted using 

209 a protein extraction kit (CW0885, Beijing ComWin Biotech Co., Ltd., China). For 

210 western blot, total protein samples were separated on a 10% polyacrylamide gel and 

211 transferred onto a polyvinylidene difluoride (PVDF) membrane using a semi-dry 

212 transfer system (BioRad, USA). After blocked in 5% skimmed milk (in PBS, pH 7.2) 

213 for 1 hour, the membrane was incubated with horseradish peroxidase (HRP) tag-

214 conjugated antibodies (anti-Flag or anti-HA, MBL, China) diluted (1 : 5000) with PBS 

215 (pH 7.2) containing 1% skimmed milk for 1 hour. After washes, the membrane was 
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216 detected using an EasySee Western Blot Kit (DW101, TransGen Biotech, China) and 

217 imaged with a multifunctional molecular imaging system through automatic exposure 

218 (C600, AZURE).

219

220 Generation of transgenic Arabidopsis and infection assays

221 For in planta RNAi, a specific fragment (300 bp) of MeMSP1 was amplified and then 

222 inserted into a pSAT5 RNAi plasmid (Dafny-Yelin et al., 2007). For ectopic expression 

223 of MeMSP1 in Arabidopsis, the ORF without signal peptide of MeMSP1 was cloned 

224 and inserted into Super1300-FLAG. These constructs were transformed into 

225 Agrobacterium tumefaciens GV3101 and used for transformation of A. thaliana via the 

226 floral dip method (Clough & Bent, 1998). Homozygous single insertion T3 plants were 

227 used for the susceptibility experiment to nematode. The plants were grown in pots 

228 (length: 5.5cm, width: 5.5cm, and height: 5cm) with soil (nutrient soil, Fangjie 

229 Company, China) and vermiculite (1: 1) under a growth chamber condition (22°C, 16 

230 h: 8 h, light: dark photoperiod). Three-week-old Arabidopsis were inoculated with 300 

231 freshly hatched J2s per plant. 14 days after infection, roots from MeMSP1-Ri lines and 

232 WT plants were collected and digested in a mixture of pectinase (P2611, Sigma) and 

233 cellulose (C2730, Sigma) at 28 °C and 160 rpm overnight. Parasitic nematodes were 

234 collected under a stereomicroscope and used to measure the expression level of 

235 MeMSP1 by qRT-PCR. Roots were collected 30 days after infection and stained using 

236 the sodium hypochlorite-acid fuchsin method (Bybd et al., 1983). The numbers of galls, 

237 females and other stage nematodes were counted under a stereomicroscope microscope 

238 (SZ61, Olympus, Tokyo, Japan). At least 15 plants of each transgenic line or wild-type 

239 (Col-0; WT) were used for each experiment and three independent experiments were 

240 performed.

241

242 Interaction analysis

243 For identifying the target of MeMSP1 in Arabidopsis, total proteins were extracted from 

244 MeMSP1-expressing lines (MeMSP1-OE-1 and MeMSP1-OE-3) and WT plants. 

245 Immunoprecipitation (IP) was performed using anti-FLAG M2 affinity gel resin 
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246 (Sigma-Aldrich, USA). Proteins were eluted with competitive 3X FLAG peptide 

247 (F4799, Sigma-Aldrich, USA). Q Exactive (Thermo Q-Exactive nanospray ESI-MS 

248 mass spectrometer, USA) was used for liquid chromatography-tandem mass 

249 spectrometry (LC-MS/MS) at China Agricultural University Functional Genomics 

250 Platform. The acquired MS data were pre-analysed using Mascot Distiller 2.4 (UK) and 

251 then anatomized to search a NCBI non-redundant protein database and Swiss-prot 

252 database.

253 For bimolecular fluorescence complementation (BiFC) analysis, coding sequences 

254 (CDS) of MeMSP1 without its signal peptide and AtGSTFs were cloned into the 

255 pUC_SPYCE or the pUC_SPYNE vector (Walter et al., 2004), respectively. 

256 AtGSTU19 (AT1G78380) and empty vectors were used as negative control. Mixtures 

257 of A. tumefaciens cells (OD600=0.5, respectively) containing each pair were co-

258 infiltrated into the leaves of N. benthamiana and observed using a laser confocal 

259 fluorescence microscope (Leica SP8, Germany).

260 For co-immunoprecipitation (Co-IP) assays, the AtGSTF CDS were cloned into 

261 pGR107_flag vector and MeMSP1 CDS without signal peptide was cloned into 

262 pGR107_HA. EGFP was cloned into pGR107_Flag as a negative control. All 

263 constructs were sequenced and introduced into A. tumefaciens GV3101. Co-

264 infiltrations and immunoprecipitation were conducted as previously described (Zhao et 

265 al., 2019).

266

267 Transcriptome Analysis of transgenic Arabidopsis lines

268 Total RNA of MeMSP1-OE and WT lines were extracted from the 14 days Arabidopsis 

269 seedlings with Spin Column Plant total RNA Purification Kit following the 

270 manufacturer’s protocol (Sangon Biotech, Shanghai, China). The cDNA libraries were 

271 carried out as previously described (Chen, C et al., 2017) and sequenced on the Illumina 

272 HiSeq platform (Illumina Inc., San Diego, USA) by Wuhan MetWare Biotechnology 

273 Co., Ltd. (www.metware.cn, Wuhan, China). The sequenced reads were compared with 

274 the unigene library using Bowtie (Langmead et al., 2009), and the expression level was 

275 estimated in combination with RSEM (Li & Dewey, 2011). The gene expression level 
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276 was determined according to the FPKM. DESeq2 package (Love et al., 2014; Varet et 

277 al., 2016) was used to identify the differentially expressed genes (DEGs) between WT 

278 and MeMSP1-OE, with the |log2Fold Change| >= 1 and FDR (False Discovery Rate) < 

279 0.05. KOBAS2.0 was used for the KEGG pathway enrichment analysis of the DEGs 

280 (Xie et al., 2011). Two biological repeats were used for the Col-0 line and three 

281 biological repeats were used for the MeMSP1-OE-1 and MeMSP1-OE-3 lines in this 

282 transcriptome analysis ， respectively. The DEGs shared by MeMSP1-OE-1 and 

283 MeMSP1-OE-3 Arabidopsis lines were analysed with NEMATIC, AgriGO (version 2, 

284 http://systemsbiology.cau.edu.cn/agriGOv2/) and compared with previous RNAseq 

285 data (Cabrera et al., 2014; Tian et al., 2017; Yamaguchi et al., 2017).

286

287 Metabolome Analysis of transgenic Arabidopsis lines

288 Three biological repeats for transgenic lines (MeMSP1-OE-1 and MeMSP1-OE-3) and 

289 Col-0 were used for metabolome analysis. The samples were extracted from frozen 14-

290 days-old seedlings overnight at 4°C with 70% aqueous methanol. All procedures related 

291 to metabolomics analysis were performed at Wuhan MetWare Biotechnology Co., Ltd. 

292 (www.metware.cn) following their standard procedures (Zhang et al., 2019). The data 

293 acquisition instrument system included Ultra Performance Liquid Chromatography 

294 (UPLC) (Shim-pack UFLC SHIMADZU CBM30A, Tokyo, Japan) and tandem mass 

295 spectrometry (MS/MS) (Applied Biosystems 6500 QTRAP). Based on the self-built 

296 database MWDB (Metware database), the metabolites were characterized according to 

297 the secondary spectrum information. Metabolite quantification was performed using 

298 multiple reaction monitoring (MRM) in triple quadrupole mass spectrometry (Fraga et 

299 al., 2010).

300 Data matrices with the intensity of metabolite feature under-treated and control 

301 conditions were uploaded to the Analyst 1.6.1 software (AB SCIEX, Ontario, Canada). 

302 For statistical analysis, missing values were assumed to be below the limits of detection, 

303 and these values were imputed with a minimum compound value (Chen et al., 2013). 

304 Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to 

305 maximize the metabolome difference between the control and treated samples. The 
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306 relative importance of each metabolite to the OPLS-DA model was checked using a 

307 parameter variable importance in projection (VIP). Metabolites with fold change≥2 or 

308 fold change≤0.5 and VIP≥1 were considered as differential metabolites for group 

309 discrimination. KEGG pathway analysis was performed in the R software (www.r-

310 project.org).

311

312 Bio-assay of the lethal effect of metabolites on M. enterolobii J2s 

313 All tested compounds were purchased from Alphabio life science company 

314 (www.51alphabio.com). Compounds were dissolved in dimethyl sulfoxide to prepare a 

315 stock solution of 50 mg/ml. Four concentrations (10, 25, 50, 100 μg/ml) for butin and 

316 three concentrations for naringenin (10, 25, 50 μg/ml; due to the low solubility in water, 

317 naringenin recrystallized in the tested solution when we increased the concentration to 

318 100 μg/ml) were tested for the nematode lethal effect assay. Controls (CK) consisted of 

319 the corresponding concentration of DMSO in water. Around 100 freshly hatched 

320 second-stage juveniles (J2s) were used for each repetitions. The dead nematode was 

321 counted every 24 h for 3 days (24 h, 48 h, and 72 h) under stereomicroscope microscope 

322 (SZ61, Olympus, Japan). All this experiment were done in 24-well plate, and the total 

323 volume is 1 ml each well. For each metabolites 3 independent experiments were 

324 performed, with six replicates for each treatment in each experiment.

325

326 Statistical analysis

327 The data were analysed with Dunnett's multiple comparisons test of one-way ANOVA. 

328 Statistical computations were carried out with GraphPad Prism (GraphPad Software 

329 Inc., La Jolla, CA, USA).

330

331 Accession numbers

332 Sequence data from this article can be found in the Arabidopsis Information Resource 

333 (https://www.arabidopsis.org), WormBase Parasite and GenBank/EMBL databases 

334 under the following accession numbers: MeMSP1 (OQ256232), MiMSP12 (AY134431), 

335 AtGSTF2 (At4g02520), AtGSTF3 (At2g02930), AtGSTF4 (At1g02950), AtGSTF5 
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336 (At1g02940), AtGSTF6 (At1g0293), AtGSTF7 (At1g02920), AtGSTF8 (At2g47730), 

337 AtGSTF9 (At2g30860), AtGSTF10 (At2g30870), AtGSTF11 (At3g03190), AtGSTF12 

338 (At5g17220), AtGSTF13 (At3g62760), AtGSTF14 (At1g49860), MjMSP1 

339 (M.Javanica_Scaff11723g062660), MiMSP1 (Minc3s00173g06738), MaMSP1a 

340 (M.Arenaria_Scaff41g001480), MaMSP1b (M.Arenaria_Scaff1390g022660) and 

341 MfMSP1 (M.fscf7180000424015.g12030). The transcriptome data are available at the 

342 Sequence Read Archive (SRA) via accession number PRJNA933796. The metabolomic 

343 data are available at MetaboLights via accession number MTBLS7145.

344

345 RESULTS

346 MeMSP1 is highly upregulated during M. enterolobii parasitism

347 A homolog of M. incognita dorsal oesophageal gland cell secretory protein 1 (MiMSP1) 

348 was identified in the M. enterolobii transcriptome (isotig 10924) and was designated 

349 MeMSP1 (Li et al., 2016). The MeMSP1 gene contains an open reading frame (ORF) 

350 of 525 bp that encodes a 174-amino-acid (aa) polypeptide that had no known functional 

351 domain except a secretion signal peptide of 20 amino acids at its N-terminus according 

352 to SignalP 5.0. This indicates MeMSP1 may be secreted from gland cells. According 

353 to previous report, there is a Mel-DOG box (TGCACTT) motif in the 346 bp upstream 

354 of the CDS of MeMSP1 (Fig. S1) suggesting it may be specifically expressed in the 

355 dorsal gland of RKNs (da Rocha et al., 2021). Five MSP1 homologues were obtained 

356 from the genome sequences of Meloidogyne spp. by blast against all protein databases. 

357 The MeMSP1 protein shared approximatively 85.7% aa sequence identity with the 

358 other Meloidogyne species homologs (Fig. 1a). The alignment and a maximum 

359 likelihood phylogenetic tree showed with six MSP1 protein sequences from M. 

360 enterolobii, M. incognita, M. arenaria, M. floridensis and M. javanica grouped together 

361 (Fig. 1b).

362 The developmental expression level of the MeMSP1 gene in different stages of M. 

363 enterolobii was analysed by quantitative real-time PCR (qRT-PCR). Using the 

364 expression level of MeMSP1 at the egg stage as a reference for calculating the relative 

365 fold changes in the other stages, MeMSP1 was more strongly expressed in the parasitic 
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366 juveniles and females from 10 to 30 dpi, with a maximum at 10 dpi (Fig. S2a). 

367 Interestingly, the RNAseq data of M. incognita showed MiMSP1 upregulated in 

368 parasitic stage (Fig. S2b) (Rocha et al., 2021), we hypothesise the MeMSP1 is also 

369 upregulated in the parasitic stage. These results indicate that MeMSP1 is highly 

370 upregulated during giant cell formation in planta.

371

372 MeMSP1 is expressed in the dorsal gland and secreted into the nematode feeding 

373 site

374 In situ hybridisation was used to investigate the tissue localisation of MeMSP1 in M. 

375 enterolobii J2s. Signals were observed in the dorsal gland cell of J2s (n=14) after 

376 hybridisation with the digoxigenin-labelled antisense probe (Fig. 2a). No signal was 

377 observed when using the sense probe as a negative control (Fig. 2b). A polyclonal 

378 antibodies was raised against MeMSP1 to analyse the localisation of MeMSP1 in the 

379 nematode and plant tissue. Western blot showed a clear hybridising band in the total 

380 protein samples from M. enterolobii J2s and in the recombinant MeMSP1 extract. No 

381 band was observed in the protein sample from healthy tomato roots (Fig. S3a), nor with 

382 the pre-immune serum in all the three protein samples (Fig. S3b). These results 

383 illustrated that the anti-MeMSP1 polyclonal antibodies can specifically recognize 

384 MeMSP1. Immunolocalisations performed on parasitic juveniles of M. enterolobii 

385 showed signals in the dorsal gland cell and in the oesophagus (Fig. 2c-d, Fig. S4). No 

386 signal was observed when the pre-immune serum was used as a negative control (Fig. 

387 2e). To determine whether MeMSP1 is actually secreted into host plants, 

388 immunolocalisation was performed on sections of tomato galls collected 14 dpi. Signals 

389 were consistently observed in the cytoplasm of giant cells (Fig. 2f-h, Fig. S5). No signal 

390 was observed in the gall sections incubated with pre-immune serum (Fig. 2i). These 

391 results demonstrated that MeMSP1 is produced in the dorsal gland and secreted into 

392 the feeding cells in the host plant roots.

393

394 MeMSP1 is involved in nematode parasitism

395 In planta RNA silencing was used to investigate the role of MeMSP1 gene in the 
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396 parasitism of M. enterolobii. The RNAi construct targeting MeMSP1 was developed 

397 and transferred into Arabidopsis, and three homozygous MeMSP1-RNAi lines 

398 (MeMSP1-Ri) were used for RKN infection assays. One homozygous RNAi transgenic 

399 Arabidopsis line targeting GFP (GFP-Ri) and the wild-type Col Arabidopsis were used 

400 as controls. At 14 dpi, nematodes from all tested Arabidopsis lines were extracted to 

401 measure the MeMSP1 transcript abundance. We found a strong reduction of the 

402 transcript level of MeMSP1 in the nematodes recovered from MeMSP1-Ri lines (Fig. 

403 3a). Infection assays showed that the numbers of galls, parasitic juveniles and nematode 

404 females were significantly decreased in MeMSP1-Ri lines, compared to the controls at 

405 30 dpi (Fig. 3b; Fig. S6).

406 Moreover, two independent homozygous transgenic Arabidopsis lines expressing 

407 MeMSP1 (MeMSP1-OE) were generated (Fig. S7). Infection assays showed these 

408 transgenic lines were both significantly (P < 0.05) more susceptible to M. enterolobii 

409 infection, with 30% more galls and parasitic nematodes at 30 dpi than the controls (COL 

410 and plants transformed with an empty super1300 vector) (Fig. 3c; Fig. S6). These 

411 results demonstrated that MeMSP1 play important roles in M. enterolobii parasitism.

412

413 MeMSP1 interacts with all the GSTF family members of Arabidopsis

414 To identify the plant targets of MeMSP1, we performed in planta immunoprecipitation 

415 (IP) followed by liquid chromatography-tandem mass spectrometry (LC-MS) on 

416 MeMSP1-OE-1, MeMSP1-OE-3 plants and WT Arabidopsis. Among the candidate 

417 proteins that were pulled down in both MeMSP1-OE plants (Table S2), but not in WT 

418 plants, three Arabidopsis glutathione-S-transferase phi (AtGSTF2, AtGSTF9 and 

419 AtGSTF10) proteins were identified that are localised in the cytosol as MeMSP1 (Fig. 

420 S8) (Dixon et al., 2009). The AtGSTFs is a large plant-specific class of proteins with 

421 13 members in Arabidopsis. Only a few members appear differentially expressed in the 

422 galls, either overexpressed and/or repressed (Table S3). We then investigated the 

423 interactions between MeMSP1 and the 13 AtGSTFs (AtGSTF2 to AtGSTF14) using 

424 BiFC and Co-IP assays.

425 For Co-IP, the Flag-AtGSTFs and MeMSP1-HA expression constructs were co-
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426 expressed in N. benthamiana leaves. Flag-eGFP was used as a negative control. All the 

427 proteins were correctly expressed in tobacco leaves as evidenced by their detection with 

428 anti-Flag and anti-HA antibodies (Fig. 4a). Analysis of the immunoprecipitated protein 

429 samples with anti-HA antibodies showed that under the same conditions, MeMSP1-HA 

430 was specifically pulled down by Flag-AtGSTFs, but not by Flag-eGFP (Fig. 4a). 

431 Furthermore, BiFC assays in N. benthamiana leave cells showed that the YFP 

432 fluorescence signals were observed in the cytoplasm of N. benthamiana epidermal cells 

433 that co-expressed the MeMSP1-YFPn fusion and each of the 13 AtGSTF-YFPc 

434 construct (Fig. 4b, Fig. S9), but not with the controls. These results demonstrated that 

435 MeMSP1 specifically interacts in planta with the AtGSTF family members. 

436

437 AtGSTF9 is involved in plant immunity to nematodes

438 MS data showed that AtGSTF9 had the highest score of all identified GSTF proteins 

439 (Table S2). Moreover, AtGSTF9 has been shown to be involved in plant immunity 

440 (Horváth et al., 2015; Gong et al., 2018). We therefore focused on this gene for further 

441 analysis of its interaction with MeMSP1 and function in nematode parasitism. Typical 

442 of AtGSTFs, the AtGSTF9 protein contains a conserved N-terminal thioredoxin-fold 

443 domain (1-75 aa) for the conjugation of reduced glutathione and a C-terminal alpha-

444 helical domain (90-208 aa) for the conjugation of hydrophobic substrate. To investigate 

445 which domain is important to the interaction, three mutant structures of AtGSTF9 were 

446 constructed, AtGSTF9-N-mu, AtGSTF9-C-mu and AtGSTF9-NC-mu (Fig. S10). BiFC 

447 assays showed fluorescence only in the positive control and in the leaves infiltrated 

448 with AtGSTF9-C-mu-YFPc construct (Fig. 5a). These results showed that the N-

449 terminal part of AtGSTF9 is essential for the interaction between MeMSP1 and 

450 AtGSTF9.

451 To investigate the role of AtGSTF9 in plant response to RKN, we obtained two T-DNA 

452 insertional alleles of AtGSTF9 (Salk_001519C, Salk148672C). No AtGSTF9 transcripts 

453 were detected in plants homozygous for the insertions (Fig. S11). These gstf9 ko lines 

454 were significantly more susceptible to M. enterolobii than control plants, illustrated by 

455 a higher number of galls and nematodes inside roots (Fig. 5b; Fig. S12). This result 
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456 showed that AtGSTF9 has a role in plant immunity to M. enterolobii. 

457

458 Expression of MeMSP1 affects metabolic pathways and the biosynthesis of 

459 secondary metabolites in Arabidopsis

460 To understand the mode of action of MeMSP1, we investigated genes and metabolites 

461 differentially expressed/accumulated in MeMSP1-OE lines compared to WT seedlings, 

462 by combining transcriptomic and metabolomic analyses. Transcriptome data identified 

463 696 differentially expressed genes (DEG) in both MeMSP1-OE- lines compared to WT. 

464 288 DEGs are downregulated and 407 upregulated (Fig. 6a, b; Table S4-S6). Eight 

465 DEGs (four upregulated and four down-regulated) were selected to validate the 

466 transcriptome data through qPCR, and the results of three biological replicates were 

467 consistent with the transcriptome results (Fig. S13). Among these downregulated DEGs, 

468 we identified AtGSTF3 (At2g02930), one of the targets of MeMSP1, TPI (At1g73260), 

469 a gene downregulated in galls that have been validated by qRT-PCR (Jammes et al., 

470 2005). Interestingly CCS52B (At5g13840), strongly induced in galls (de Almeida et al., 

471 2012), was identified in the upregulated DEGs. The KEGG analysis of shared DEGs 

472 revealed that the “metabolic pathways” and “biosynthesis of secondary metabolites” 

473 were the two most significantly enriched pathways in the two MeMSP1-OE lines (Fig. 

474 6c). Gene ontology (GO) analysis of the common DEGs showed enrichment in the GO 

475 terms “oxidation-reduction process” and “oxidoreductase activity”, indicating that 

476 MeMSP1 expression affects the oxidation-reduction balance in Arabidopsis (Fig. S14).

477 Metabolome data identified differently accumulated metabolites (DAMs), 13 with a 

478 lower content and 25 with a higher content, in both MeMSP1-OE lines (Fig. 7a, b, Table 

479 S7 to S9). Among these, amino acid derivatives, nucleic acids and their metabolites, 

480 and organic acids all showed upregulated accumulation, while most flavonoids like 

481 flavanone, flavone, and flavonolignan showed downregulated accumulation (Table 1). 

482 Three metabolites, GSH, L-CYS-GLY, and γ-Glu-Cys involved in the glutathione cycle 

483 were significantly accumulated (Table 1). Most DAMs are involved in metabolic 

484 pathways by KEGG classification analysis (Fig. 7c). These combined analyses 

485 demonstrated that MeMSP1 modulates the metabolic pathway and biosynthesis of 
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486 secondary metabolite pathways in Arabidopsis.

487

488 Down-regulated metabolites show a harmful effect on nematodes

489 Of the 13 DAMs with lower levels, 11 belong to the flavonoid family, a well-known 

490 group of plant defence compounds. To investigate their roles against RKN, we first 

491 tested the mortality of five compounds at 50 mg/L by soaking M. enterolobii J2s for 48 

492 hours. Three of these had significant and reproducible paralysis activity, namely 

493 naringenin, N’, N’’-di-p-coumaroyl spermidine and butin (Fig. S15). Different 

494 concentrations of butin and naringenin and different treatment times were tested on 

495 nematodes. The results showed that no significant effect on nematodes was observed 

496 when the 10 μg/ml concentration of butin and naringenin was used to treat nematodes 

497 for 24 h. With the increase in treatment time and the substances concentration, both 

498 butin and naringenin showed a lethal effect on nematodes compared with the control. 

499 And when nematodes were soaked with 50 μg/ml concentration for 72 hours, the 

500 mortality rate of butin and naringenin to nematodes reached 24.7% and 21.4% 

501 respectively. (Fig. 8; Fig. S16). This finding indicated that the expression of MeMSP1 

502 in A. thaliana results in reduced accumulation of compounds that are harmful to 

503 nematodes.

504

505 Discussion

506 Meloidogyne spp. are obligate plant parasites with a worldwide distribution; they are 

507 considered the most devastating of plant-parasitic nematodes (Jones et al., 2013). M. 

508 enterolobii is an emerging RKN species capable of overcoming most of the nematode 

509 resistance genes in crops (Sikandar et al., 2022). One of the specific features of RKN 

510 interactions with plants is their ability to reprogram root cells to form specialised giant, 

511 hypertrophied, multinucleate feeding cells, which serve as their sole source of nutrients 

512 (Favery et al., 2020). RKN parasitism is facilitated by the secretion of a large number 

513 of effector proteins. The RKN effectors described to date have three major functions: 

514 (1) the degradation and modification of plant cell walls; (2) the suppression of host 

515 defences; (3) modulation of the physiology of the host plant to allow the formation and 
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516 the functioning of the permanent feeding site (Mitchum et al., 2013). Here we identified 

517 a RKN effector that manipulate plant metabolism.

518

519 MeMSP1 is a conserved RKN-specific effector secreted into giant cells to promote 

520 parasitism

521 MeMSP1 orthologs have been found in five of the eight RKNs for which genome 

522 sequences are available (M. incognita, M. javanica, M. arenaria, M. enterolobii and M. 

523 floridensis). No such orthologs have been found in cyst nematodes and free-living 

524 nematodes (Li et al., 2016). We performed immunolocalisation experiments, which 

525 confirmed the biosynthesis of MeMSP1 in the dorsal oesophageal gland of parasitic 

526 juveniles and the secretion of this molecule in planta. The host-induced gene silencing 

527 (HIGS) of MeMSP1 in nematodes feeding on transgenic plants producing dsRNA and 

528 the overexpression in planta of the MeMSP1 gene confirmed the role of this molecule 

529 as an effector involved in parasitism. The immunolocalisation of MeMSP1 in giant cells 

530 and the results of the HIGS experiments suggest that MeMSP1 acts during later stages 

531 of parasitism, after the nematode has become sedentary.

532

533 MeMSP1 interacts with glutathione-S-transferase phi GSTF proteins

534 Using biochemical and cell biology approaches, we were able to identify and validate 

535 the GST phi (GSTF) class of proteins as targets of MeMSP1 within the plant. Indeed, 

536 we found that MeMSP1 interacted with the 13 Arabidopsis GSTF proteins. GSTF 

537 proteins constitute a large plant-specific class of GSTs proteins. GSTs display 

538 significant sequence divergence, but crystallographic and biophysical studies have 

539 shown that their protein structure is conserved with a G-site at the N-terminus that 

540 specifically binds to GSH and an H-site that binds to the electrophilic substrate (Oakley, 

541 2011). We found that several amino acids at the N-terminus of AtGSTF9 were essential 

542 for its interaction with MeMSP1, suggesting that MeMSP1 targets the G site, which is 

543 critical for GSTF function.

544 Most previous functional analyses of plant GSTFs have focused on tolerance to heavy 

545 metals, herbicides, drought, extreme temperatures, or salinity, but there is now evidence 
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546 to suggest that GSTFs are also involved in plant responses to biotic stresses (Sappl et 

547 al., 2009; Gullner et al., 2018). Plant GSTFs are generally induced by treatment with 

548 the defence-related plant hormone salicylic acid (Sappl et al., 2009; Gong et al. 2018), 

549 and it has been shown that some AtGSTFs are induced by fungal or bacterial pathogens 

550 (Sappl et al., 2009). GSTF11 overexpression in oilseed rape (Brassica napus) increases 

551 resistance to the causal agent of powdery mildew, Erysiphe cruciferarum resulting in 

552 impaired mycelial growth (Mikhaylova et al., 2021). Interestingly, GSTF9 has been 

553 implicated in the responses of cotton (Gossypium arboretum) and A. thaliana to the 

554 fungal pathogen Verticillium dahliae (Gong et al., 2018). Cotton in which GaGSTF9 is 

555 silenced and Arabidopsis atgstf9 mutants have been shown to be more susceptible to V. 

556 dahliae, consistent with our finding for the interaction with M. enterolobii. 

557 GSTFs are involved in anti-microbial metabolite synthesis and transport. AtGSTF6 has 

558 been implicated in the biosynthesis of the phytoalexin camalexin, whereas, AtGSTF2 

559 is involved in the transport of defence-associated secondary metabolites such as 

560 camalexin and the flavonol quercetin-3-O-rhamnoside (Kumar, 2014). AtGSTF9, 

561 AtGSTF10 and AtGSTF11 have been shown to be involved in the biosynthesis of 

562 glucosinolates, a group of plant secondary metabolites with relevant nematicidal 

563 activity (Sonderby et al., 2010; Eugui et al. 2022). We hypothesized that RKNs secrete 

564 MeMSP1 into the plant to highjack the functions of GSTFs to modulate host 

565 metabolism for their own benefit.

566

567 Combined analyses of transcriptomic and metabolomic analyses show that 

568 MeMSP1 modulates host metabolic pathways

569 We investigated the changes to plant responses induced by the effector through a 

570 combination of transcriptomics and metabolomics analysis. Such combined analyses 

571 have proved a powerful tool for deciphering plant responses to pathogens (Chen et al., 

572 2019; Duan et al., 2022). Such analyses of the vascular tissues of Eucalyptus urophylla 

573 infected with Ralstonia solanacearum have revealed an activation of plant hormone 

574 signal transduction, flavonoid production, mitogen-activated protein kinase (MAPK) 

575 signalling, and amino-acid metabolism (Yang et al., 2022). Many transcriptomic 
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576 studies have shown that most of the DEGs involved in the transcriptional 

577 reprogramming associated with the development of galls or giant cells are related to 

578 metabolism (Jammes et al., 2005; Barcala et al., 2010; Ji et al., 2013; Portillo et al., 

579 2013). However, a few reports have focused on the changes in the host transcriptome 

580 induced by a single RKN effector (Shi et al., 2018a and 2018b; Mejias et al., 2021; 

581 Song et al., 2021). A transcriptomic analysis of A. thaliana lines ectopically expressing 

582 MiMIF-2 and treated with flg22 revealed effects on metabolic pathways (Zhao et al., 

583 2020). We compared the transcriptomes and metabolomes of MeMSP1-OE 

584 Arabidopsis lines with those of the WT. The DEGs and DAMs identified were enriched 

585 in metabolic pathways and secondary metabolite biosynthesis pathway. 

586 We show here that primary metabolites, such as organic acids, amino acids and their 

587 derivatives, including GSH accumulate following the expression of a single effector in 

588 the plant, as previously reported in mature Medicago truncatula galls after RKN 

589 infection (Baldacci-Cresp et al., 2012). GSH is involved in plant responses to pathogens, 

590 and, particularly, in the protection of plants against oxidized stress (Foyer & Noctor, 

591 2009; Baldacci-Cresp et al., 2012). Glutathione-deficient Arabidopsis mutants have an 

592 impaired activation of defence marker genes and of genes encoding proteins involved 

593 in the biosynthesis of the antimicrobial compound camalexin early in cyst nematode 

594 infection (Hasan et al., 2022). Based on these findings, we hypothesise that the 

595 accumulation of GSH in MeMSP1-OE lines would help protect the giant cells from 

596 oxidative stress, enabling them to nourish the RKN successfully. The higher level of 

597 GSH in MeMSP1-OE lines at least partly accounts for their greater susceptibility to M. 

598 enterolobii. MeMSP1 expression affects plant metabolism, leading to the accumulation 

599 of primary metabolites. This may result in both the provision of more nutrients for 

600 nematode development and a decrease in the resources of the plant available for the 

601 production of defence compounds

602

603 MeMSP1 expression reduces the production of plant-defence related flavonoid 

604 compounds

605 Plants produce diverse secondary metabolites in response to infection with plant-

Page 21 of 47 New Phytologist



606 parasitic nematodes (Sato et al., 2019; Chen, et al., 2021). Certain metabolites may 

607 inhibit egg hatching or nematode motility, or even kill nematodes. Flavonoids are 

608 important members of this group of metabolites. Most of the metabolites downregulated 

609 in MeMSP1-OE lines are flavonoids. This group of specialised plant metabolites 

610 includes more than 10,000 different compounds. Plant GSTFs are involved in flavonoid 

611 biosynthesis (Shao et al., 2021; Aktar et al., 2022). Our understanding of the functions 

612 of almost all these substances remains poor, but there is increasing evidence to suggest 

613 a role for flavonoids in plant stress resistance (Sugiyama & Yazaki, 2014). There have 

614 been reports of flavonoid antimicrobial activity. For example, the maackiain produced 

615 by alfalfa and pea inhibits the growth of Pythium graminicola (Jiménez-González et 

616 al., 2007) and Rhizoctonia solani (Guenoune et al., 2001). Several flavonoids have 

617 recently been reported to have nematicidal activity, suggesting a possible role in plant-

618 nematode interactions (Bano et al., 2020). Various flavonols, including kaempferol and 

619 quercetin, have been shown to inhibit the chemotaxis and motility of nematodes (Wuyts 

620 et al., 2006). Naringenin is a flavonoid that have been shown to have both antiviral and 

621 antifungal activity, including the inhibition of Xanthomonas oryzae growth and 

622 Magnaporthe grisea spore germination, and activity against Fusarium spp. (Den 

623 Hartogh & Tsiani, 2019). We show here that two flavonoids downregulated by 

624 MeMSP1, butin and naringenin, have lethal activity against M. enterolobii. This finding 

625 suggests that flavonoids play an important role in anti-nematode defences, and that 

626 nematodes may target their biosynthesis to promote parasitism.

This work sheds light on a novel effector mechanism targeting plant metabolism that 

decreases the production of plant defence-related compounds while favouring the 

accumulation of metabolites beneficial to the nematode, thereby promoting parasitism.

627
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Figure legends

Table 1 Differentially accumulated metabolites shared by MeMSP1-OE-1 and 

MeMSP1-OE-3 Arabidopsis lines
Class Compounds LogFC( MeMSP1-OE-1) LogFC( MeMSP1-OE-3) Type

3-Chloro-L-tyrosine 1.13 1.01 up
Glutathione reduced form (GSH) 1.49 3.00 up

S-(methyl)glutathione 1.42 1.61 up
γ-Glu-Cys 1.55 2.60 up
CYS-GLY 2.53 3.26 up
L-Alanine 1.67 1.31 up

N-Methylnicotinamide -1.35 -1.43 down
Adenosine 3'-monophosphate 2.71 1.49 up

Inosine 5'-monophosphate 2.18 1.47 up
Adenosine 5'-monophosphate 1.95 1.07 up

Argininosuccinate 1.37 1.72 up
Diethyl phosphate 1.72 1.40 up

Quinate and its derivatives O-Sinapoyl quinic acid 1.65 1.31 up
N-Feruloyl serotonin 2.15 1.06 up
6-Hydroxymelatonin -1.23 -2.47 down

Vitamins Pyridoxal 5'-phosphate 1.47 1.88 up
Hydroxycinnamoyl derivatives 1-O-beta-D-Glucopyranosyl sinapate 1.44 1.11 up
Lipids_Glycerophospholipids LysoPC 16:2 1.23 2.25 up

Others O-Phosphorylethanolamine 1.11 1.29 up
Anthocyanins Pelargonin 2.11 1.44 up

Proanthocyanidins Procyanidin A3 1.34 1.13 up
Catechin derivatives (+)-Gallocatechin (GC) 1.25 1.14 up

N-sinapoyl hydroxycoumarin 1.35 1.26 up
O-Feruloyl 4-hydroxylcoumarin 1.44 1.60 up

Naringenin -2.10 -3.90 down
Naringenin chalcone -15.85 -15.85 down

Chrysoeriol O-rhamnosyl-O-glucuronic acid -2.34 -4.11 down
Acacetin 15.16 15.52 up

Butin -15.80 -15.80 down
Chrysin C-hexoside -2.29 -2.31 down

di-C,C-hexosyl-apigenin -2.22 -2.33 down
8-C-hexosyl-luteolin O-hexoside -1.59 -1.15 down

Flavonol Quercetin 3-alpha-L-arabinofuranoside (Avicularin) 2.30 2.65 up
Tricin 4'-O-(β-guaiacylglyceryl) ether O-hexoside -2.72 -2.36 down

Tricin 4'-O-syringyl alcohol -1.29 -11.44 down
N', N''-di-p-coumaroyl spermidine -14.85 -14.85 down

N-sinapoyl cadaverine -1.23 -14.31 down
N-Sinapoyl agmatine 1.46 1.34 up

Magenta background Significantly upregulated accumulation
Green background Significantly downregulated accumulation

Flavone C-glycosides

Flavonolignan

Phenolamides

Amino acid derivatives

Nucleotide and its derivates

Organic acids

Tryptamine derivatives

Coumarins

Flavanone

Flavone
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Fig. 1 MSP1 is a conserved effector in root-knot nematodes. (a) Alignment of MeSP1-

like proteins from different Meloidogyne species using ClustalW2. Identical amino 

acids residues are highlighted against black background shading, highly similar (>75%) 

amino acid residues are shown in pink background shading. (b) Maximum likelihood 

phylogenetic tree of MSP1 sequences. Numbers at tree nodes represent bootstrap 

support values. Support for the nodes was calculated with a hundred bootstrap 

replicates. MiMSP12 was used as outgroup. 

Fig. 2 MeMSP1 is a dorsal gland protein secreted in the giant cells. (a) Localisation of 

MeMSP1 in the dorsal glands of M. enterolobii preparasitic J2s through in situ 

hybridisation. Fixed J2s were hybridised with antisense cDNA probes from MeMSP1 

(Figure S1). (b) No signal has been observed when the sense probe was used as a 

negative control. (c-e) Immunolocalisation on parasitic nematodes extracted from 

infected root at 14 dpi. The use of anti-MeMSP1 antibodies showed the specific 

production of MeMSP1 in the dorsal gland of parasitic nematodes (c) and its delivery 

in the oesophagus (d) of parasitic nematodes. No signal was observed when pre-

immune serum was used as a negative control (e). (f-i) Immunolocalisation in sectioned 

tomato root galls at 14 dpi. Secreted MeMSP1 protein signal were detected in the 

cytoplasm of the giant cells (f, g, h). No signal was observed when pre-immune serum 

was used as a negative control (i). Micrographs (c-e) are overlay of images of the bright 

and Alexa Fluor 488 fluorescence. Micrographs (f-i) are merge of images of the Alexa 

Fluor 488-conjugated secondary antibodies, DAPI-stained nuclei and differential 

interference contrast. N, nematode; Asterisks *, giant cells; Red arrow, signals of Alexa 

Fluor 488 fluorescence; M, metacorpus. The dashed white line marks the outline of a 

giant cell. Scale bars: (a and, b) 20 μm, (c, d, e and i) 100 μm, (f and h) 75 μm or (g) 

50 μm.

Fig. 3 In planta RNA interference (RNAi) and ectopic expression of MeMSP1 in 

Arabidopsis shows MeMSP1 participated in the parasitism of M. enterolobii. (a) The 

relative expression level of MeMSP1 in M. enterolobii collected from three 
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independent, homozygous MeMSP1-RNAi lines (MeMSP1-Ri-1, -2 and -3), GFP-

RNAi line (GFP-Ri) and wild type (COL) Arabidopsis. Error bars represent +/- SD. (b) 

In planta RNAi of MeMSP1 reduced M. enterolobii infection. Galls, nematodes (all 

stages in planta) and adult females (n=15) were counted at 30 dpi. The experiments 

were performed three times with similar results. (c) MeMSP1 overexpression in 

Arabidopsis increased susceptibility to M. enterolobii. Galls, nematodes (all stages in 

planta) and adult females (n=15) were counted at 30 dpi in two independent, 

homozygous MeMSP1 overexpressing lines (MeMSP1-OE-1 and -3), empty vector 

control line (super1300) and wild type (COL) Arabidopsis. The experiments were 

performed three times with similar results and the results of the other two tests were 

shown in Fig. S6. (b, c, d) Boxes indicate interquartile range (25–75th percentile). The 

central lines within the boxes represent medians. Whiskers represent extreme values 

that are not outliers. The “+” in the boxes represent average values. The black dots 

outside the box represents outliers. Different letters indicate statistically significant 

difference in one-way ANOVA with Dunnett's multiple comparisons test (P<0.05).

Fig. 4 MeMSP1 interacts with all the AtGSTF members from Arabidopsis in vivo and 

in planta. (a) Co-immunoprecipitation was used to verify the interaction between 

AtGSTF family members and MeMSP1. WB (western blotting) assay confirmed 

expressions of input proteins: Flag-AtGSTFs, Flag-GFP (anti-Flag antibodies) and 

MeMSP-HA (anti-HA antibodies). In the samples after immunoprecipitation, 

MeMSP1-HA was detected when co-expressing with Flag -AtGSTFs, but not when co-

expressing with Flag-GFP. (b) Bimolecular fluorescence complementation (BiFC) 

visualization of the interaction between some AtGSTFs and MeMSP1. Images were 

obtained 48 h after co-infiltration in N. benthamiana leaves. YFP, yellow fluorescent 

protein. Scale bar, 100 µm. BIFC images of the interaction between MeMSP1 and all 

the members of AtGSTF were provided in supplement Fig. S9.

Fig. 5 The N-terminal of AtGSTF9 is essential to their interaction and AtGSTF9 has a 

role in plant immunity to nematodes. (a) BiFC visualization of the interactions between 
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the mutated AtGSTF9 and MeMSP1. The corresponding proteins were co-expressed 

in tobacco leaves. Images were obtained 48 h after co-expression. Scale bar, 100 µm. 

(b) The Arabidopsis gstf9 mutants are more susceptible to M. enterolobii than the WT. 

Galls and nematodes (n≥22) were counted at 30 dpi. The experiments were performed 

two times with similar results and the result of the other test was shown in Fig. S10. 

Boxes indicate interquartile range (25–75th percentile). The central lines within the 

boxes represent medians. Whiskers represent extreme values that are not outliers. The 

“+” in the boxes represent average values. Different letters indicate statistically 

significant difference in one-way ANOVA with Dunnett's multiple comparisons test 

(P<0.05).

Fig. 6 MeMSP1 affects the expression of metabolic-related genes in Arabidopsis. (a, 

b) Venn diagram showing overlap between two MeMSP1 transgenic lines differentially 

expressed genes compared to Col-0. (c) KEGG classification of differentially 

expressed genes shared by two MeMSP1 transgenic lines. The ordinate represents the 

KEGG pathway, and the abscissa represents number of genes.

Fig. 7 MeMSP1 affect the metabolic pathway and biosynthesis of secondary 

metabolites pathway in Arabidopsis. (a, b) Venn diagram showing overlap between 

two MeMSP1 transgenic lines differentially expressed metabolites compared to Col-0. 

(c) KEGG classification of differentially expressed metabolites shared by two 

MeMSP1 transgenic lines. The ordinate represents the KEGG pathway, and the 

abscissa represents number of metabolites.

Fig. 8 Down-regulated metabolites butin and naringenin in MeMSP1-OE Arabidopsis 

lines shows a paralysis effect on nematodes. (a) Butin and naringenin show a paralysis 

effect on nematodes at different concentration and time. CK, control check which 

consisted of the corresponding concentration of DMSO. Boxes indicate interquartile 

range (25–75th percentile). The central lines within the boxes represent medians. 

Whiskers represent extreme values that are not outliers. The “+” in the boxes represent 

Page 38 of 47New Phytologist



average values. * indicate statistically significant difference in one-way ANOVA with 

Dunnett's multiple comparisons test (P<0.05). The experiments were performed three 

times with similar results and the results of the other two tests were shown in Fig. S16. 

(b) The nematodes pictures from CK treatment at 48 h. (c) Picture of nematode treated 

with 50μg/ml butin for 48 hours. (d) Picture of nematodes treated with 50μg/ml 

naringenin for 48 hours. (c, d) Red arrow, paralysed/dead nematode. Scale bars: (b, c, 

d) 1000 μm.
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