Precipitation trend increases the contribution of dry reduced nitrogen deposition - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles npj climate and atmospheric science Year : 2023

Precipitation trend increases the contribution of dry reduced nitrogen deposition

Weihua Chen
Xuemei Wang
Min Shao
Chris Flechard
Buqing Zhong
  • Function : Author
Ming Chang
Weiwen Wang
Jingying Mao
  • Function : Author
Xuejun Liu

Abstract

Given the leveling off in oxidized nitrogen emissions around the world, the atmospheric deposition of reduced nitrogen (NH x = NH 3 + NH 4 + ) has become progressively critical, especially dry deposition, which presents great threats to plant growth. A combination of historical deposition data of measured wet NH x and modeled dry NH x in China suggests that dry NH x deposition has been increasing substantially (4.50% yr −1 , p < 0.05) since 1980. Here, chemical transport model (WRF-EMEP) results indicate that variation in NH 3 emissions is not a dominant factor resulting in the continually increasing trends of dry NH x deposition, while climate change-induced trends in precipitation patterns with less frequent light rain and more frequent consecutive rain events (with ≥2 consecutive rainy days) contribute to the increase in dry NH x deposition. This will continue to shift NH x deposition from wet to dry form at a rate of 0.12 and 0.23% yr −1 ( p < 0.05) for the period of 2030–2100 in China under the RCP4.5 and RCP8.5 scenarios, respectively. Further analysis for North America and Europe demonstrates results similar to China, with a consistent increase in the contribution of dry NH x deposition driven by changing precipitation patterns from ~30% to ~35%. Our findings, therefore, uncover the change of precipitation patterns has an increasing influence on the shifting of NH x deposition from wet to dry form in the Northern Hemisphere and highlight the need to shift from total NH x deposition-based control strategies to more stringent NH 3 emission controls targeting dry NH x deposition in order to mitigate the potential negative ecological impacts.

Dates and versions

hal-04247156 , version 1 (18-10-2023)

Licence

Identifiers

Cite

Weihua Chen, Shiguo Jia, Xuemei Wang, Min Shao, Wenhui Liao, et al.. Precipitation trend increases the contribution of dry reduced nitrogen deposition. npj climate and atmospheric science, 2023, 6 (1), pp.62. ⟨10.1038/s41612-023-00390-7⟩. ⟨hal-04247156⟩

Collections

INRAE UMR-SAS
16 View
0 Download

Altmetric

Share

More