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Abstract
The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998–2012) due to ocean energy 
redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to 
climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness 
observations (1982–2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling 
than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be 
because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response 
is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and 
productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of 
considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.

Significance Statement

Regional temperature decrease (i.e. cooling) was observed during the global warming hiatus (1998–2012), yet its influence on the 
spring greening with earlier leaf onset date and higher productivity remains unknown. Using ground observations, remote sensing 
imagery, and model estimates, here, we show that the response of spring greening to temperature is nonlinear, with a stronger re
sponse to natural cooling than to warming. The future projection indicates a stronger impact of warming than cooling, leading to 
a larger uncertainty of vegetation–climate feedbacks. This study challenges the notion of linear temperature sensitivity and contrib
utes to future model projections.
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Introduction
Spring leaf onset date (LOD) has advanced in recent decades in nor
thern mid to high latitudes (>30°N) under global warming (1–7). 
This advance is highly sensitive to temperature changes, extends 
the growing season length, and accordingly increases the carbon 
uptake of terrestrial ecosystems (1, 8, 9). Understanding the re
sponses of LOD to temperature changes in terms of sign and mag
nitude is therefore crucial for assessing the influence of climate 
change on terrestrial ecosystems and its feedback to climate (10, 
11). Unlike warming effects, however, most existing studies ignore 
the impact of cooling anomalies on LOD, which may cause biased 
predictions of vegetation–climate feedbacks (12).

In northern regions, winter and spring temperatures are gener
ally considered the principal drivers of spring LOD. Trees need to 
accumulate enough winter chilling to end the endodormancy 
phase and enough spring warming to break the ecodormancy 
phase, further triggering plant leaf onset (13–16). The earlier 
emergence of spring leaves has been associated with warmer tem
peratures because of easily reaching heating demand (14, 17). 
However, the global mean temperature has not always shown a 
steady increase, with the global warming hiatus observed be
tween 1998 and 2012 possibly due to an energy redistribution 
within the oceans (18–21). Until now, we only know the relative re
sponses of LOD to warming and cooling for some species, e.g. tree 
saplings and grass, in field experiments (12, 22, 23). Warming of 
1°C in winter/spring led to an advance of 8.8 days in budburst 
dates of Fagus sylvatica L., whereas 1°C cooling delayed it by 10.9 
days (22). Two manipulative experiments in the Tibetan Plateau 
showed non-significant differences in sensitivities to warming 
and cooling for grass leaf-out (12, 23). Both field- and ecosystem- 
scale analyses have mainly focused on advancing effects of 
natural warming on LOD, influenced by photoperiod (24, 25), pre
cipitation amount (26, 27) and frequency (28), and soil water (29) 
and nutrient availability (30). Besides direct physiological effects, 
temperature changes regulate ecosystem composition and func
tion, soil moisture, snowmelt, and permafrost degradation in 
high altitudes and latitudes, which may affect plant spring growth 

(31–35). There is limited evidence of non-symmetric or symmetric 
responses of LOD to natural warming and cooling at the species 
to ecosystem scales, especially in mature woody biomes (23). 
The impacts of spring greening timing (i.e. LOD) on spring green
ing magnitudes (i.e. spring greenness and productivity) during 
the warming hiatus are also unclear. Therefore, we ask two ques
tions: (i) does spring LOD respond to warming and cooling sym
metrically in northern biomes? and (ii) what are the physical 
and physiological mechanisms related to non-symmetric or sym
metric patterns? To this end, we investigated the responses of 
LOD to natural warming and cooling, using gridded meteorologic
al data (temperature, precipitation, and cloud cover) together 
with LOD data from two independent data sets: (i) 15,125 ground 
phenological time series at 3,620 sites across Europe since the 
1950s and (ii) normalized difference vegetation index (NDVI) 
data, for northern mid to high latitudes (>30°N) from 1982 to 2012.

Responses of LOD to natural warming 
and cooling
We used long-term in situ LOD observations of seven European 
dominant tree species (5), derived from the PEP725 database 
that provides the longest and most comprehensive phenological 
records, to study the LOD responses to warming and cooling 
(Fig. 1) (see Methods). The results overall indicated the non-sym
metric LOD responses to warming and cooling, i.e. five out of sev
en species (Tilla cordata P < 0.05, Fagus sylvatica P < 0.05, Betula 
pendula P < 0.05, Alnus glutinosa P < 0.01, and Aesculus hippocasta
num P < 0.001) were more sensitive to cooling than to warming 
(Fig. 1B). Consistent with previous field experiment for Fagus sylva
tica (22), our results highlight the stronger responses of LOD to nat
ural cooling than to warming, indicating a nonlinear temperature 
control of LOD.

To focus on the spatial comparison of LOD responses within the 
biomes, we applied the warming hiatus period (1998–2012) to 
identify warming and cooling grid cells for satellite-based analysis 
by using statistical significance at the 0.05 level for temperature 
changes and partial correlation analysis (see Methods) (Fig. 2A, 

A B

Fig. 1. The distribution of PEP725 sites and comparisons of LOD responses to warming and cooling at the species scale. A) The locations of PEP725 sites for 
long-term in situ LOD observations of seven European dominant tree species since the 1950s. B) LOD responses (log-transfer, see Methods) to warming 
and cooling at the species scale from PEP725 ground observation data. The warming and cooling samples were obtained by using P < 0.05 for temperature 
changes and partial correlation analysis. The bar represents the standard error. Student’s t-test was used to test the significance of the difference 
between the warming and cooling conditions. Significance code for differences: ***P < 0.001, **P < 0.01, and *P < 0.05.
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B). Results showed that LOD advanced in the warming areas and 
delayed in the cooling areas for all the forest and grass biomes be
tween 1998 and 2012 (Fig. 2C). Overall, the magnitudes of LOD re
sponse to cooling were greater than those to warming, that is, the 
sensitivity (log transformation) of LOD to warming and cooling 
was −5.4 ± 0.02 (mean ± SE, standard error) vs. −10.5 ± 0.2 (P <  
0.001). All forest and grass biomes showed consistently non-sym
metric LOD responses to warming and cooling, i.e. the sensitivity 
(log transformation) of LOD to warming and cooling was −6.5 ± 0.2 
vs. −13.3 ± 1.7 (P < 0.001), −4.00 ± 0.06 vs. −11.0 ± 2.3 (P < 0.05), 
−8.7 ± 0.4 vs. −10.3 ± 0.3 (P < 0.001), −6.1 ± 0.1 vs. −11.9 ± 0.6 (P <  
0.001), −4.8 ± 0.02 vs. −8.7 ± 0.3 (P < 0.001), −5.1 ± 0.07 vs. −9.6 ±  
0.5 (P < 0.001), −5.6 ± 0.05 vs. −12.4 ± 0.8 (P < 0.001), and −6.1 ±  
0.06 vs. −10.6 ± 0.3 (P < 0.001) for evergreen needleleaf forests, de
ciduous needleleaf forests, deciduous broadleaf forests, mixed 
forests, shrublands, woody savannas, savannas, and grasslands, 
respectively (Fig. 2D). The results using the significance level of 

0.01 for temperature changes and partial correlation analysis 
were consistent with the 0.05 level (Fig. S1; Tables S1 and S2). In 
addition to spatial analysis, we also performed a temporal ana
lysis by comparing the LOD responses to temperature changes 
for grids that experienced warming during 1982–97 and cooling 
during 1998–2012 (Fig. S2). The temporal result supported that 
the magnitudes of LOD response to cooling were greater than 
those to warming.

To quantify the variations of non-symmetric LOD response, 
we defined a LOD non-symmetric index calculated by the differ
ence between the LOD sensitivities to warming and cooling; the 
positive value indicates stronger sensitivity to cooling, while the 
negative value suggests stronger sensitivity to warming (see 
Methods). Using the LOD simulated by a growing-degree-day 
(GDD) algorithm (see Methods), we also found that LOD was 
more sensitive to cooling than to warming during the warming 
hiatus (Fig. S3). For future projections (2016–99), we also found 

DC

B

A

Fig. 2. Warming and cooling grid cells used in this study and comparisons of LOD responses to warming and cooling at the biome scale. A) Locations of 
warming and cooling grid cells during the warming hiatus (1998–2012). Grid cells with P < 0.05 for temperature changes and partial correlation analysis 
were retained (see Methods). B) The biome types of grid cells. C) Trends in LOD in warming and cooling areas for biomes from 1998 to 2012. D) LOD 
responses (log-transfer) to warming and cooling at the biome scale from satellite-based LOD data. The bar represents the standard error. Student’s t-test 
was used to test the significance of the difference between the warming and cooling conditions. Significance code for differences: ***P < 0.001, **P < 0.01, 
and *P < 0.05.
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a non-systematic response but with different patterns, i.e. LOD 
becomes more sensitive to warming than to cooling under the 
scenarios of highest baseline of carbon emissions (RCP8.5) 
(Fig. S4).

The mechanisms under non-symmetric LOD 
responses
Exploring physiological mechanisms under LOD responses is 
challenging. Here, we hypothesized that the non-symmetric 
LOD responses to warming and cooling might be related to 
changes in chilling accumulation (CA, the amount of chilling dur
ing endodormancy), heat requirement (HR, the accumulated for
cing temperature required for leaf onset), and water availability 
(16, 36–38). To test these hypotheses, we determined the changes 
in CA, HR, and water stress using a drought index (the 
Standardized Precipitation Evapotranspiration Index, SPEI) in 
warming and cooling areas during the warming hiatus (see 
Methods). First, we confirmed a dual role of temperature in con
trolling LOD variations with an exponential decay-like relation
ship between chilling days and forcing degrees (16) (Fig. 3A). 
Grouping grid cells into warming and cooling indicated that 
warming reduced CA and HR while cooling increased the two var
iables (Fig. 3B, C; Figs. S5–S6). Trees with more CA in the phase of 

endodormancy might need more HR to break ecodormancy for re
activating growth (13, 39). Expectedly, cooling grids showed more 
changes in HR caused than warming grids both in terms of trees 
(forests) and low vegetation (shrublands, savannas, woody savan
nas, and grasslands) (Fig. 3C; Figs. S6–S7). Non-symmetric 
changes in CA and HR caused by warming and cooling might fol
low the non-symmetric LOD responses.

On the other hand, we found that warming and cooling are as
sociated with soil water availability changes (i.e. SPEI trend), fur
ther affecting LOD when controlling the effects of precipitation 
and radiation (Fig. S8). Decreased SPEI generally accompanies 
abundant sunshine in the warming areas, and these processes to
gether lead to earlier LOD (40–43) (Fig. S8). In the current climate, 
the severity of preseason drying may not reach a turning point 
that could cause a delaying effect on LOD (40). Before the turning 
point, the elevated preseason temperature and radiation in 
drought may advance LOD (3, 40, 44). In contrast, cooling benefit
ed maintaining soil water availability (Fig. S8A), offsetting the ad
vancing effect caused by drought stress (40, 41) and leading to 
delayed LOD (Fig. S8B). We found stronger effects of warming on 
water availability than effects of cooling (Fig. 3D). Considering 
the opposite and non-symmetric effects on soil water availability, 
the non-symmetric LOD responses to warming and cooling might 
be partially offset.

C

A B

D

Fig. 3. Comparisons of changes for chilling accumulation (CA), heat requirement (HR), and water availability indicator (i.e. SPEI) in warming and cooling 
areas obtained from satellite-based analysis during the warming hiatus. A) Relationship between CA and HR. The green line indicates an exponential 
decay regression fitted using CA and HR. B, C, and D) present the trends of CA, HR, and SPEI in the warming and cooling areas during 1998–2012, 
respectively. The bar represents the standard error. Student’s t-test was used to test the significance of the difference in the absolute values of trends for 
CA, HR, and SPEI in the warming and cooling areas. Significance code for differences: ***P < 0.001 and **P < 0.01.
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For future projections (2016–99), we found a reversion of warm
ing and cooling effect sizes, that is LOD will be more sensitive to 
warming than to cooling under RCP8.5 (Fig. S4B). Apart from the 
projection uncertainty caused by models and datasets, we pro
posed two potential reasons. First, future climate change may al
ter current non-symmetric patterns of chilling accumulation and 
heating requirements under warming and cooling, especially with 
temperature increases and precipitation variations (3, 28). 
Second, warming-related drying stress might adjust climatic re
sponses leading to a warming-dominant control on spring plant 
growth (45–47).

Connections among temperature change, 
LOD, and spring greening magnitude
Spring (from March to May) accumulated gross primary productiv
ity (GPP) and mean NDVI were used as proxies of spring greening 
magnitude during the warming hiatus. Spring greening magni
tudes were negatively correlated with spring greening timing (i.e. 
LOD) (Fig. 4), which suggested that earlier LOD would increase plant 
carbon uptake in spring (40, 48, 49). However, these relationships 
were significantly different in the warming and cooling areas by us
ing covariance analysis (P < 0.001) (50). We also used the random 

slope model to present the relationship between spring GPP/NDVI 
and LOD in the temporal scale when controlling for latitudes and 
longitudes of grid cells as random factors (Fig. S9). To reduce the 
uncertainty brought by the fixed period used (i.e. from March to 
May), we calculated the spring greening magnitude with accumu
lated GPP and mean NDVI during the period from LOD to the ma
turity (i.e. the date corresponding to the maximum NDVI in the 
GIMMS NDVI3g time series) and obtained the similar results with 
fixed period used (Fig. S10). As confirmed by these independent 
lines of evidence, spring GPP/NDVI was more sensitive to LOD in 
the warming areas than in the cooling (Fig. 4; Figs. S9–S10), suggest
ing that the increase in spring plant productivity caused by 1-day 
LOD advance by warming was overall greater than the decrease 
by 1-day LOD delay by cooling. These results call for caution con
cerning model-based climatic responses of GPP and aid in under
standing vegetation–climate feedbacks.

Conclusions
Using both ground records and satellite observations, we found 
non-symmetric LOD responses to natural warming and cooling, 
i.e. the LOD of northern biomes exhibited stronger responses to 
cooling than to warming. The underlying mechanism might be 

A B

C D

Fig. 4. Connections among temperature change, LOD, and spring greening magnitude. The comparison for regressions between spring GPP/NDVI and 
LOD in the warming and cooling areas using the satellite-based NIRv GPP A), the LRF GPP B), TL-LUE GPP C), and GIMMS NDVI D), respectively. The 
spring-accumulated GPP and mean NDVI were calculated during the period from March to May. The red and blue kernel density plots represent the 
density distribution of warming and cooling grids in GPP/NDVI-LOD space, respectively. The four GPP/NDVI datasets all showed that the differences in 
the slopes between warming and cooling conditions were significant (P < 0.001) by using covariance analysis. Significance code for differences: ***P <  
0.001.
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associated with stronger variations of CA and HR by cooling, which 
could be partially offset by warming-associated drying. Moreover, 
the spring greening magnitude was more sensitive to LOD changes 
in the warming areas than in the cooling. Our findings provide a 
new conceptual framework of LOD responses to climate change, 
which is enlightening for model improvements and projections.

Methods
In situ LOD observation
We applied the in situ LOD observations from the Pan European 
Phenology Project (PEP725), which is an open database that con
tains long-term plant phenological observations from 25 
European countries (http://www.pep725.eu/) (51). The date of 
the first visible foliar stalk for tree species (BBCH code 11) was 
used. All available records (15,125) from 1951 to 2018 were col
lected from 3,620 sites for seven European dominant tree species 
(5), i.e. Aesculus hippocastanum, Alnus glutinosa, Betula pendula, Fagus 
sylvatica, Fraxinus excelsior, Quercus robur, and Tilia cordata (Fig. 1A).

Satellite greenness–based LOD
We used Global Inventory Modeling and Mapping Studies (GIMMS) 
NDVI3g v1 data to derive LOD between 1982 and 2012 (52). The 
NDVI3g v1 data are derived from optical surface reflectance meas
urements taken by a series of NOAA-AVHRR satellites. 
Corrections for intersensor calibration, orbital drifts, and strato
spheric aerosols from volcanic eruptions have made it the most 
consistent long-term satellite vegetation dataset currently avail
able (52, 53). To remove snow effects, we replaced all contami
nated NDVI with the mean of snow-free NDVI values from all 
years in winter (December–February) (54). A modified Savitzky– 
Golay filter was then used to eliminate abnormal values and re
construct the NDVI time series (55). Furthermore, we eliminated 
sparse vegetation by removing grids with a mean annual NDVI 
value of less than 0.1. We applied two methods, i.e. the dynamic 
threshold approach and the double-logistic function, to estimate 
LOD to minimize the uncertainty from a single method. The two 
methods show similar results, so we calculated the average LOD 
from the two methods as the final LOD.

In the first method, we calculated NDVI ratios annually for 
each pixel as follows:

NDVIratio =
NDVIday – NDVImin

NDVImax – NDVImin
, (1) 

where NDVIday is daily NDVI and NDVImin and NDVImax are the 

minimum and maximum NDVI of each year, respectively. A 
threshold ratio of 0.5 was used to determine LOD.

In the second method, we fitted the NDVI time series with a 
double-logistic function and then calculated the second-order de
rivative of the fitted curve. LOD was defined as the time when the 
rate of change in curvature reached its first local maximum in 
spring.

y(t) = a + b
1

1 + ec(t−d)
+

1
1 + ee(t −f )

􏼒 􏼓

, (2) 

where t is time in days and y(t) is the NDVI value at time t. a is the 
initial background NDVI value, and b − e are parameters of this 
function.

Spring greening magnitude
We used mean NDVI and accumulated GPP from March to May as 
spring greening magnitude. The GIMMS NDVI3g v1 dataset was 

used to calculate spring mean NDVI. We used GPP data from three 
independent sources, i.e. the monthly satellite-based near- 
infrared reflectance (NIRv) GPP, the daily light response function 
(LRF) GPP, and the 8-day two-leaf light use efficiency model 
(TL-LUE) GPP datasets. The NIRv GPP dataset has good perform
ance at capturing seasonal and interannual variations of terres
trial GPP at a global scale (56). LRF GPP was estimated by an 
ecosystem-level physiological method using an asymptotic light 
response function between incoming photosynthetically active 
radiation (PAR) and GPP, which well represents the response 
observed at high spatiotemporal resolutions (57). TL-LUE GPP 
dataset distinguished GPP of sunlit and shaded leaves, suitable 
for studying the variations in seasonal cycles of GPP over many 
years (58).

Climatic data
In satellite-derived analysis, we used Multi-Source Weather 
(MSWX) temperature, precipitation, and radiation data with daily 
temporal resolution and 0.1° spatial resolution (59) in partial cor
relation analysis to determine optimal preseason length and the 
site-specific period before LOD with the highest absolute partial- 
correlation coefficient (see Analyses). European gridded observa
tional (E-OBS v23.1e) daily climate data with a spatial resolution 
of 0.1° were used in the phenological observation analysis at the 
species scale with PEP725 data. This dataset was provided by the 
ECA&D (European Climate Assessment & Dataset) project (60).

The daily temperature of the GFDL-ESM2M model in ISIMIP2b 
(Inter-Sectoral Impact Model Intercomparison Project 2b simula
tion round) was used to predict LOD from 2016 to 2099 under fu
ture scenarios (RCP4.5 and RCP8.5), and surface downwelling 
shortwave radiation and precipitation data were used to calculate 
the LOD responses to warming and cooling.

Chilling and forcing models
We used 10 chilling models to measure the number of chilling 
days (i.e. CA) and 8 GDD models for estimating the heating re
quirement (HR) for the LOD. Chilling models 1–8, 11, and 12 and 
GDD models 1–8 in (16) were used in our study.

Model for predicting LOD
To predict future LOD, we used a two-phase parallel model (PM) 
with optimal parameters (61). In contrast to the one-phase models 
(e.g. growing degree days [GDD] and spring warming [SW] models) 
that focus only on forcing accumulation, PM assumes that the for
cing accumulation cannot begin until a critical threshold (Ccrit) of 
the chilling state (Sc, daily sum of chilling rates) is reached (62). 
The first phase of PM is chilling accumulation. A triangle function 
(Eq. 3) was used to describe the daily rate of chilling (Rc) (63), and Sc 

began to accumulate after September 1st of the preceding year (tc) 
(Eq. 4):

Rc =

0, T ≤ Ta
T − Ta

Tb − Ta
, Ta < T ≤ Tb

T − Tc

Tb − Tc
, Tb < T < Tc

0, T ≥ Tc

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3) 

Sc =
􏽘t

tc

Rc, (4) 
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where Rc is the daily rate of chilling. T is the daily mean tempera
ture. Ta, Tb, and Tc are three model parameters. Sc is the daily sum 
of chilling rates and begins to accumulate after September 1st of 
the preceding year (tc).

The second phase of PM is forcing accumulation, and the day 
that the state of force (Sf ) achieved its critical value (Fcrit) was 
used to determine the modeled LOD.

Sf =
􏽘t

t0

Rf (5) 

Rf =
0, T ≤ Td

K ×
Af

1 + ealpha × (T-beta),
T > Td

⎧
⎨

⎩
(6) 

K = Kmin +
1 − Kmin

Ccrit
× Sc, Sc < Ccrit

1, Sc ≥ Ccrit

⎧
⎨

⎩
(7) 

LOD = t, if Sf ≥ Fcrit, (8) 

where Rf is the daily rate of forcing and starts from January 1st of 
the current year (t0). Td is a temperature threshold to establish 
the requirement for beginning the accumulation of forcing (Eq. 6) 
and fulfilling Ccrit. Af, alpha, beta, Fcrit, and Ccrit are model parame
ters. K is an adjustment factor to ensure that the accumulation of 
forcing occurs after the chilling state (Ccrit) is fulfilled. Kmin is an
other model parameter that determines the minimum potential 
of an unchilled bud to respond to the forcing temperature (63). 
Finally, the date when Sf exceeds Fcrit is regarded as the LOD (Eq. 8).

PM parameters, including Af, alpha, beta, Fcrit, Ccrit, Ta, Tb, Tc, Td, 
and Kmin, were calibrated optimally by implementing the particle 
swarm optimization (PSO) algorithm (SPSO-2011) at each pixel, 
based on 31 years of satellite-derived LOD (1982–2012) and gridded 
air temperature data with daily scale. The set of optimal parame
ters was employed when the RMSE value between the observed 
and modeled LOD was the lowest. With the optimal parameters, 
we used PM to predict future LOD under scenarios RCP4.5 and 
RCP8.5. It should be noted that the uncertainty of future climatic 
projections might, to some degree, undermine the robustness of 
future LOD and its responses to warming and cooling.

Analyses
We performed ground- and satellite-based analyses at the species 
and biome scales, respectively. We used seven dominant tree spe
cies with long-term in situ observations of LOD in Europe from the 
PEP725 database. The biome types were obtained based on 
MCD12C1 land cover product (64).

To identify warming and cooling periods/grid cells, PEP725 
phenology and E-OBS climate data were applied for ground-based 
analysis. The satellite-derived LOD and MSWX climate data were 
employed for the biome-based analysis. The relevant periods for 
preseason temperature impacts on phenology vary among bio
mes, species, and locations (37). To determine the optimal pre
season during which average temperature had the largest 
influence on phenology, we computed the partial correlation coef
ficients between average temperature and LOD, controlling the ef
fects of precipitation and radiation, from 0 to 6 months before the 
mean LOD with a step of 8 days (65). The optimal preseason length 
was the period with the highest absolute partial correlation coef
ficient. We then calculated the temperature trend during the op
timal preseason length by linear least-squares regression 
analysis with year as the independent variable. This study used 
statistical significance at a 0.05 level for partial correlation and 

trend analysis. Due to the different time lengths of PEP725 records, 
we used a 15-year moving window to obtain warming and cooling 
periods in the time series of each station. In the satellite-based 
analysis, we applied the warming hiatus period (1998–2012) to 
identify warming and cooling grid cells. In addition, we identified 
grid cells with warming during 1982–98 and cooling during 1998– 
2012 for temporal analysis. For future projections, we determined 
the temperature-relevant preseason and computed the tempera
ture changes during preseason for all grids within a moving win
dow of 15 years and then identified the warming and cooling 
grids in each moving window from 2016 to 2099 based on 
ISIMIP2b climatic datasets. Finally, we calculated the non-sym
metric index within a moving window of 15 years (Fig. S4).

Due to nonlinear temperature responses, the LOD responses to 
temperature changes were computed by log–log regression to 
avoid potential statistical artifacts using the linear method (66, 
67). In the ground-based analysis, we calculated the average value 
of the LOD responses to warming and cooling in each station and 
then the average value of the LOD responses to warming and cool
ing in each species. In the satellite-based analysis, we calculated 
the average value of the LOD responses to warming and cooling 
for each biome at the spatial (warming vs. cooling during 1998– 
2012) and temporal (warming during 1982–98 vs. cooling during 
1998–2012) scales. Finally, the non-symmetric LOD response to 
warming and cooling was determined by Student’s t-test method 
(at least P < 0.05).

We compared the changes in the number of chilling days, accu
mulated forcing degrees, and a water indicator at the warming 
and cooling grids during 1998–2012 to explore the mechanisms 
under the non-symmetric/symmetric LOD responses to warming 
and cooling. To calculate the water indicator, we employed 
monthly SPEI data at a spatial resolution of 0.5° from the SPEI 
base v. 2.7 at Consejo Superior de Investigaciones Científicas 
(CSIC) (68). The SPEI data consisted of multiscale monthly SPEI 
from 1 to 48 months; we selected the 3-month SPEI to capture 
the short-term water deficit (69). We calculated trends of chilling 
days, forcing degrees, and SPEI in the relevant periods for pre
season temperature by the linear least-squares regression meth
od. Then, we used Student’s t-test method to check whether 
non-symmetric patterns exist.

We applied GPP and NDVI data to compute spring greening 
magnitude between March and May from 1998 to 2012. The re
gressions between spring greening magnitude and LOD in the 
warming and cooling conditions were created by the least-squares 
linear regression method. Then, we tested the statistical signifi
cance of the difference in the slopes of GPP/NDVI-LOD regressions 
between warming and cooling conditions by covariance analysis 
based on a procedure in (50). Finally, we applied a random slope 
model (“lme4” package in R4.2.0) to compare GPP/NDVI-LOD re
gressions in warming and cooling scenarios at the temporal scale 
when grid cells’ latitudes and longitudes were used as random 
factors.
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Supplementary material is available at PNAS Nexus online.
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