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Framework: repeated measurement data

¢ Mixed-effects models: analyse observations collected repeatedly on
several individuals.
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% Same overall behaviour but with individual variations.
¢ Non-linear growth.
¢ Are these variations due to known characteristics?

» E.g.: growing conditions, genetic markers, ...
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Non-linear mixed-effects model (NLMEM)

1) Description of intra-individual variability:
Forallie{l,...,n}, je{1,...,J},

iid.
vi = g(pis 0, ty) + eij, e~ N(0,02)

yij € R: response of individual i at time t; (observation).
@i € R: individual parameter, not observed.

1) € RY: fixed effects, unknown.

g: non-linear function with respect to ¢; (known).

2) Description of inter-individual variability:
i.id.
pi=p+"BVi+&, &~ N(O,?)

@ ;1 & [R: intercept, unknown.

o V; € RP: covariates for individual i (known).

e B="5,..., Bp) € RP covariate fixed effects vector, unknown.
Population parameters: () = (1, 3,1, 07, ?)
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High-dimensional covariate selection in NLMEM

% Goal: identify the non-zero components of .
% Specificity of the problem: p >> n

% Main difficulties:
@ High-dimensional variable selection:
» parsimonious estimation of /3
> regularised methods (LASSO-type, Tibshirani (1996))
> sparsity-inducing priors (Tadesse and Vannucci, 2021)
@ Non-explicit likelihood
» The ¢;'s are not observed (latent variables model)
> theoretical and algorithmic in LMEM (Schelldorfer et al., 2011)
» g is non-linear
> algorithmic only in NLMEM (Ollier, 2021)

Proposed approach

Association of a Bayesian spike-and-slab prior for variable selection with

a stochastic version of the EM algorithm, called MCMC-SAEM, for

inference.
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2. Methodology

e Prior specification
o Method
e Computation of the MAP
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Spike-and-slab prior for the coefficients of [

% Introduction of latent variables §,, 1 < /¢ < p:

5, = 1 if covariate £ is to be included in the model,
"= 0 otherwise.
% Spike-and-slab prior on 8 George and McCulloch (1997):
m(B]9) = Np(0, diag((1 — d¢)vo + de11)), 0 < 1o < 11 fixed,

i.e. B¢ are independent and:
@ Be|(6¢ = 0) ~ N(0,10): "spike" distribution, 1o small
@ Be|(6r = 1) ~ N(0,11): "slab" distribution, v large

Figure: Spike-and-slab prior. Source: Deshpande et al. (2019)
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Bayesian hierarchical model

% Observations: y = (y;)i,

% Parameters:

@ Fixed hyperparameters: vy, 11, ...
@ To be estimated: © = (0, «)

% Latent variables: Z = (¢, )

where ¢ = (¢;)i and § = (¢)e
8¢l ~ B(a)

B8 ~ Np(0; diag((1 — 6¢)vo + 6er1)) :
|Gaussia.n prior| |IQ pnor|

@il(1; B;T%) ~ N (n+ BV T?)

Yis | (1305 0%) ~ Ng(ps; ¢ ti5); 02)
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Proposed method

Idea: explore different levels of sparsity in 8 by varying the value of 1 in a grid A.

1. Creation of a model collection: for each vy € A,
» Compute © by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

aMAP
@l/()

= argmax 7(O|y)
(SIS

» Estimate § (Rotkova and George, 2014):
5 = argmax P(6|(:)%AP) such as §; = 1 <= P(6; = 1|(:)%AP) >05
5

<= Define /5\7,0 = {( e{l1,..., , P} ‘ [( )’%AP | > sg(vo, 1, (yMAP)}
2. Select the "best'" model among (/S\VO)VOGA by a fast criterion, eBIC (Chen and Chen,

2008):

Dy = argmin{ —2log (p(y;()%LE)) + By, X log(n) + 2log <<5’i0>> }
vpEA

with By,: number of free parameters in the model S, .

3. Return ?,90.
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Spike-and-slab regularisation plot
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A Regularisation plot B eBIC criterion
100
— e 13100
50 13000
Q
< - o
[
12900
0
128001
-50.
-5.0 25 0.0 25 5.C -5.0 -25 0.0 25 5.C
log(vo ) log(vo )

Figure: n = 200, J = 10, p = 500, '* = 200, o2 = 30, v1 = 12000, x = 1200,
8 = %(100,50,20,0,...,0)
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Computing the MAP in a latent variables model

% Let's go back to the first step of the proposed method:
» Compute the MAP estimator of ©

» Goal: maximise m(Oly) = [ 7(©, Z|y)dZ with

B P(y|©, 2)p(©, Z)
m(©,Zly) = Iz [ p(y1©, Z)p(©, Z)d6dzZ

» Non-explicit integral
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EM algorithm (Dempster et al., 1977)

1.
2.

Initialisation: choose ©9).

Iteration k > 0:
o E-step (Expectation): compute

Q(@|@(k)) = EZ|(y,e<k>) [|0g(7f(@» Z|}/))'y,@(k)] .

o M-step (Maximisation): compute

0+ = argmax Q(©|0W).
)

3. © =00 for K large enough.

AC)
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Specifics in Spike-and-Slab-NLMEM

% Decomposition of Q:
Q(O10W) =E(_ ), .0t [log(w(©, . 0y))ly, ©W]

=C+ Eg0|y.@(k) Ql (y7 2 97 e(k))'y/ e(k):| + 52((1{, @(k))
explici

non-explicit

% M-step:
» 0 and « estimated separately.

» & updated as in an EM algorithm with (NDQ(@,, o).

>0 updated via stochastic approximation of:

E#?\y,@(k) |:Ql (ya ¥, 07 e(k))‘y* e(k):| .

> SAEM (Delyon et al., 1999)
> MCMC-SAEM (Kuhn and Lavielle, 2004)
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3. Simulation study
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Logistic growth model

@ Size of plant i € {1,...,n} at time t;,

200

jE{l,...,lO}:
150 ii
Yij = g(@h"/]v tl'j) +¢€ij, €jj '\d'N(O7 02) where:
1
5 g((phwa t’j) = w £ o
1+ ex _t
: "( 02 )

1000 2000 3000
t

1 = (1)1, 12) fixed effects.
Figure: Simulated data

@ ;: characteristic time
o= p+ BVi+ &, &S N(0,T?)

0= (M?ﬂ/‘ba 027 r2)
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Simulation design

% Parameters:

@ n € {100,200} individuals,

@ p € {500,2000,5000} simulated covariates according to V; ~ N (0, X):
» Scenario i.i.d.: ¥ = Id » Correlated scenarios: ¥ # Id

e A= t(100,50,20,07 ..., 0) covariate fixed effects vector,

@ I € {200,1000,2000} inter-individual variance,

@ 1= 1200, 02 =30, v = (¢/1,2) = (200,300).

¢ Spike-and-slab hyperparameters:
@ 17 = 12000 slab variance,

0 log,o(A) = { -2+ kx 1i9,k € {0, ...,19}} grid of v values.

» For each combination of (n, p, ), the method is applied on 100
different simulated datasets.
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Results for independent covariates
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Figure: Empirical probability of correct model selection.

@ Results improve as n increases.

@ Degradation of results when p or I'? increases.

@ When the procedure fails, it is most often because it under-selects:
» "Cautious" approach, few false positives!
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4. Conclusion
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Conclusion and perspectives

AC)

¢ Summary:

@ Development of an original method that combines SAEM and
Bayesian variable selection.

@ Very encouraging numerical results on simulated data.
o Faster method than a full MCMC implementation.

= Preprint: Naveau and al. (2022). Bayesian high-dimensional
covariate selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv:2206.01012.

% Perspectives:
@ Provide theoretical guarantees: selection consistency.
@ Apply our method to a real dataset (in progress).

o Consider a multidimensional individual parameter.
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Thank you for your attention!
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MCMC-SAEM algorithm in SSNLMEM

1. Initialisation: choose ©”) and @; o(f) = 0,
2. lteration k > 0:

o S-step (Simulation): simulate ©“) using the result of one iteration of
an MCMC procedure with 7(p|y, ©%)) for target distribution,

o SA-step (Stochastic Approximation): compute
Quis1(0) = Qui(0) + (Qui(y, . 0,0%)) — Qui(8)),

and éz((r, o),
o M-step (Maximisation):

0V = argmax Q41 1(6) and o“FY) = argmax 52((}. ok,

0€ng agl0,1]

3. 6 =00, for K large enough,
where (v4)« a step sizes sequence decreasing towards 0 such that Vk,
Y €10,1], 3, 7k =00 and Y, 72 < oo.
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Results for uncorrelated covariates
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Correlated covariates V; ~ N (0, L)
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Results for py = 0.3
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Results for py = 0.6
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Comparison with an MCMC implementation

NB: fast C++
adaptive MCMC

log(y) =-3.9 + 1.8 log(p) (Nimble) versus R
code

1000
Method
MCMC
~ MCMC-SAEM
100

Time (in seconds)

10
500 1000 2000
p

@ Both methods have an execution time that grows polynomially with p.
@ The proposed inference method can browse grid of about 20 values of v
while adaptive MCMC explores a single value.
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