Bayesian high-dimensional variable selection in non-linear mixed-effects models using the SAEM algorithm

Marion Naveau^{1,2} M. Delattre², G. Kon Kam King², L. Sansonnet¹

¹Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay

 $^2 \mathrm{Universit\acute{e}}$ Paris-Saclay, INRAE, MaIAGE

Journées de Statistique 13 Juin 2022

	Methodology 0000000		References
Table of o	contents		

- 1. Introduction
- 2. Methodology
- 3. Simulation study
- 4. Conclusion

Introduction	Methodology			
●000	0000000	0000	000	

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP
- 3. Simulation study
- 4. Conclusion

Framework: repeated measurement data

* Mixed-effects models: analyse observations collected repeatedly on several individuals.

(m) event 150 400 800 Age (days) 1200 1600

Circumference of five orange trees

- Same overall behaviour but with individual variations.
- Non-linear growth.
- Are these variations due to known characteristics?
 - ► E.g.: growing conditions, genetic markers, ...

1) Description of intra-individual variability: For all $i \in \{1, ..., n\}$, $j \in \{1, ..., J\}$,

$$y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij}, \ \varepsilon_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$

- $y_{ij} \in \mathbb{R}$: response of individual *i* at time t_{ij} (observation).
- $\varphi_i \in \mathbb{R}$: individual parameter, **not observed**.
- $\psi \in \mathbb{R}^q$: fixed effects, unknown.
- g: non-linear function with respect to φ_i (known).

2) Description of inter-individual variability:

$$\varphi_i = \mu + {}^{\mathrm{t}}\beta V_i + \xi_i, \ \xi_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \Gamma^2)$$

- $\mu \in \mathbb{R}$: intercept, unknown.
- $V_i \in \mathbb{R}^p$: covariates for individual *i* (known).
- $\beta = {}^{t}(\beta_{1}, \dots, \beta_{p}) \in \mathbb{R}^{p}$ covariate fixed effects vector, unknown.

Population parameters: $\theta = (\mu, \beta, \psi, \sigma^2, \Gamma^2)$

Marion Naveau Bayesian high-dimensional variable selection in NLMEM

- Goal: identify the non-zero components of β .
- Specificity of the problem: p >> n
- Main difficulties:
 - High-dimensional variable selection:
 - \blacktriangleright parsimonious estimation of β
 - > regularised methods (LASSO-type, Tibshirani (1996))
 - > sparsity-inducing priors (Tadesse and Vannucci, 2021)
 - Non-explicit likelihood
 - The φ_i 's are not observed (latent variables model)

> theoretical and algorithmic in LMEM (Schelldorfer et al., 2011)

▶ g is non-linear

➤ algorithmic only in NLMEM (Ollier, 2021)

Proposed approach

Association of a Bayesian *spike-and-slab* prior for variable selection with a stochastic version of the EM algorithm, called MCMC-SAEM, for inference.

	Methodology			
0000	0000000	0000	000	

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP

3. Simulation study

4. Conclusion

♦ Introduction of latent variables δ_{ℓ} , $1 \leq \ell \leq p$:

 $\delta_\ell = \left\{ \begin{array}{ll} 1 & \text{if covariate } \ell \text{ is to be included in the model}, \\ 0 & \text{otherwise}. \end{array} \right.$

Spike-and-slab prior on β George and McCulloch (1997):

 $\pi(\beta|\delta) = \mathcal{N}_{\rho}(0, \operatorname{diag}((1 - \delta_{\ell})\nu_0 + \delta_{\ell}\nu_1)), \ 0 \leq \nu_0 < \nu_1 \ \operatorname{fixed},$

i.e. β_{ℓ} are independent and:

• $\beta_{\ell}|(\delta_{\ell}=0) \sim \mathcal{N}(0,\nu_0)$: "spike" distribution, ν_0 small

• $\beta_{\ell}|(\delta_{\ell}=1) \sim \mathcal{N}(0,\nu_1)$: "slab" distribution, ν_1 large

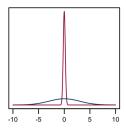
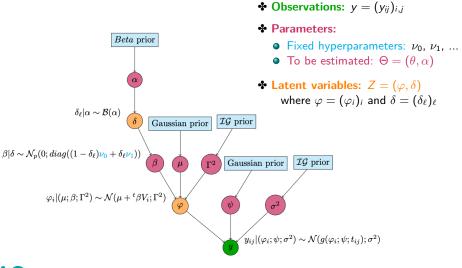


Figure: Spike-and-slab prior. Source: Deshpande et al. (2019) Marion Naveau Bayesian high-dimensional variable selection in NLMEM



AZ

Marion Naveau

Introduction	Methodology	Simulation study	Conclusion	
0000	○○○●○○○○	0000	000	
Proposed	method			

Idea: explore different levels of sparsity in β by varying the value of ν_0 in a grid Δ .

- 1. Creation of a model collection: for each $\nu_0 \in \Delta$,
 - Compute $\widehat{\Theta}$ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

 $\widehat{\Theta}_{
u_0}^{MAP} = \operatorname*{argmax}_{\substack{\Theta \in \Lambda}} \pi(\Theta|y)$

► Estimate
$$\hat{\delta}$$
 (Ročková and George, 2014):
 $\hat{\delta} = \underset{\delta}{\operatorname{argmax}} P(\delta|\hat{\Theta}_{\nu_0}^{MAP}) \text{ such as } \hat{\delta}_{\ell} = 1 \iff \mathbb{P}(\delta_{\ell} = 1|\hat{\Theta}_{\nu_0}^{MAP}) \ge 0.5$
 $\iff \operatorname{Define} \widehat{S}_{\nu_0} = \left\{ \ell \in \{1, \dots, p\} \mid |(\widehat{\beta}_{\nu_0}^{MAP})_{\ell}| \ge s_{\beta}(\nu_0, \nu_1, \widehat{\alpha}_{\nu_0}^{MAP}) \right\}$

2. Select the "best" model among $(\widehat{S}_{\nu_0})_{\nu_0 \in \Delta}$ by a fast criterion, eBIC (Chen and Chen, 2008):

$$\hat{\nu}_{0} = \operatorname*{argmin}_{\nu_{0} \in \Delta} \left\{ -2\log\left(p(y; \hat{\theta}_{\nu_{0}}^{MLE})\right) + B_{\nu_{0}} \times \log(n) + 2\log\left(\binom{p}{B_{\nu_{0}}}\right) \right\}$$

with B_{ν_0} : number of free parameters in the model \widehat{S}_{ν_0} .

3. Return $\widehat{S}_{\hat{\nu}_0}$.

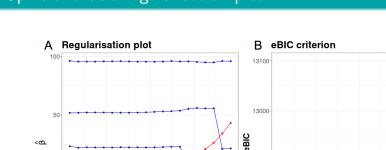


Figure: n = 200, J = 10, p = 500, $\Gamma^2 = 200$, $\sigma^2 = 30$, $\nu_1 = 12000$, $\mu = 1200$, $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$

5.0

12900

12800

-5.0

<ന

0

-504--5.0

 $log(v_0)$

-2.5

-2.5

 $log(v_0)$

5.0

2.5

✤ Let's go back to the first step of the proposed method:

- \blacktriangleright Compute the MAP estimator of Θ
- ▶ Goal: maximise $\pi(\Theta|y) = \int_{\mathcal{Z}} \pi(\Theta, Z|y) dZ$ with

$$\pi(\Theta, Z|y) = \frac{p(y|\Theta, Z)p(\Theta, Z)}{\int_{\mathcal{Z}} \int_{\Lambda} p(y|\Theta, Z)p(\Theta, Z)d\Theta dZ}$$

Non-explicit integral

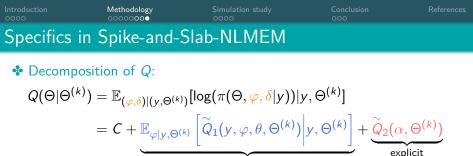
- 1. Initialisation: choose $\Theta^{(0)}$.
- 2. Iteration $k \ge 0$:
 - E-step (Expectation): compute

$$Q(\Theta|\Theta^{(k)}) = \mathbb{E}_{Z|(y,\Theta^{(k)})} \left[\log(\pi(\Theta, Z|y)) \middle| y, \Theta^{(k)} \right].$$

• M-step (Maximisation): compute

$$\Theta^{(k+1)} = \underset{\Theta \in \Lambda}{\operatorname{argmax}} \ Q(\Theta | \Theta^{(k)}).$$

3. $\hat{\Theta} = \Theta^{(K)}$, for K large enough.



non-explicit

explicit

M-step:

- $\blacktriangleright \theta$ and α estimated separately.
- $\blacktriangleright \hat{\alpha}$ updated as in an EM algorithm with $Q_2(\alpha, \Theta^{(k)})$.
- $\blacktriangleright \hat{\theta}$ updated via stochastic approximation of:

$$\mathbb{E}_{\varphi|y,\Theta^{(k)}}\left[\left.\widetilde{Q}_1(y,\varphi,\theta,\Theta^{(k)})\right|y,\Theta^{(k)}\right]$$

SAEM (Delyon et al., 1999) MCMC-SAEM (Kuhn and Lavielle, 2004)

Marion Naveau

	Methodology	Simulation study		
0000	0000000	0000	000	i

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP

3. Simulation study

4. Conclusion

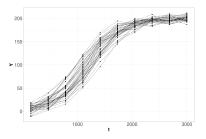


Figure: Simulated data

• Size of plant $i \in \{1, ..., n\}$ at time t_{ij} , $j \in \{1, ..., 10\}$: $y_{ij} = g(\varphi_i, \psi, t_{ij}) + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ where:

$$g(arphi_i,\psi,t_{ij}) = rac{\psi_1}{1+\exp\left(-rac{t_{ij}-arphi_i}{\psi_2}
ight)}$$

 $\psi = (\psi_1, \psi_2)$ fixed effects.

• φ_i : characteristic time $\varphi_i = \mu + {}^{t}\beta V_i + \xi_i, \ \xi_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \Gamma^2)$

$$\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\beta}, \boldsymbol{\psi}, \sigma^2, \boldsymbol{\Gamma}^2)$$

Marion Naveau

	Methodology 0000000	Simulation study 00●0	References
Simulatio	n design		

Parameters:

- $n \in \{100, 200\}$ individuals,
- $p \in \{500, 2000, 5000\}$ simulated covariates according to $V_i \sim \mathcal{N}(0, \Sigma)$:
 - ► Scenario i.i.d.: $\Sigma = Id$ ► Correlated scenarios: $\Sigma \neq Id$
- $\beta = {}^{t}(100, 50, 20, 0, \dots, 0)$ covariate fixed effects vector,
- $\Gamma^2 \in \{200, 1000, 2000\}$ inter-individual variance,
- $\mu = 1200$, $\sigma^2 = 30$, $\psi = (\psi_1, \psi_2) = (200, 300)$.

* Spike-and-slab hyperparameters:

• $\nu_1 = 12000$ slab variance,

•
$$\log_{10}(\Delta) = \left\{ -2 + k imes rac{4}{19}, k \in \{0, \dots, 19\} \right\}$$
 grid of u_0 values.

► For each combination of (n, p, Γ^2) , the method is applied on 100 different simulated datasets.

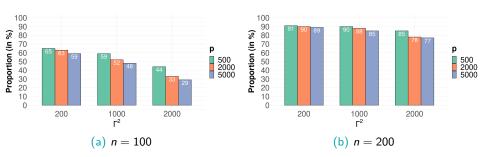


Figure: Empirical probability of correct model selection.

- Results improve as *n* increases.
- Degradation of results when p or Γ^2 increases.
- When the procedure fails, it is most often because it under-selects:
 - ► "Cautious" approach, few false positives!

0000 0000000 0000 0000	r i i i i i i i i i i i i i i i i i i i

1. Introduction

2. Methodology

- Prior specification
- Method
- Computation of the MAP

3. Simulation study

4. Conclusion

Summary:

- Development of an original method that combines SAEM and Bayesian variable selection.
- Very encouraging numerical results on simulated data.
- Faster method than a full MCMC implementation.

 \Rightarrow **Preprint:** Naveau and al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. <u>arXiv:2206.01012</u>.

Perspectives:

- Provide theoretical guarantees: selection consistency.
- Apply our method to a real dataset (in progress).
- Consider a multidimensional individual parameter.

Methodology 0000000	Conclusion ○○●	References

Thank you for your attention!

Introduction	Methodology	Simulation study	Conclusion	References
0000	0000000	0000	000	
References				

- Chen, J. and Chen, Z. (2008). Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3):759–771.
- Delyon, B., Lavielle, M., and Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. Annals of statistics, pages 94–128.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22.
- Deshpande, S. K., Ročková, V., and George, E. I. (2019). Simultaneous variable and covariance selection with the multivariate spike-and-slab lasso. *Journal of Computational and Graphical Statistics*, 28(4):921–931.
- George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection. *Statistica sinica*, pages 339–373.
- Kuhn, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of em with an mcmc procedure. ESAIM: Probability and Statistics, 8:115–131.
- Ollier, E. (2021). Fast selection of nonlinear mixed effect models using penalized likelihood. arXiv preprint arXiv:2103.01621.
- Ročková, V. and George, E. I. (2014). Emvs: The em approach to bayesian variable selection. Journal of the American Statistical Association, 109(506):828–846.
- Schelldorfer, J., Bühlmann, P., and DE GEER, S. V. (2011). Estimation for high-dimensional linear mixed-effects models using 1-penalization. Scandinavian Journal of Statistics, 38(2):197–214.
- Tadesse, M. G. and Vannucci, M. (2021). Handbook of bayesian variable selection.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

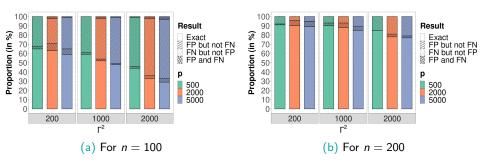
- 1. Initialisation: choose $\Theta^{(0)}$ and $Q_{1,0}(\theta) = 0$,
- 2. Iteration $k \ge 0$:
 - S-step (Simulation): simulate φ^(k) using the result of one iteration of an MCMC procedure with π(φ|y, Θ^(k)) for target distribution,
 - SA-step (Stochastic Approximation): compute

 $Q_{1,k+1}(\theta) = Q_{1,k}(\theta) + \gamma_k (\widetilde{Q}_1(y,\varphi^{(k)},\theta,\Theta^{(k)}) - Q_{1,k}(\theta)),$

and $Q_2(\alpha, \Theta^{(k)})$, • M-step (Maximisation):

$$\theta^{(k+1)} = \underset{\theta \in \Lambda_{\theta}}{\operatorname{argmax}} \ Q_{1,k+1}(\theta) \text{ and } \alpha^{(k+1)} = \underset{\alpha \in [0,1]}{\operatorname{argmax}} \ \tilde{Q}_{2}(\alpha, \Theta^{(k)}),$$

3. $\hat{\Theta} = \Theta^{(K)}$, for K large enough, where $(\gamma_k)_k$ a step sizes sequence decreasing towards 0 such that $\forall k$, $\gamma_k \in [0, 1]$, $\sum_k \gamma_k = \infty$ and $\sum_k \gamma_k^2 < \infty$.



	Methodology 0000000		References
C 1.	1		

Correlated covariates $V_i \sim \mathcal{N}(0, \Sigma)$

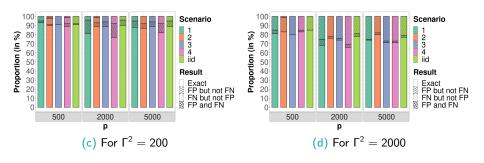
Scenario	Σ
iid	I_p
1	$\left(\begin{array}{c c c} I_3 & 0_{3,p-3} \\ \hline 0_{p-3,3} & (\rho_{\Sigma}^{ i-j })_{i,j\in\{4,\dots,p\}} \end{array}\right)$
2	$\left(\begin{array}{c c} I_3 & A \\ \hline & I_{A} & I_{p-3} \end{array}\right), \text{ with } A = \left(\begin{array}{cccc} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & & (\rho_{\Sigma}^{ 3-j })_{j \in \{4,\dots,p\}} \end{array}\right)$
3	$\begin{pmatrix} (\rho_{\Sigma}^{ i-j })_{i,j\in\{1,,3\}} & 0_{3,p-3} \\ \hline & 0_{p-3,3} & I_{p-3} \end{pmatrix}$
4	$(ho_{\Sigma}^{ i-j })_{i,j\in\{1,,p\}}$

Introduction 0000 ethodology 2000000 Simulation study

Conclusion

References

Results for $\rho_{\Sigma} = 0.3$

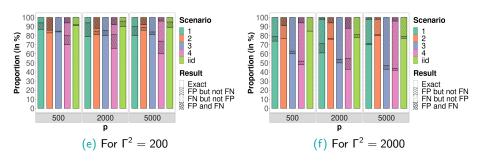


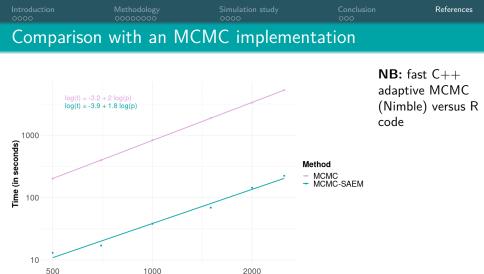
Introduction 0000 ethodology 0000000 Simulation study

Conclusion

References

Results for $\rho_{\Sigma} = 0.6$





- Both methods have an execution time that grows polynomially with *p*.
- The proposed inference method can browse grid of about 20 values of ν_0 while adaptive MCMC explores a single value.