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Framework: repeated measurement data ✤ Mixed-effects models: analyse observations collected repeatedly on several individuals.

✤ Same overall behaviour but with individual variations. ✤ Non-linear growth. ✤ Are these variations due to known characteristics? ▶ E.g.:

Non-linear mixed-effects model (NLMEM)

1) Description of intra-individual variability: For all i ∈ {1, . . . , n}, j ∈ {1, . . . , J},

y ij = g(φ i , ψ, t ij ) + ε ij , ε ij i.i.d.
∼ N (0, σ 2 ) (observation). φ i ∈ R: individual parameter, not observed. ψ ∈ R q : fixed effects, unknown. g: non-linear function with respect to φ i (known).

y ij ∈ R: response of individual i at time t ij
2) Description of inter-individual variability:

φ i = µ + t βV i + ξ i , ξ i i.i.d.
∼ N (0, Γ 2 ) µ ∈ R: intercept, unknown.

V i ∈ R p : covariates for individual i (known). β = t (β 1 , . . . , βp) ∈ R p covariate fixed effects vector, unknown.

Population parameters: θ = (µ, β, ψ, σ 2 , Γ 

Variable selection

✤ Aim: identify the most relevant covariates to characterise inter-individual variability.

✤ Active/Non-active covariates: covariates that are actually influential/non-influential for the characteristic under consideration.

✤ Description of inter-individual variability:

φ i = µ + t βV i + ξ i , ξ i i.i.d.
∼ N (0, Γ 2 ) 

β ℓ =
i ; θ)p(φ i ; θ)dφ i = C σ 2 ,Γ 2 n i=1 exp - J j=1 (y ij -g(φ i , ψ, t ij )) 2 2σ 2 - (φ i -µ - t βV i ) 2 2Γ 2 dφ i
State of the art for high-dimensional variable selection in mixed-effects models ✤ Frequentist framework: LMEM: both theoretical results and algorithmic developments for regularised methods [START_REF] Schelldorfer | Estimation for high-dimensional linear mixed-effects models using 1-penalization[END_REF][START_REF] Fan | Variable selection in linear mixed effects models[END_REF]. NLMEM: algorithmic contribution [START_REF] Ollier | Fast selection of nonlinear mixed effect models using penalized likelihood[END_REF]. ✤ Bayesian framework:

Linear regression (without random effects): y i = α + t βX i + ϵ i theoretical and algorithmic developments using various sparsity-inducing priors (cf book [START_REF] Tadesse | Handbook of bayesian variable selection[END_REF]). NLMEM: [START_REF] Lee | Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications[END_REF] advocated the Bayesian approach for this model but this is only a review, without implementation, does not focus on the high-dimension.

Proposed approach

Association of a Bayesian spike-and-slab prior for variable selection with a stochastic version of the EM algorithm, called MCMC-SAEM, for inference. 

δ ℓ = 1 if covariate ℓ is to be included in the model, 0 otherwise.
✤ Spike-and-slab prior on β [START_REF] George | Approaches for bayesian variable selection[END_REF]:

π(β|δ) = Np(0, diag((1 -δ ℓ )ν0 + δ ℓ ν1)), 0 ≤ ν0 < ν1 fixed,
i.e. β ℓ are independent and: 

β ℓ |(δ ℓ = 0) ∼ N (0,

Proposed method

Idea: explore different levels of sparsity in β by varying the value of ν 0 in a grid ∆.

1. Creation of a model collection: for each ν 0 ∈ ∆, ▶ Compute Θ by a MCMC-SAEM algorithm [START_REF] Kuhn | Coupling a stochastic approximation version of em with an mcmc procedure[END_REF]:

Θ MAP ν 0 = argmax Θ∈Λ π(Θ|y )
▶ Estimate δ [START_REF] Ročková | Emvs: The em approach to bayesian variable selection[END_REF]: (k) ) according to:

δ = argmax δ P(δ| ΘMAP ν 0 ) such as δℓ = 1 ⇐⇒ P(δ ℓ = 1| ΘMAP ν 0 ) ≥ 0.5 ⇐⇒ Define Sν 0 = ℓ ∈ {1, . . . , p} |( β MAP ν 0 ) ℓ | ≥ s β (ν 0 , ν 1 , α MAP ν 0 ) 2 
Q k+1 (Θ) = Q k (Θ) + γ k (log π(Θ, Z (k) |y ) -Q k (Θ)), M-step (Maximisation): compute Θ (k+1) = argmax Θ∈Λ Q k+1 (Θ), 3. Θ = Θ (K ) , for K large enough,
where (γ k ) k a step sizes sequence decreasing towards 0 such that ∀k, Specifics in Spike-and-Slab-NLMEM

γ k ∈ [0, 1], k γ k = ∞ and k γ 2 k < ∞.
✤ Decomposition of Q: Q(Θ|Θ (k) ) = E (φ,δ)|(y ,Θ (k) ) [log(π(Θ, φ, δ|y ))|y , Θ (k) ] = C + E φ|y ,Θ (k) ∼ Q 1 (y , φ, θ, Θ (k) ) y , Θ (k) non-explicit + ∼ Q 2 (α, Θ (k) ) explicit ✤ M-step:
▶ θ and α estimated separately.

▶ α updated as in an EM algorithm with

∼ Q 2 (α, Θ (k) ).
▶ θ updated via stochastic approximation of:

E φ|y ,Θ (k) ∼ Q 1 (y , φ, θ, Θ (k) ) y , Θ (k) .
MCMC-SAEM algorithm in SSNLMEM 1. Initialisation: choose Θ (0) and Q 1,0 (θ) = 0, 2. Iteration k ≥ 0: S-step (Simulation): simulate φ (k) using the result of one iteration of an MCMC procedure with π(φ|y , Θ (k) ) for target distribution, SA-step (Stochastic Approximation): compute

Q 1,k+1 (θ) = Q 1,k (θ) + γ k ( ∼ Q 1 (y , φ (k) , θ, Θ (k) ) -Q 1,k (θ)),
and

∼ Q 2 (α, Θ (k)
), M-step (Maximisation):

θ (k+1) = argmax θ∈Λ θ Q 1,k+1 (θ) and α (k+1) = argmax α∈[0,1] ∼ Q 2 (α, Θ (k) ),
3. Θ = Θ (K ) , for K large enough, where (γ k ) k a step sizes sequence decreasing towards 0 such that ∀k, ✤ Spike-and-slab hyperparameters:

γ k ∈ [0, 1], k γ k = ∞ and k γ 2 k < ∞.

Conclusion

ν 1 = 12000 slab variance, log 10 (∆) = -2 + k × 4 19 , k ∈ {0, . . . , 19} grid of ν 0 values.
▶ For each combination of (n, p, Γ 2 ), the method is applied on 100 different simulated datasets.

Results for independent covariates ✤ Varieties respond differently to stress: for example, some of them tolerate stress better and senescence is delayed.

✤ Aim: select molecular markers, from among p = 34838 markers, which could be associated with this tolerance.

     y ij = g(ϕ i , t ij ) + ε ij , ε ij i.i.d.
∼ N (0, σ 2 ), with

ϕ i = (φ i , ψ i ) ∈ R 2 φ i = µ + t λv i + t βV i + ξ i , ξ i i.i.d.
∼ N (0, Γ 2 )

ψ i = η + ω i , ω i i.i.d.
∼ N (0, Ω 2 ) where:

g(ϕ i , t ij ) = 100 1 + exp - t ij -φ i ψ i
, v i : covariates not subject to selection, allows the inclusion of sub-populations in the model, V i : molecular markers, subject to selection, which contains QTLs identified by biologists and markers associated with heading date which is highly correlated with φ i .

θ = (µ, λ, β, η, σ 2 , Γ 2 , Ω 2 )
Data processing ✤ p >> n: ultra-high dimensional problem.

✤ Molecular markers =⇒ strong correlations/collinearity between covariates.

✤ Covariates have few modalities:

✤ With "too many" 0's or "too many" 1's for some covariates, we remove: markers filled in the same way for all individuals, markers entered as the exact opposite of another marker (marker1=1-marker2). markers whose minimum and maximum modalities are not represented at least 10 times. markers that have a correlation > 0.7. p = 6164

Results

Selected support size: 20 Number of covariates selected at least once along the grid: 90 "Peak" structure could be explained by correlations between the covariates. 

Conclusion and perspectives

✤ Summary:

Development of an original method that combines SAEM and Bayesian variable selection.

Very encouraging numerical results on simulated data.

Faster method than a full MCMC implementation.

⇒ Preprint: Naveau and al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM algorithm. arXiv:2206.01012.

✤ Perspectives:

Provide theoretical guarantees: selection consistency.

Apply our method to a real dataset (in progress).

Consider a multidimensional individual parameter. 

Specifics in

  0 ⇐⇒ covariate ℓ has no effect on parameter φ i β ℓ ̸ = 0 ⇐⇒ covariate ℓ gives some information on parameter φ i covariate selection in NLMEM ✤ Goal: identify the non-zero components of β. ✤ Specificity of the problem: p >> n ✤ Main difficulties: High-dimensional variable selection: ▶ parsimonious estimation of β Non-explicit likelihood ▶ The φ i 's are not observed (latent variables model) ▶ g is non-linear p(y ; θ) = p(y |φ; θ)p(φ; θ)dφ = n i=1 p(y i |φ

  -slab prior for the coefficients of β ✤ Introduction of latent variables δ ℓ , 1 ≤ ℓ ≤ p:

  Figure: Spike-and-slab prior. Source: Deshpande et al. (2019)

.

  Figure: n = 200, J = 10, p = 500, Γ 2 = 200, σ 2 = 30, ν1 = 12000, µ = 1200, β = t (100, 50, 20, 0, . . . , 0)

Figure :

 : Figure: Simulated data

✤✤

  Figure: Empirical probability of correct model selection.

  Spike-and-Slab-NLMEM✤ Decomposition of Q: Q(Θ|Θ (k) ) = E (φ,δ)|(y ,Θ (k) ) [log(π(Θ, φ, δ|y ))|y , Θ (k) ] = E φ|(y ,Θ (k) ) E δ|(φ,y ,Θ (k) ) log(π(Θ, φ, δ|y ))|φ, y , Θ (k) y , Θ (k) = E φ|(y ,Θ (k) ) ∼ Q(y , φ, Θ, Θ (k) ) y , Θ (k) = C + E φ|y ,Θ (k) ∼ Q 1 (y , φ, θ, Θ (k) ) y , Θ (k) 
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Comparison with an MCMC implementation NB: fast C++ adaptive MCMC (Nimble) versus R code Both methods have an execution time that grows polynomially with p. The proposed inference method can browse grid of about 20 values of ν 0 while adaptive MCMC explores a single value.