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Framework: repeated measurement data
✤ Mixed-effects models: analyse observations collected repeatedly on
several individuals.

✤ Same overall behaviour but with individual variations.
✤ Non-linear growth.
✤ Are these variations due to known characteristics?

▶ E.g.: growing conditions, genetic markers, ...
Marion Naveau Bayesian high-dimensional variable selection in NLMEM 4 / 34
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Non-linear mixed-effects model (NLMEM)
1) Description of intra-individual variability:

For all i ∈ {1, . . . , n}, j ∈ {1, . . . , J},

yij = g(φi , ψ, tij ) + εij , εij
i.i.d.∼ N (0, σ2)

yij ∈ R: response of individual i at time tij (observation).
φi ∈ R: individual parameter, not observed.
ψ ∈ Rq : fixed effects, unknown.
g : non-linear function with respect to φi (known).

2) Description of inter-individual variability:

φi = µ+ tβVi + ξi , ξi
i.i.d.∼ N (0, Γ2)

µ ∈ R: intercept, unknown.
Vi ∈ Rp : covariates for individual i (known).
β = t(β1, . . . , βp) ∈ Rp covariate fixed effects vector, unknown.

Population parameters: θ = (µ, β, ψ, σ2, Γ2)
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Variable selection
✤ Aim: identify the most relevant covariates to characterise inter-individual
variability.

✤ Active/Non-active covariates: covariates that are actually
influential/non-influential for the characteristic under consideration.

✤ Description of inter-individual variability:

φi = µ+ t
βVi + ξi , ξi

i.i.d.∼ N (0, Γ2)

βℓ = 0 ⇐⇒ covariate ℓ has no effect on parameter φi
βℓ ̸= 0 ⇐⇒ covariate ℓ gives some information on parameter φi

✤ Model selection: variable selection ⇐⇒ model selection among all the
possible supports of β:

Sβ =
{
ℓ ∈ {1, . . . , p}

∣∣∣∣βℓ ̸= 0
}
.
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High-dimensional covariate selection in NLMEM
✤ Goal: identify the non-zero components of β.

✤ Specificity of the problem: p >> n

✤ Main difficulties:
High-dimensional variable selection:

▶ parsimonious estimation of β
Non-explicit likelihood

▶ The φi ’s are not observed (latent variables model)
▶ g is non-linear

p(y ; θ) =
∫

p(y |φ; θ)p(φ; θ)dφ =
n∏

i=1

∫
p(yi |φi ; θ)p(φi ; θ)dφi

= Cσ2,Γ2

n∏
i=1

∫
exp

(
−

J∑
j=1

(yij − g(φi , ψ, tij))2

2σ2 −
(φi − µ− t

βVi)2

2Γ2

)
dφi
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State of the art for high-dimensional variable selection in
mixed-effects models

✤ Frequentist framework:
LMEM: both theoretical results and algorithmic developments for
regularised methods (Schelldorfer et al., 2011; Fan and Li, 2012).
NLMEM: algorithmic contribution (Ollier, 2021).

✤ Bayesian framework:
Linear regression (without random effects): yi = α+ t

βXi + ϵi
theoretical and algorithmic developments using various
sparsity-inducing priors (cf book Tadesse and Vannucci (2021)).
NLMEM: (Lee, 2022) advocated the Bayesian approach for this model
but this is only a review, without implementation, does not focus on the
high-dimension.

Proposed approach
Association of a Bayesian spike-and-slab prior for variable selection with
a stochastic version of the EM algorithm, called MCMC-SAEM, for
inference.
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Spike-and-slab prior for the coefficients of β

✤ Introduction of latent variables δℓ, 1 ≤ ℓ ≤ p:

δℓ =
{

1 if covariate ℓ is to be included in the model,
0 otherwise.

✤ Spike-and-slab prior on β (George and McCulloch, 1997):
π(β|δ) = Np(0, diag((1 − δℓ)ν0 + δℓν1)), 0 ≤ ν0 < ν1 fixed,

i.e. βℓ are independent and:
βℓ|(δℓ = 0) ∼ N (0, ν0): "spike" distribution, ν0 small
βℓ|(δℓ = 1) ∼ N (0, ν1): "slab" distribution, ν1 large

Figure: Spike-and-slab prior. Source: Deshpande et al. (2019)
Marion Naveau Bayesian high-dimensional variable selection in NLMEM 10 / 34
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Bayesian hierarchical model

✤ Observations: y = (yij)i,j

✤ Parameters:
Fixed hyperparameters: ν0, ν1, ...
To be estimated: Θ = (θ, α)

✤ Latent variables: Z = (φ, δ)
where φ = (φi )i and δ = (δℓ)ℓ
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Proposed method
Idea: explore different levels of sparsity in β by varying the value of ν0 in a grid ∆.

1. Creation of a model collection: for each ν0 ∈ ∆,
▶ Compute Θ̂ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

Θ̂MAP
ν0 = argmax

Θ∈Λ
π(Θ|y)

▶ Estimate δ̂ (Ročková and George, 2014):
δ̂ = argmax

δ

P(δ|Θ̂MAP
ν0 ) such as δ̂ℓ = 1 ⇐⇒ P(δℓ = 1|Θ̂MAP

ν0 ) ≥ 0.5

⇐⇒ Define Ŝν0 =
{
ℓ ∈ {1, . . . , p}

∣∣∣ |(β̂MAP
ν0 )ℓ| ≥ sβ(ν0, ν1, α̂MAP

ν0 )
}

2. Select the "best" model among (Ŝν0 )ν0∈∆ by a fast criterion, eBIC (Chen and Chen,
2008):

ν̂0 = argmin
ν0∈∆

{
− 2 log

(
p(y ; θ̂MLE

ν0 )
)

+ Bν0 × log(n) + 2 log
(( p

Bν0

))}
with Bν0 : number of free parameters in the model Ŝν0 .

3. Return Ŝν̂0 .
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Spike-and-slab regularisation plot

Figure: n = 200, J = 10, p = 500, Γ2 = 200, σ2 = 30, ν1 = 12000, µ = 1200,
β = t(100, 50, 20, 0, . . . , 0)
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Computing the MAP in a latent variables model

✤ Let’s go back to the first step of the proposed method:

▶ Compute the MAP estimator of Θ

▶ Goal: maximise π(Θ|y) =
∫

Z π(Θ,Z |y)dZ with

π(Θ,Z |y) = p(y |Θ,Z )p(Θ,Z )∫
Z
∫

Λ p(y |Θ,Z )p(Θ,Z )dΘdZ

▶ Non-explicit integral

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 14 / 34
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EM algorithm

Reference: Dempster et al. (1977)

1. Initialisation: choose Θ(0).
2. Iteration k ≥ 0:

E-step (Expectation): compute

Q(Θ|Θ(k)) = EZ |(y ,Θ(k))

[
log(π(Θ,Z |y))

∣∣∣∣y ,Θ(k)
]
.

M-step (Maximisation): compute

Θ(k+1) = argmax
Θ∈Λ

Q(Θ|Θ(k)).

3. Θ̂ = Θ(K), for K large enough.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 15 / 34
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SAEM and MCMC-SAEM algorithms
References: Delyon et al. (1999), Kuhn and Lavielle (2004)

1. Initialisation: choose Θ(0) and Q0(Θ) = 0,
2. Iteration k ≥ 0:

S-step (Simulation): simulate Z (k) using the result of one iteration of
an MCMC procedure with π(Z |y ,Θ(k)) for target distribution,

SA-step (Stochastic Approximation): compute an approximation
of Q(Θ|Θ(k)) according to:

Qk+1(Θ) = Qk(Θ) + γk(log π(Θ,Z (k)|y) − Qk(Θ)),
M-step (Maximisation): compute

Θ(k+1) = argmax
Θ∈Λ

Qk+1(Θ),

3. Θ̂ = Θ(K), for K large enough,

where (γk)k a step sizes sequence decreasing towards 0 such that ∀k,
γk ∈ [0, 1],

∑
k γk = ∞ and

∑
k γ

2
k < ∞.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 16 / 34
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Specifics in Spike-and-Slab-NLMEM

✤ Decomposition of Q:

Q(Θ|Θ(k)) = E(φ,δ)|(y ,Θ(k))[log(π(Θ, φ, δ|y))|y ,Θ(k)]

= C + Eφ|y ,Θ(k)

[∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

︸ ︷︷ ︸
non-explicit

+
∼
Q2(α,Θ(k))︸ ︷︷ ︸

explicit

✤ M-step:
▶ θ and α estimated separately.

▶ α̂ updated as in an EM algorithm with
∼
Q2(α,Θ(k)).

▶ θ̂ updated via stochastic approximation of:

Eφ|y ,Θ(k)

[
∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]
.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 17 / 34
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MCMC-SAEM algorithm in SSNLMEM
1. Initialisation: choose Θ(0) and Q1,0(θ) = 0,
2. Iteration k ≥ 0:

S-step (Simulation): simulate φ(k) using the result of one iteration
of an MCMC procedure with π(φ|y ,Θ(k)) for target distribution,
SA-step (Stochastic Approximation): compute

Q1,k+1(θ) = Q1,k(θ) + γk(
∼
Q1(y , φ(k), θ,Θ(k)) − Q1,k(θ)),

and
∼
Q2(α,Θ(k)),

M-step (Maximisation):

θ(k+1) = argmax
θ∈Λθ

Q1,k+1(θ) and α(k+1) = argmax
α∈[0,1]

∼
Q2(α,Θ(k)),

3. Θ̂ = Θ(K), for K large enough,
where (γk)k a step sizes sequence decreasing towards 0 such that ∀k,
γk ∈ [0, 1],

∑
k γk = ∞ and

∑
k γ

2
k < ∞.
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Convergence graphs
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Logistic growth model

Figure: Simulated data

Size of plant i ∈ {1, . . . , n} at time tij ,
j ∈ {1, . . . , 10}:
yij = g(φi , ψ, tij) + εij , εij

iid∼ N (0, σ2) where:

g(φi , ψ, tij) = ψ1

1 + exp
(

− tij − φi

ψ2

)
ψ = (ψ1, ψ2) fixed effects.

φi : characteristic time
φi = µ+ tβVi + ξi , ξi

iid∼ N (0, Γ2)

θ = (µ, β, ψ, σ2, Γ2)
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Simulation design

✤ Parameters:
n ∈ {100, 200} individuals,
p ∈ {500, 2000, 5000} simulated covariates according to Vi ∼ N (0,Σ):

▶ Scenario i.i.d.: Σ = Id ▶ Correlated scenarios: Σ ̸= Id
β = t(100, 50, 20, 0, . . . , 0) covariate fixed effects vector,
Γ2 ∈ {200, 1000, 2000} inter-individual variance,
µ = 1200, σ2 = 30, ψ = (ψ1, ψ2) = (200, 300).

✤ Spike-and-slab hyperparameters:
ν1 = 12000 slab variance,
log10(∆) =

{
− 2 + k × 4

19 , k ∈ {0, . . . , 19}
}

grid of ν0 values.

▶ For each combination of (n, p, Γ2), the method is applied on 100
different simulated datasets.
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Results for independent covariates

(a) n = 100 (b) n = 200

Figure: Empirical probability of correct model selection.
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Summary of the results

✤ Uncorrelated covariates Vi ∼ N (0, Ip):
Results improve as n increases.
Degradation of results when p or Γ2 increases.
When the procedure fails, it is most often because it under-selects:

▶ "Cautious" approach, few false positives!

✤ Correlated covariates Vi ∼ N (0,Σ):
Fairly similar good performance.
More false positives and/or false negatives in some correlation
scenarios:

▶ + false positives: correlations between active and non-active
covariates.

▶ + false negatives: correlated active covariates.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 24 / 34
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Comparison with an MCMC implementation

NB: fast C++
adaptive MCMC
(Nimble) versus R
code

Both methods have an execution time that grows polynomially with p.
The proposed inference method can browse grid of about 20 values of ν0
while adaptive MCMC explores a single value.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 25 / 34
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Presentation of the dataset

✤ Wheat leaf senescence data.

✤ Panel: n = 216 soft wheat varieties subjected to nitrogen stress,
observed J = 18 times.

✤ Varieties respond differently to stress: for example, some of them
tolerate stress better and senescence is delayed.

✤ Aim: select molecular markers, from among p = 34838 markers,
which could be associated with this tolerance.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 27 / 34
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Data representation: percentage of desiccated leaves

=⇒ Logistic growth
Marion Naveau Bayesian high-dimensional variable selection in NLMEM 28 / 34
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Modelling


yij = g(ϕi , tij) + εij , εij

i.i.d.∼ N (0, σ2),with ϕi = (φi , ψi) ∈ R2

φi = µ+ t
λvi + t

βVi + ξi , ξi
i.i.d.∼ N (0, Γ2)

ψi = η + ωi , ωi
i.i.d.∼ N (0,Ω2)

where:

g(ϕi , tij) = 100

1 + exp
(

− tij − φi
ψi

) ,

vi : covariates not subject to selection, allows the inclusion of
sub-populations in the model,
Vi : molecular markers, subject to selection, which contains QTLs
identified by biologists and markers associated with heading date
which is highly correlated with φi .

θ = (µ, λ, β, η, σ2, Γ2,Ω2)
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Data processing
✤ p >> n: ultra-high dimensional problem.

✤ Molecular markers =⇒ strong correlations/collinearity between covariates.

✤ Covariates have few modalities:

✤ With "too many" 0’s or "too many" 1’s for some covariates, we remove:
markers filled in the same way for all individuals,
markers entered as the exact opposite of another marker
(marker1=1-marker2).
markers whose minimum and maximum modalities are not represented at
least 10 times.
markers that have a correlation > 0.7.

p = 6164
Marion Naveau Bayesian high-dimensional variable selection in NLMEM 30 / 34
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Results

Selected support size: 20
Number of covariates selected at least once along the grid: 90
"Peak" structure could be explained by correlations between the covariates.

Marion Naveau Bayesian high-dimensional variable selection in NLMEM 31 / 34
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Conclusion and perspectives
✤ Summary:

Development of an original method that combines SAEM and
Bayesian variable selection.
Very encouraging numerical results on simulated data.
Faster method than a full MCMC implementation.

⇒ Preprint: Naveau and al. (2022). Bayesian high-dimensional
covariate selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv:2206.01012.

✤ Perspectives:
Provide theoretical guarantees: selection consistency.
Apply our method to a real dataset (in progress).
Consider a multidimensional individual parameter.
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Thanks for your attention!
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Specifics in Spike-and-Slab-NLMEM

✤ Decomposition of Q:

Q(Θ|Θ(k)) = E(φ,δ)|(y ,Θ(k))[log(π(Θ, φ, δ|y))|y ,Θ(k)]

= Eφ|(y ,Θ(k))

[
Eδ|(φ,y ,Θ(k))

[
log(π(Θ, φ, δ|y))|φ, y ,Θ(k)

]∣∣∣∣y ,Θ(k)
]

= Eφ|(y ,Θ(k))

[∼
Q(y , φ,Θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

= C + Eφ|y ,Θ(k)

[∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

︸ ︷︷ ︸
non-explicit

+
∼
Q2(α,Θ(k))︸ ︷︷ ︸

explicit
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Results for uncorrelated covariates

(a) For n = 100 (b) For n = 200
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Correlated covariates Vi ∼ N (0, Σ)
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Results for ρΣ = 0.3

(c) For Γ2 = 200 (d) For Γ2 = 2000
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Results for ρΣ = 0.6

(e) For Γ2 = 200 (f) For Γ2 = 2000
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