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-Introduction

Mixed-effects models:

• Analyse observations collected repeatedly on several individuals.

• Individuals with the same overall behaviour but with individual variations.

• Different sources of variability: intra-individual, inter-individual, residual.

Fields of application: pharmacokinetics, biological growth, ...

Variable selection:

• Inter-individual variability may be explained by some among a very large number of covariates (e.g. genomic data).

• High-dimensional context: focus on the few most relevant covariates through a variable selection procedure.

-Non-linear mixed-effects model (NLMEM)

For i ∈ {1, . . . , n} and j ∈ {1, . . . , J}, denoting y ij the response of individual i at time t ij and V i the p covariates measured on individual i, with p >> n:

y ij = g(φ i , ψ, t ij ) + ε ij , ε ij i.i.d. ∼ N (0, σ 2 ), ( 1a 
)
φ i = µ + t βV i + ξ i , ξ i i.i.d. ∼ N (0, Γ 2 ), (1b) where • φ i ∈ R: individual parameter, not observed • ψ ∈ R q : fixed effects, unknown • g: non-linear function with respect to φ i • µ ∈ R: intercept, unknown • β = t (β 1 , . . . , β p ) ∈ R p : covariate fixed effects vector, unknown Population parameter to be estimated: θ = (µ, β, ψ, σ 2 , Γ 2 )

-Aim and contribution

• Aim: Identify the most relevant covariates to characterise inter-individual variability, i.e. identify the non-zero components of β. • Main difficulties: non-explicit likelihood and high-dimensional problem.

• Proposed approach: Association of a Bayesian spike-and-slab prior for variable selection with MCMC-SAEM algorithm (stochastic version of EM) for inference [4]. 

-Bayesian hierarchical model

-Method

Idea: we could choose ν 0 small, deduced from a practitioner chosen threshold for "negligible" covariate effect. However, we may be interested in exploring different levels of sparsity in β by varying the value of ν 0 in a grid ∆. with B ν 0 the number of free parameters in the sub-model S ν 0 .

3. Return S ν0 .
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-Regularisation plot and eBIC criterion

-MCMC-SAEM algorithm for computing the MAP

At each step k of this iterative algorithm, the idea is to maximise:

Q(Θ|Θ (k) ) = E (φ,δ)|(y,Θ (k) ) [log(π(Θ, φ, δ|y))|y, Θ (k) ] = C + E φ|y,Θ (k) ∼ Q 1 (y, φ, θ, Θ (k) ) y, Θ (k) + ∼ Q 2 (α, Θ (k) )
1. Initialisation: choose Θ (0) and Q 1,0 (θ) = 0, 2. Iteration k ≥ 0:

• S-step (Simulation): simulate φ (k) using the result of one iteration of an MCMC procedure with π(φ|y, Θ (k) ) for target distribution,

• SA-step (Stochastic Approximation): compute ∼ Q 2 (α, Θ (k) ) and Q 1,k+1 (θ), approximation of E φ|y,Θ (k)

∼ Q 1 (y, φ, θ, Θ (k) ) y, Θ (k) , according to:

Q 1,k+1 (θ) = Q 1,k (θ) + γ k ( ∼ Q 1 (y, φ (k) , θ, Θ (k) ) -Q 1,k (θ)),
• M-step (Maximisation): compute

θ (k+1) = argmax θ∈Λ θ Q 1,k+1 (θ) and α (k+1) = argmax α∈[0,1] ∼ Q 2 (α, Θ (k) ),
3. Θ = Θ (K) , for K large enough, where (γ k ) k is a step sizes sequence decreasing towards 0 such that ∀k,

γ k ∈ [0, 1], k γ k = ∞ and k γ 2 k < ∞ [1].

-Simulation results in a logistic growth model

• Uncorrelated covariates:

Fig. 3: Proportion of data-sets on which the proposed method selects the correct model ("Exact"), a model that contains false positives (FP) but not false negatives (FN), FN but not FP, or FP and FN.

• Correlated covariates: Fairly similar performance but with more false positives and/or false negatives in some correlation scenarios.

• The proposed method is about 20 times faster than a full MCMC implementation.

-Perspectives

• Apply our method to a real dataset (in progress).

• Consider a multidimensional individual parameter.

• Provide theoretical guarantees: selection consistency.
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 1 Fig. 1: Bayesian hierarchical model
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 02 Creation of a model collection: for each ν 0 ∈ ∆, ▶ compute the maximum a posteriori estimator with a MCMC-SAEM algorithm [1Define S ν 0 = ℓ ∈ {1, . . . , p} |( β M AP ν 0 ) ℓ | ≥ s β (ν 0 , ν 1 , α M AP ν Select the "best" model among ( S ν 0 ) ν 0 ∈∆ by a fast criterion, e.g. eBIC [3]: ν0 = argmin ν 0 ∈∆ -2 log p(y; θMLE ν 0 ) + B ν 0 × log(n) + 2 log p B ν 0
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 2 Fig. 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A), the red lines correspond to the selection threshold of the covariates. n = 200, J = 10, p = 500, Γ 2 = 200, σ 2 = 30, ν 1 = 12000, µ = 1200, β = t (100, 50, 20, 0, . . . , 0)
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