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1 - Introduction

Mixed-effects models:
•Analyse observations collected repeatedly on several individuals.

• Individuals with the same overall behaviour but with individual variations.

•Different sources of variability: intra-individual, inter-individual, residual.
Fields of application: pharmacokinetics, biological growth, ...

Variable selection:

• Inter-individual variability may be explained by some among a very large number of
covariates (e.g. genomic data).

•High-dimensional context: focus on the few most relevant covariates through a variable
selection procedure.

2 - Non-linear mixed-effects model (NLMEM)

For i ∈ {1, . . . , n} and j ∈ {1, . . . , J}, denoting yij the response of individual i at time
tij and Vi the p covariates measured on individual i, with p >> n:{

yij = g(φi, ψ, tij) + εij , εij
i.i.d.∼ N (0, σ2), (1a)

φi = µ + tβVi + ξi , ξi
i.i.d.∼ N (0,Γ2), (1b)

where
•φi ∈ R: individual parameter, not observed

•ψ ∈ Rq: fixed effects, unknown

• g: non-linear function with respect to φi

•µ ∈ R: intercept, unknown
• β = t(β1, . . . , βp) ∈ Rp: covariate fixed effects vector, unknown

Population parameter to be estimated: θ = (µ, β, ψ, σ2,Γ2)

3 - Aim and contribution

•Aim: Identify the most relevant covariates to characterise inter-individual variability,
i.e. identify the non-zero components of β.

•Main difficulties: non-explicit likelihood and high-dimensional problem.
•Proposed approach: Association of a Bayesian spike-and-slab prior for variable selec-
tion with MCMC-SAEM algorithm (stochastic version of EM) for inference [4].

4 - Bayesian hierarchical model

Fig. 1: Bayesian hierarchical model

5 - Method

Idea: we could choose ν0 small, deduced from a practitioner chosen threshold for ”negligible”
covariate effect. However, we may be interested in exploring different levels of sparsity in
β by varying the value of ν0 in a grid ∆.

1.Creation of a model collection: for each ν0 ∈ ∆,
▶ compute the maximum a posteriori estimator with a MCMC-SAEM algorithm [1]:

Θ̂MAP
ν0

= argmax
Θ∈Λ

π(Θ|y)

▶ estimate δ̂ to find good models with high posterior probability [2]:

δ̂ = argmax
δ

P (δ|Θ̂MAP
ν0

) such as δ̂ℓ = 1 ⇐⇒ P(δℓ = 1|Θ̂MAP
ν0

) ≥ 0.5

⇐⇒ Define Ŝν0 =

{
ℓ ∈ {1, . . . , p}

∣∣∣∣ |(β̂MAP
ν0

)ℓ| ≥ sβ(ν0, ν1, α̂
MAP
ν0

)

}
2. Select the ”best” model among (Ŝν0)ν0∈∆ by a fast criterion, e.g. eBIC [3]:

ν̂0 = argmin
ν0∈∆

{
− 2 log

(
p(y; θ̂MLE

ν0
)
)
+ Bν0 × log(n) + 2 log

((
p
Bν0

))}
with Bν0 the number of free parameters in the sub-model Ŝν0.

3.Return Ŝν̂0.
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[2] Rocková, V. and George, E. I. (2014). EMVS: The EM approach to Bayesian variable selection.
Journal of the American Statistical Association.
[3] Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika.
[4] Naveau, M. et al. (2022). Bayesian high-dimensional covariate selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv:2206.01012.

6 - Regularisation plot and eBIC criterion

Fig. 2: Example of a regularisation plot (A) with eBIC criterion graph (B) for model selection. On (A), the red lines correspond
to the selection threshold of the covariates.

n = 200, J = 10, p = 500, Γ2 = 200, σ2 = 30, ν1 = 12000, µ = 1200, β = t(100, 50, 20, 0, . . . , 0)

7 - MCMC-SAEM algorithm for computing the MAP

At each step k of this iterative algorithm, the idea is to maximise:

Q(Θ|Θ(k)) = E(φ,δ)|(y,Θ(k))[log(π(Θ, φ, δ|y))|y,Θ(k)]

= C + Eφ|y,Θ(k)

[
∼
Q1(y, φ, θ,Θ

(k))

∣∣∣∣y,Θ(k)

]
+

∼
Q2(α,Θ

(k))

1. Initialisation: choose Θ(0) and Q1,0(θ) = 0,

2. Iteration k ≥ 0:

• S-step (Simulation): simulate φ(k) using the result of one iteration of an MCMC
procedure with π(φ|y,Θ(k)) for target distribution,

• SA-step (Stochastic Approximation): compute
∼
Q2(α,Θ

(k)) and Q1,k+1(θ), approxi-

mation of Eφ|y,Θ(k)

[
∼
Q1(y, φ, θ,Θ

(k))

∣∣∣∣y,Θ(k)

]
, according to:

Q1,k+1(θ) = Q1,k(θ) + γk(
∼
Q1(y, φ

(k), θ,Θ(k))−Q1,k(θ)),

•M-step (Maximisation): compute

θ(k+1) = argmax
θ∈Λθ

Q1,k+1(θ) and α
(k+1) = argmax

α∈[0,1]

∼
Q2(α,Θ

(k)),

3. Θ̂ = Θ(K), for K large enough,
where (γk)k is a step sizes sequence decreasing towards 0 such that ∀k, γk ∈ [0, 1],

∑
k γk = ∞ and

∑
k γ

2
k <∞ [1].

8 - Simulation results in a logistic growth model

•Uncorrelated covariates:

Fig. 3: Proportion of data-sets on which the proposed method selects the correct model (”Exact”), a model that contains false

positives (FP) but not false negatives (FN), FN but not FP, or FP and FN.

•Correlated covariates: Fairly similar performance but with more false positives and/or
false negatives in some correlation scenarios.

•The proposed method is about 20 times faster than a full MCMC implementation.

9 - Perspectives

•Apply our method to a real dataset (in progress).

•Consider a multidimensional individual parameter.

•Provide theoretical guarantees: selection consistency.


