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Framework: repeated measurement data
✤ Mixed-effects models: analyse observations collected repeatedly on
several individuals.

✤ Same overall behaviour but with individual variations.
✤ Non-linear growth.
✤ Are these variations due to known characteristics?

▶ E.g.: growing conditions, genetic markers, ...
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Non-linear mixed-effects model (NLMEM)
1) Description of intra-individual variability:

For all i ∈ {1, . . . , n}, j ∈ {1, . . . , ni },

yij = g(φi , ψ, tij ) + εij , εij
i.i.d.∼ N (0, σ2)

yij ∈ R: response of individual i at time tij (observation).
φi ∈ Rq : individual parameter, not observed.
ψ ∈ Rr : fixed effects, unknown.
g : non-linear function with respect to φi (known).

2) Description of inter-individual variability:

φi = µ+ Vi β + ξi , ξi
i.i.d.∼ Nq(0, Γ)

µ ∈ Rq : intercept, unknown.
Vi ∈ Rp : covariates for individual i (known).
β ∈ Mp×q covariate fixed effects matrix, unknown.

Population parameters: θ = (µ, β, ψ, σ2, Γ)
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High-dimensional covariate selection in NLMEM
✤ Specificity of the problem: p >> n

✤ Goal: identify the non-zero components of β.

✤ Main difficulties:
High-dimensional variable selection:

▶ parsimonious estimation of β
➢ regularised methods (LASSO-type, Tibshirani (1996))
➢ sparsity-inducing priors (Tadesse and Vannucci, 2021)

Non-explicit likelihood
▶ The φi ’s are not observed (latent variables model)

➢ theoretical and algorithmic in LMEM (Schelldorfer et al., 2011)
▶ g is non-linear

➢ algorithmic only in NLMEM (Ollier, 2021)

Proposed approach
Association of a Bayesian spike-and-slab prior for variable selection with
a stochastic version of the EM algorithm, called MCMC-SAEM, for
inference.
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One-dimensional framework

{
yij = g(φi , ψ, tij) + εij , εij

i.i.d.∼ N (0, σ2),
φi = µ+ β⊤Vi + ξi , ξi

i.i.d.∼ N (0, γ2).

where φi ∈ R, µ ∈ R, β ∈ Rp, γ2 > 0, and θ = (µ, β, ψ, σ2, γ2).

▶ Goal: identify

S∗ =
{
ℓ ∈ {1, . . . , p}

∣∣∣∣β∗
ℓ ̸= 0

}
,

where β∗ is the true fixed effects vector.
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Spike-and-slab prior for the coefficients of β

✤ Introduction of latent variables δℓ, 1 ≤ ℓ ≤ p:

δℓ =
{

1 if covariate ℓ is to be included in the model,
0 otherwise.

✤ Spike-and-slab prior on β George and McCulloch (1997):
π(β|δ) = Np(0, diag((1 − δℓ)ν0 + δℓν1)), 0 ≤ ν0 < ν1 fixed,

i.e. βℓ are independent and:
βℓ|(δℓ = 0) ∼ N (0, ν0): "spike" distribution, ν0 small
βℓ|(δℓ = 1) ∼ N (0, ν1): "slab" distribution, ν1 large

Figure: Spike-and-slab prior. Source: Deshpande et al. (2019)
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Bayesian hierarchical model

✤ Observations: y = (yij)i,j

✤ Parameters:
Fixed hyperparameters: ν0, ν1, ...
To be estimated: Θ = (θ, α)

✤ Latent variables: Z = (φ, δ)
where φ = (φi )i and δ = (δℓ)ℓ
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Proposed method
Idea: explore different levels of sparsity in β by varying the value of ν0 in a grid ∆.

1. Creation of a model collection: for each ν0 ∈ ∆,
▶ Compute Θ̂ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

Θ̂MAP
ν0 = argmax

Θ∈Λ
π(Θ|y)

▶ Estimate δ̂ (Ročková and George, 2014):
δ̂ = argmax

δ

P(δ|Θ̂MAP
ν0 ) such as δ̂ℓ = 1 ⇐⇒ P(δℓ = 1|Θ̂MAP

ν0 ) ≥ 0.5

⇐⇒ Define Ŝν0 =
{
ℓ ∈ {1, . . . , p}

∣∣∣ |(β̂MAP
ν0 )ℓ| ≥ sβ(ν0, ν1, α̂MAP

ν0 )
}

2. Select the "best" model among (Ŝν0 )ν0∈∆ by a fast criterion, eBIC (Chen and Chen,
2008):

ν̂0 = argmin
ν0∈∆

{
− 2 log

(
p(y ; θ̂MLE

ν0 )
)

+ Bν0 × log(n) + 2 log
(( p

Bν0

))}
with Bν0 : number of free parameters in the model Ŝν0 .

3. Return Ŝν̂0 .
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Spike-and-slab regularisation plot

Figure: n = 200, J = 10, p = 500, γ2 = 200, σ2 = 30, ν1 = 12000, µ = 1200,
β = t(100, 50, 20, 0, . . . , 0)
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Two-step approach
✤ Two-step approach:

1. Estimate the φi ’s individual-by-individual thanks to the nlm R function
(Non-Linear Minimization),

2. Perform variable selection using the estimated parameters φ̂i with
glmnet R package (LASSO).

✤ Results:
This strategy works fine in data-rich scenarios, when each parameter
can be estimated very precisely, but it loses the uncertainty on the
estimated parameters.
Our procedure outperforms the two-step approach for scenarios with
missing data.
Thanks to the mixed model, individuals with missing data can benefit
from the remaining fully observed individuals.

⇒ Show the interest of carrying out the selection of covariates from the data
of all the individuals simultaneously thanks to the mixed effects model.
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Model selection performance
✤ Independent covariates:

(a) n = 100 (b) n = 200

Figure: Empirical probability of correct model selection.

When the procedure fails, it is most often because it under-selects:
▶ "Cautious" approach, few false positives!

✤ Correlated covariates: Fairly similar good performance but with more false
positives and/or false negatives in some correlation scenarios.
✤ Comparison with MCMC: The proposed inference method is about 20 times
faster than a full MCMC implementation.
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Conclusion and perspectives

✤ Summary:
Development of an original method that combines SAEM and
Bayesian variable selection.
Very encouraging numerical results on simulated data (correlated
and uncorrelated covariates).
Faster method than a full MCMC implementation.
More efficient than a 2-step approach.
Relevant results on real data.

✤ Perspectives:
Provide theoretical guarantees: selection consistency.
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Thank you for your attention!
Naveau, M., Kon Kam King, G., Rincent, R., Sansonnet, L., and
Delattre, M. (2022). Bayesian high-dimensional covariate
selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv preprint arXiv:2206.01012.
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Computing the MAP in a latent variables model

✤ Let’s go back to the first step of the proposed method:

▶ Compute the MAP estimator of Θ

▶ Goal: maximise π(Θ|y) =
∫

Z π(Θ,Z |y)dZ with

π(Θ,Z |y) = p(y |Θ,Z )p(Θ,Z )∫
Z
∫

Λ p(y |Θ,Z )p(Θ,Z )dΘdZ

▶ Non-explicit integral
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EM algorithm (Dempster et al., 1977)

1. Initialisation: choose Θ(0).
2. Iteration k ≥ 0:

E-step (Expectation): compute

Q(Θ|Θ(k)) = EZ |(y ,Θ(k))

[
log(π(Θ,Z |y))

∣∣∣∣y ,Θ(k)
]
.

M-step (Maximisation): compute

Θ(k+1) = argmax
Θ∈Λ

Q(Θ|Θ(k)).

3. Θ̂ = Θ(K), for K large enough.
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Specifics in Spike-and-Slab-NLMEM
✤ Decomposition of Q:

Q(Θ|Θ(k)) = E(φ,δ)|(y ,Θ(k))[log(π(Θ, φ, δ|y))|y ,Θ(k)]

= C + Eφ|y ,Θ(k)

[∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

︸ ︷︷ ︸
non-explicit

+
∼
Q2(α,Θ(k))︸ ︷︷ ︸

explicit

✤ M-step:
▶ θ and α estimated separately.

▶ α̂ updated as in an EM algorithm with
∼
Q2(α,Θ(k)).

▶ θ̂ updated via stochastic approximation of:

Eφ|y ,Θ(k)

[
∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]
.

➢ SAEM (Delyon et al., 1999)
➢ MCMC-SAEM (Kuhn and Lavielle, 2004)
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Specifics in Spike-and-Slab-NLMEM

✤ Decomposition of Q:

Q(Θ|Θ(k)) = E(φ,δ)|(y ,Θ(k))[log(π(Θ, φ, δ|y))|y ,Θ(k)]

= Eφ|(y ,Θ(k))

[
Eδ|(φ,y ,Θ(k))

[
log(π(Θ, φ, δ|y))|φ, y ,Θ(k)

]∣∣∣∣y ,Θ(k)
]

= Eφ|(y ,Θ(k))

[∼
Q(y , φ,Θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

= C + Eφ|y ,Θ(k)

[∼
Q1(y , φ, θ,Θ(k))

∣∣∣∣y ,Θ(k)
]

︸ ︷︷ ︸
non-explicit

+
∼
Q2(α,Θ(k))︸ ︷︷ ︸

explicit
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MCMC-SAEM algorithm in SSNLMEM
1. Initialisation: choose Θ(0) and Q1,0(θ) = 0,
2. Iteration k ≥ 0:

S-step (Simulation): simulate φ(k) using the result of one iteration of
an MCMC procedure with π(φ|y ,Θ(k)) for target distribution,

SA-step (Stochastic Approximation): compute

Q1,k+1(θ) = Q1,k(θ) + γk(
∼
Q1(y , φ(k), θ,Θ(k)) − Q1,k(θ)),

and
∼
Q2(α,Θ(k)),

M-step (Maximisation):

θ(k+1) = argmax
θ∈Λθ

Q1,k+1(θ) and α(k+1) = argmax
α∈[0,1]

∼
Q2(α,Θ(k)),

3. Θ̂ = Θ(K), for K large enough,
where (γk)k a step sizes sequence decreasing towards 0 such that ∀k,
γk ∈ [0, 1],

∑
k γk = ∞ and

∑
k γ

2
k < ∞.
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Logistic growth model

Figure: Simulated data

Size of plant i ∈ {1, . . . , n} at time tij ,
j ∈ {1, . . . , 10}:
yij = g(φi , ψ, tij) + εij , εij

iid∼ N (0, σ2) where:

g(φi , ψ, tij) = ψ1

1 + exp
(

− tij − φi

ψ2

)
ψ = (ψ1, ψ2) fixed effects.

φi : characteristic time
φi = µ+ tβVi + ξi , ξi

iid∼ N (0, γ2)

θ = (µ, β, ψ, σ2, γ2)
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Simulation design

✤ Parameters:
n ∈ {100, 200} individuals,
p ∈ {500, 2000, 5000} simulated covariates according to Vi ∼ N (0,Σ):

▶ Scenario i.i.d.: Σ = Id ▶ Correlated scenarios: Σ ̸= Id
β = t(100, 50, 20, 0, . . . , 0) covariate fixed effects vector,
γ2 ∈ {200, 1000, 2000} inter-individual variance,
µ = 1200, σ2 = 30, ψ = (ψ1, ψ2) = (200, 300).

✤ Spike-and-slab hyperparameters:
ν1 = 12000 slab variance,
log10(∆) =

{
− 2 + k × 4

19 , k ∈ {0, . . . , 19}
}

grid of ν0 values.

▶ For each combination of (n, p, γ2), the method is applied on 100
different simulated datasets.
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Results for independent covariates

(a) n = 100 (b) n = 200

Figure: Empirical probability of correct model selection.

Results improve as n increases.
Degradation of results when p or γ2 increases.
When the procedure fails, it is most often because it under-selects:

▶ "Cautious" approach, few false positives!
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Results for uncorrelated covariates

(a) For n = 100 (b) For n = 200
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Correlated covariates Vi ∼ N (0, Σ)
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Results for ρΣ = 0.3

(c) For Γ2 = 200 (d) For Γ2 = 2000



References

Results for ρΣ = 0.6

(e) For Γ2 = 200 (f) For Γ2 = 2000
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Summary of the results

✤ Uncorrelated covariates Vi ∼ N (0, Ip):
Results improve as n increases.
Degradation of results when p or Γ2 increases.
When the procedure fails, it is most often because it under-selects:

▶ "Cautious" approach, few false positives!

✤ Correlated covariates Vi ∼ N (0,Σ):
Fairly similar good performance.
More false positives and/or false negatives in some correlation
scenarios:

▶ + false positives: correlations between active and non-active
covariates.

▶ + false negatives: correlated active covariates.
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Comparison with an MCMC implementation

NB: fast C++
adaptive MCMC
(Nimble) versus R
code

Both methods have an execution time that grows polynomially with p.
The proposed inference method can browse grid of about 20 values of ν0
while adaptive MCMC explores a single value.
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Comparison with a two-step approach
✤ Two-step approach:

1. Estimate the φi ’s individual-by-individual thanks to the nlm R
function (Non-Linear Minimization)

2. Perform variable selection using as dependent variables the
estimated parameters with glmnet R package:

a) LASSO in multivariate version (group LASSO),
b) LASSO in univariate version.

✤ Scenarios of observations:

1. Complete data-set: all individuals are observed during the entire
experiment.

2. Partial observations: For each ppartial ∈ {0.1, 0.2, 0.3, 0.4}, the
other scenarios correspond to the case where N1 = ppartialn
individuals are assumed to be no longer part of the experiment after
the 3rd observation time.
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Simulation design
 yij = Dφi1

Vφi1 − φi2

(
e

−
φi2

V tij − e−φi1tij

)
+ εij , εij

i.i.d.∼ N (0, σ2),

φi = µ+ β⊤Vi + ξi , ξi
i.i.d.∼ Nq(0, Γ),

where φi = (φi1, φi2)⊤, namely q = 2.

D = 100, V = 30,
(ti1, . . . , ti12) = (0.05, 0.15, 0.25, 0.4, 0.5, 0.8, 1, 2, 7, 12, 24, 40)
n = 200, n1 = · · · = nn = 12, p = 500, σ2 = 10−3,

Γ =
(

0.2 0.05
0.05 0.1

)
, Cor((φi1)i , (φi2)i ) = 0.35,

µ = (6, 8)⊤, β =
(

3 2 1 0 0 0 . . . 0
0 0 3 2 1 0 . . . 0

)⊤

Vi ∈ Rp, 1 ≤ i ≤ n, are simulated independently according to a binomial
distribution with a success probability of 0.2.
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Mean estimation errors
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Results

Figure: Proportion of data-sets on which the three methods (in colour) select
the correct model ("Exact", striped bars), or a model that strictly includes the
correct model ("Strictly included", unpatterned bars) for the first individual
parameter (a) and the second individual parameter (b), and different
percentage of partially observed individuals (on the x -axis).
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Presentation of the dataset

✤ Wheat leaf senescence data.

✤ Panel: n = 220 soft wheat varieties subjected to nitrogen stress,
observed J = 18 times.

✤ Varieties respond differently to stress: for example, some of them
tolerate stress better and senescence is delayed.

✤ For each variety: genotyping information on several tens of
thousands of SNPs.

✤ Aim: select molecular markers, from among p = 34838 markers,
which could be associated with the senescence process.
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Data representation: percentage of desiccated leaves

=⇒ Logistic growth
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Modelling for one chromosome


yij = 100

1 + exp
(

− tij − φi
ψi

) + εij , εij
i.i.d.∼ N (0, σ2)

φi = µ+ λ⊤vi + β⊤V C
i + ξi , ξi

i.i.d.∼ N (0, Γ2)
ψi = η + ωi , ωi

i.i.d.∼ N (0,Ω2)

where:

vi ∈ R5: covariates not subject to selection, allows the inclusion of
sub-populations in the model,

V C
i ∈ Rp: molecular markers, subject to selection, which contains

heading QTLs and flowering genes.

θ = (µ, λ, β, η, σ2, Γ2,Ω2)
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Results

Figure: Position on each chromosome of the markers selected by SAEMVS (in
black cross), compared to heading QTLs (in red diamond) and major flowering
genes (in green diamond).
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Markers highly correlated

Figure: Regularisation plot and eBIC criterion for chromosome 6A
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