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Framework: repeated measurement data ✤ Mixed-effects models: analyse observations collected repeatedly on several individuals.

✤ Same overall behaviour but with individual variations. ✤ Non-linear growth. ✤ Are these variations due to known characteristics? ▶ E.g.:

Introduction

Theoretical guarantees Perspectives

High-dimensional covariate selection in NLMEM ✤ Selection consistency: the posterior probability of the true model converges to 1, inf

β 0 E 0 Π(β : S β = S 0 |Y (n) ) -→ 1.
✤ Posterior contraction: ability of the posterior distribution to recover the true model from the data sup 

θ 0 E 0 Π θ : d n (θ, θ 0 ) > Cnϵ n Y (n) -→ 0, with ϵ n -→ 0.

Stages of proof

In general, the stages of proof (following [START_REF] Castillo | Bayesian linear regression with sparse priors[END_REF]) are as follows:

1. Support size:

sup β0 E 0 Π β : |S β | > K |S 0 | Y (n) -→ 0 2.
Posterior contraction / Recovery:

sup θ0 E 0 Π θ : d n (θ, θ 0 ) > Cnϵ n Y (n) -→ 0, with ϵ n -→ 0 3. Distributional approximation: sup β0 E 0 Π β ∈ •|Y (n) -Π ∞ β ∈ •|Y (n) TV -→ 0 4. Selection, no supersets: sup β0 E 0 Π β : S β ⊃ S 0 , S β ̸ = S 0 Y (n) -→ 0 5. Selection consistency: inf β0
First approach: extension of Jeong and Ghosal (2021b)

✤ Consider a non-linear marginal mixed model:

y i = f i (β) + Z i ξ i + ε * i , ε * i ∼ N ni (0, σ 2 I ni ), ξ i ∼ N q (0, Γ), where y i ∈ R ni , β ∈ R p , Z i ∈ M ni ×q and n i ∈ {1, . . . , J n },
where n i and J n can grow with n. We assumed that σ 2 is known.

✤ Thus, this model can be re-written as:

y i = f i (β) + ε i , ε i ∼ N ni (0, σ 2 I + Z i ΓZ ⊤ i ),
We denote by S the support of β. The true parameters are noted: β 0 , Γ 0 , S 0 and s 0 = |S 0 |. 

Assumptions

For each i, f i is assumed to be Lipschitzienne:

||f i (β) -f i ( β)|| 2 ≤ K i ||β -β|| 2 , for all β, β ∈ R p .
We denote by

K = n i=1 K 2 i . ▶ Example: Log-Gompertz model y ij = β 1 + b i -Ce -β2tij + ε ij g S (β S ) = j∈S λ 2 exp(-λ|β j |), with √ K L 1 p L2 ≤ λ ≤ L 3 √ K √ n , for some constants L 1 , L 2 , L 3 > 0.
For some constants A 1 , A 2 , A 3 , A 4 > 0,

A 1 p -A3 π p (s -1) ≤ π p (s) ≤ A 2 p -A4 π p (s -1), s = 1, . . . p. ▶ Example: β 1 , . . . β p ∼ (1 -r )δ 0 + r L, π p = Bin(p, r ) where r ∼ Beta(1, p u ), u > 1.
Assumptions Then,

s 0 > 0, s 0 log(p) = o(n), log(n) log(p) → 0, log(J n ) ≲ log(p) 1 ≲ ρ min (Γ 0 ) ≤ ρ max (Γ 0 ) ≲ 1, ||β 0 || ∞ ≲ λ -1 log(p), 1 n n i=1 1 ni ≥q is bounded, min i {ρ 1/2 min (Z ⊤ i Z i ) : n i ≥ q} ≳ 1, i.e. Z i is a full rank, max i {ρ 1/2 max (Z ⊤ i Z i )} ≲ 1.
E 0 [Π (B|y )] = E 0 [Π (B|y ) 1 An ] + E 0 Π (B|y ) 1 A c n -→0 by lemma
.

And by the lemma and Fubini-Tonelli's theorem the first term is bounded by a term tending towards 0 with n:

E 0 [Π (B|y ) 1 An ] = E 0 B Λ n (β, Γ)dΠ(β, Γ) Λ n (β, Γ)dΠ(β, Γ) 1 An ≤ π p (s 0 ) -1 exp {M(s 0 log(p) + log(n))}Π(B) -→ 0.
This leads to the theorem: there exist a constant

C 1 such that E 0 [Π (|S β | > C 1 s 0 |y )] -→ 0.
Posterior contraction Rényi theorem

Definition

For two n-variates densities f = n i=1 f i and g = n i=1 g i of independent variables, the average Rényi divergence (of order 1/2) is defined by:

R n (f , g) = - 1 n n i=1 log f i g i Theorem
Let's assume that the previous hypotheses are satisfied. We denote by p β,Γ = n i=1 p β,Γ,i the joint density for p β,Γ,i the density of the ith observation vector y i , and p 0 the true joint density. Then, there exists a constant C 2 such that: 

E 0 Π (β, Γ) : R n (p β,Γ , p 0 ) > C 2 s 0 log(p) n y -→ 0.

✤

  Figure: Spike-and-slab Gaussian prior. Source: Deshpande et al. (2019)

  -slab Dirac-Laplace on (S, β): (S, β) → π p (s) p s g S (β S )δ 0 (β S c ), Inverse-Wishart(Σ, d) prior on Γ: π(Γ) ∝ |Γ| -(d+q+1)/2 exp -1 2 Tr (ΣΓ -1 ) .

✤

  Figure: q = 1, n = 200, J = 10, p = 500, γ 2 = 200, σ 2 = 30, ν1 = 12000, µ = 1200, β = t (100, 50, 20, 0, . . . , 0)
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Support size theorem

Theorem

Let's assume that the previous hypotheses are satisfied. Then, there exists a constant C 1 such that:

Marion Model approximation

∼ N q (0, Γ).

where

where

=⇒ Non-linear marginal mixed model with varied matrix of random effects [START_REF] Demidenko | Mixed models: theory and applications with R[END_REF].

Idea of the proof

Yet, by Bayes' formula:

, where

Thus, the following lemma shows that the denominator of the posterior distribution is bounded below by a factor with probability tending to one:

Lemma

Let's assume that the previous hypotheses are satisfied. Then, there exists a constant M such that:

This event is denoted by A n .

Proposed method

Idea: explore different levels of sparsity in each column of β by varying the value of ν 0 in a grid ∆. 3. Return S ν0 .