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Framework: repeated measurement data
✤ Mixed-effects models: analyse observations collected repeatedly on
several individuals.

✤ Same overall behaviour but with individual variations.
✤ Non-linear growth.
✤ Are these variations due to known characteristics?

▶ E.g.: growing conditions, genetic markers, ...
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Non-linear mixed-effects model (NLMEM)
1) Description of intra-individual variability:

For all i ∈ {1, . . . , n}, j ∈ {1, . . . , ni },

yij = g(φi , ψ, tij ) + εij , εij
i.i.d.∼ N (0, σ2)

yij ∈ R: response of individual i at time tij (observation).
φi ∈ Rq : individual parameter, not observed.
ψ ∈ Rr : fixed effects, unknown.
g : non-linear function with respect to φi (known).

2) Description of inter-individual variability:

φi = µ+ Vi β + ξi , ξi
i.i.d.∼ Nq(0, Γ)

µ ∈ Rq : intercept, unknown.
Vi ∈ Rp : covariates for individual i (known).
β ∈ Mp×q covariate fixed effects matrix, unknown.

Population parameters: θ = (µ, β, ψ, σ2, Γ)
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High-dimensional covariate selection in NLMEM
✤ Goal: identify

S0 =
{

(ℓ,m) ∈ {1, . . . , p} × {1, . . . , q}
∣∣∣∣β0

ℓm ̸= 0
}
,

where β0 is the true fixed effects matrix.
✤ Specificity of the problem: p >> n

⇒ Assumption: each column of β0 is sparse

✤ Main difficulties:
High-dimensional variable selection:

▶ parsimonious estimation of β
➢ regularised methods (LASSO-type, Tibshirani (1996))
➢ sparsity-inducing priors (Tadesse and Vannucci, 2021)

Non-explicit likelihood
▶ The φi ’s are not observed (latent variables model)

➢ theoretical and algorithmic in LMEM (Schelldorfer et al., 2011)
▶ g is non-linear

➢ algorithmic only in NLMEM (Ollier (2021), not high-dimension)
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Methodology

Proposed approach
Association of a Bayesian spike-and-slab Gaussian prior for
variable selection with a stochastic version of the EM algorithm,
called MCMC-SAEM, for inference.

Naveau, M., Kon Kam King, G., Rincent, R., Sansonnet, L., and
Delattre, M. (2022). Bayesian high-dimensional covariate
selection in non-linear mixed-effects models using the SAEM
algorithm. arXiv preprint arXiv:2206.01012.
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Spike-and-slab prior for the coefficients of β

✤ Introduction of latent variables δℓm, 1 ≤ ℓ ≤ p, 1 ≤ m ≤ q:

δℓm =
{

1 if (ℓ, m) is to be included in model S∗,
0 otherwise.

✤ Spike-and-slab prior on β (George and McCulloch, 1997):
π(βℓm|δℓm) = (1 − δℓm)h0(βℓm) + δℓmh1(βℓm),

i.e.:
βℓm|(δℓm = 0) ∼ h0(βℓm): concentrated "spike" distribution
βℓm|(δℓm = 1) ∼ h1(βℓm): diffuse "slab" distribution

Figure: Spike-and-slab Gaussian prior. Source: Deshpande et al. (2019)
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Selection consistency

✤ Aim: obtain selection consistency results for non-linear mixed
effects models under spike-and-slab prior.

✤ Selection consistency: the posterior probability of the true
model converges to 1, inf

β0
E0

[
Π(β : Sβ = S0|Y (n))

]
−→ 1.

✤ Posterior contraction: ability of the posterior distribution to
recover the true model from the data
sup
θ0

E0

[
Π

(
θ : dn(θ, θ0) > Cnϵn

∣∣∣∣Y (n)
)]

−→ 0, with ϵn −→ 0.
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State of the art

✤ With known variance:

Reference Model Spike Slab Result
Castillo et al. (2015) LR Dirac Laplace Consistency

Ročková and George (2018) LR Laplace Laplace Contraction

✤ With unknown variance:

Reference Model Spike Slab Result
Narisetty and He (2014) LR Gaussian Gaussian Consistency
Jiang and Sun (2019) LR Generic Generic Consistency

Ning et al. (2020) Multivariate LR Dirac Laplace Consistency
Jeong and Ghosal (2021a) GLMs Dirac Laplace Contraction
Jeong and Ghosal (2021b) LR with nuisance Dirac Laplace Consistency

Shen and Deshpande (2022) Multivariate LR Laplace Laplace Contraction

where LR = Linear Regression.
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Stages of proof

In general, the stages of proof (following Castillo et al. (2015)) are as follows:

1. Support size: sup
β0

E0

[
Π

(
β : |Sβ | > K |S0|

∣∣∣∣Y (n)
)]

−→ 0

2. Posterior contraction / Recovery:

sup
θ0

E0

[
Π

(
θ : dn(θ, θ0) > Cnϵn

∣∣∣∣Y (n)
)]

−→ 0, with ϵn −→ 0

3. Distributional approximation:

sup
β0

E0

[∣∣∣∣∣∣∣∣Π (
β ∈ ·|Y (n)) − Π∞ (

β ∈ ·|Y (n)) ∣∣∣∣∣∣∣∣
TV

]
−→ 0

4. Selection, no supersets: sup
β0

E0

[
Π

(
β : Sβ ⊃ S0,Sβ ̸= S0

∣∣∣∣Y (n)
)]

−→ 0

5. Selection consistency: inf
β0

E0
[
Π(β : Sβ = S0|Y (n))

]
−→ 1.
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First approach: extension of Jeong and Ghosal (2021b)
✤ Consider a non-linear marginal mixed model:

yi = fi(β) + Ziξi + ε∗
i , ε∗

i ∼ Nni (0, σ2Ini ), ξi ∼ Nq(0, Γ),

where yi ∈ Rni , β ∈ Rp, Zi ∈ Mni ×q and ni ∈ {1, . . . , Jn}, where ni and Jn can
grow with n. We assumed that σ2 is known.

✤ Thus, this model can be re-written as:

yi = fi(β) + εi , εi ∼ Nni (0, σ2I + ZiΓZ⊤
i ),

We denote by S the support of β. The true parameters are noted: β0, Γ0, S0
and s0 = |S0|.

✤ Prior:

Spike-and-slab Dirac-Laplace on (S, β): (S, β) 7→ πp(s)(p
s
) gS(βS)δ0(βSc ),

Inverse-Wishart(Σ, d) prior on Γ: π(Γ) ∝ |Γ|−(d+q+1)/2 exp
(
− 1

2 Tr(ΣΓ−1)
)
.
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Assumptions

For each i , fi is assumed to be Lipschitzienne:

||fi(β) − fi(β̃)||2 ≤ Ki ||β − β̃||2, for all β, β̃ ∈ Rp.

We denote by K =
∑n

i=1 K 2
i .

▶ Example: Log-Gompertz model yij = β1 + bi − Ce−β2tij + εij

gS(βS) =
∏

j∈S
λ

2 exp(−λ|βj |), with
√

K
L1pL2

≤ λ ≤ L3
√

K√
n

, for some
constants L1, L2, L3 > 0.

For some constants A1, A2, A3, A4 > 0,

A1p−A3πp(s − 1) ≤ πp(s) ≤ A2p−A4πp(s − 1), s = 1, . . . p.

▶ Example: β1, . . . βp ∼ (1 − r)δ0 + rL, πp = Bin(p, r) where
r ∼ Beta(1, pu), u > 1.
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Assumptions

s0 > 0,

s0 log(p) = o(n), log(n)
log(p) → 0, log(Jn) ≲ log(p)

1 ≲ ρmin(Γ0) ≤ ρmax (Γ0) ≲ 1,

||β0||∞ ≲ λ−1 log(p),
1
n

∑n
i=1 1ni ≥q is bounded,

mini{ρ1/2
min(Z⊤

i Zi) : ni ≥ q} ≳ 1, i.e. Zi is a full rank,

maxi{ρ1/2
max(Z⊤

i Zi)} ≲ 1.
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Support size theorem

Theorem
Let’s assume that the previous hypotheses are satisfied. Then,
there exists a constant C1 such that:

E0

[
Π

(
β : |Sβ| > C1s0

∣∣∣∣y)]
−→ 0.
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Perspectives

✤ In non-linear: Under spike-and-slab Dirac-Laplace, can we get:
Posterior contraction?
Distributional approximation of the posterior?
Selection consistency?

under what assumptions?
Can the same results be obtained by making the model more complex
(Zi depending on β)?

✤ In linear: Can we obtain a selection consistency theorem under
spike-and-slab LASSO prior in LMEM with covariance matrix unknown?

Marion Naveau High-dimensional variable selection in NLMEM 18 / 19
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Thank you for your attention!
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Model approximation

{
yi = fi(ψ,φi) + εi , εi

ind∼ Nni (0, σ2Ini ),
φi = Xiβ + ξi , ξi

i.i.d.∼ Nq(0, Γ).

where yi ∈ Rni , fi(ψ,φi) = (f (ψ,φi ; ti,1), . . . , f (ψ,φi ; ti,ni )), ψ ∈ Rr , φi ∈ Rq,
Xi ∈ Mq×p, β ∈ Rp.

First order approximation of fi(ψ,Xiβ + ξi) around E[φi ] = Xiβ:

yi = fi(ψ,Xiβ) + Zi(β)ξi + εi ,

where Zi = ∂fi
∂φi

.

=⇒ Non-linear marginal mixed model with varied matrix of random effects
(Demidenko, 2013).
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Idea of the proof

Set B = {(β, Γ) : |Sβ | > s̃}, with any integer s̃ ≥ s0.

Yet, by Bayes’ formula: Π(B|y) =
∫

B Λn(β, Γ)dΠ(β, Γ)∫
Λn(β, Γ)dΠ(β, Γ)

, where

Λn(β, Γ) =
∏n

i=1
pβ,Γ,i
p0,i

likelihood ratio.

Thus, the following lemma shows that the denominator of the posterior
distribution is bounded below by a factor with probability tending to one:

Lemma
Let’s assume that the previous hypotheses are satisfied. Then, there
exists a constant M such that:

P0

(∫
Λn(β, Γ)dΠ(β, Γ) ≥ πp(s0)e−M(s0 log(p)+log(n))

)
−→ 1.

This event is denoted by An.
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Idea of the proof

Then, E0 [Π (B|y)] = E0 [Π (B|y)1An ] + E0
[
Π (B|y)1Ac

n

]︸ ︷︷ ︸
−→0 by lemma

.

And by the lemma and Fubini-Tonelli’s theorem the first term is bounded by a
term tending towards 0 with n:

E0 [Π (B|y)1An ] = E0

[∫
B Λn(β, Γ)dΠ(β, Γ)∫
Λn(β, Γ)dΠ(β, Γ)

1An

]
≤ πp(s0)−1 exp {M(s0 log(p) + log(n))}Π(B) −→ 0.

This leads to the theorem: there exist a constant C1 such that
E0 [Π (|Sβ | > C1s0|y)] −→ 0.
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Posterior contraction Rényi theorem

Definition
For two n-variates densities f =

∏n
i=1 fi and g =

∏n
i=1 gi of

independent variables, the average Rényi divergence (of order 1/2)
is defined by:

Rn(f , g) = −1
n

n∑
i=1

log
∫ √

figi

Theorem
Let’s assume that the previous hypotheses are satisfied. We denote
by pβ,Γ =

∏n
i=1 pβ,Γ,i the joint density for pβ,Γ,i the density of the

ith observation vector yi , and p0 the true joint density. Then,
there exists a constant C2 such that:

E0

[
Π

(
(β, Γ) : Rn(pβ,Γ, p0) > C2

s0 log(p)
n

∣∣∣∣y)]
−→ 0.
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Bayesian hierarchical model

✤ Observations: y = (yij)i,j

✤ Parameters:
Fixed hyperparameters: ν0, ν1, ...
To be estimated: Θ = (θ, α)

✤ Latent variables: Z = (φ, δ)
where φ = (φim)i,m and δ = (δℓm)ℓ,m
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Proposed method
Idea: explore different levels of sparsity in each column of β by varying the value of ν0 in a
grid ∆.

1. Creation of a model collection: for each ν0 ∈ ∆,
▶ Compute Θ̂ by a MCMC-SAEM algorithm (Kuhn and Lavielle, 2004):

Θ̂MAP
ν0 = argmax

Θ∈Λ
π(Θ|y)

▶ Estimate δ̂ (Ročková and George, 2014): δ̂ = argmax
δ

P(δ|Θ̂MAP
ν0 ) such as

δ̂ℓm = 1 ⇐⇒ P(δℓm = 1|Θ̂MAP
ν0 ) ≥ 0.5 ⇐⇒ Define:

Ŝν0 =
{

(ℓ,m) ∈ {1, . . . , p} × {1, . . . , q}
∣∣∣ |(β̂MAP

ν0 )ℓm| ≥ sβ(ν0, ν1, (α̂MAP
ν0 )m)

}
2. Select the "best" model among (Ŝν0 )ν0∈∆ by a fast criterion, eBIC (Chen and Chen,

2008):

ν̂0 = argmin
ν0∈∆

{
− 2 log

(
p(y ; θ̂MLE

ν0 )
)

+ Bν0 × log(n) + 2 log
(( pq

Bν0

)) }
with Bν0 : number of free parameters in the model Ŝν0 .

3. Return Ŝν̂0 .
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Spike-and-slab regularisation plot

Figure: q = 1, n = 200, J = 10, p = 500, γ2 = 200, σ2 = 30, ν1 = 12000,
µ = 1200, β = t(100, 50, 20, 0, . . . , 0)
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Computing the MAP in a latent variables model

✤ Let’s go back to the first step of the proposed method:

▶ Compute the MAP estimator of Θ

▶ Goal: maximise π(Θ|y) =
∫

Z π(Θ,Z |y)dZ with

π(Θ,Z |y) = p(y |Θ,Z )p(Θ,Z )∫
Z

∫
Λ p(y |Θ,Z )p(Θ,Z )dΘdZ

▶ Non-explicit integral
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EM algorithm (Dempster et al., 1977)

1. Initialisation: choose Θ(0).
2. Iteration k ≥ 0:

E-step (Expectation): compute

Q(Θ|Θ(k)) = EZ |(y ,Θ(k))

[
log(π(Θ,Z |y))

∣∣∣∣y ,Θ(k)
]
.

M-step (Maximisation): compute

Θ(k+1) = argmax
Θ∈Λ

Q(Θ|Θ(k)).

3. Θ̂ = Θ(K), for K large enough.
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