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MULTIPLICITY OF NEUTRALLY STABLE PERIODIC ORBITS
WITH COEXISTENCE IN THE CHEMOSTAT SUBJECT TO

PERIODIC REMOVAL RATE

THOMAS GUILMEAU∗ AND ALAIN RAPAPORT†

Abstract. We identify a taxonomic property on the growth functions in the multi-species
chemostat model which ensures the coexistence of a subset of species under periodic removal rate.
We show that proportions of some powers of the species densities are periodic functions, leading
to an infinity of distinct neutrally stable periodic orbits depending on the initial condition. This
condition on the species for neutral stability possesses the feature to be independent of the shape of
the periodic signal for a given mean value. We give also conditions allowing the coexistence of two
distinct subsets of species. Although these conditions are non-generic, we show in simulations that
when these conditions are only approximately satisfied, then the behavior of the solutions is close
from the non-generic case over a long time interval, justifying the interest of our study.

Key words. Chemostat model, Periodic removal rate, Coexistence, Poincaré map, Multiplicity
of periodic orbits, Neutral stability.

MSC codes. 34C25, 37C25, 92-10, 92D25, 92D40

1. Introduction. The mathematical model of the chemostat can represent a
vast array of natural phenomena where different living species compete for a common
limiting resource. In particular, it is widely used to model waste water bio-processes
or to capture competition for a single resource in ecological modeling [15, 5]. Recall
that the chemostat is originally an experimental device in which bacterial species grow
in a perfectly stirred vessel of constant volume, continuously removed and fed with
fresh substrate. Of course, the mathematical model of the chemostat reflects also the
behavior of this device.

When several species (of densities xi, i = 1, 2, . . . ) all consume a single substrate
that is fed in the ecosystem at a constant rate, then the mathematical theory of the
chemostat claims that the Competitive Exclusion Principle holds, meaning that all the
species will asymptotically disappear from the system, except the fittest one [15, 5].
However, in more complex environments, this property does not always hold. This is
for instance the case of periodic operation of bioreactors [13] or temporal fluctuations
in ecology [6, 4, 10]. If the environment favors for some time one species and then
another one in a balanced way, then one may expect the two species to coexist. A
large part of the literature is dedicated to the study of the asymptotic behavior of
theses dynamics, with two or more species, under periodic removal rate [16, 1, 7, 9]
or periodic nutrient input [6, 14, 4, 17] or both [18, 11].

Indeed, when a vessel with two species of concentrations xi(t) at time t (i = 1, 2)
is fed with a periodic removal rate, the system can exhibit the following different
behaviors :

• The two species are washed out, that is limt→+∞ xi(t) = 0, for i = 1, 2.
• One species only is washed out while the other survives.
• The two species coexist, that is xi(t) > ε > 0, for t ≥ 0 and i = 1, 2, for some
ε > 0.

Those behaviors can be predicted using the Floquet theory. Namely, the Flo-
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quet exponents allow to determine if the periodic solutions with only one species are
unstable. If both of these single-species periodic solutions are hyperbolic unstable,
then the theory of competitive planar systems [2] applied to the chemostat model
shows that any positive solution converges asymptotically to a periodic solution with
species coexistence (a complete description of this theory is given for instance in [15]).
However, the possibility of having several attracting periodic orbits remains an open
problem. Although there is no theoretical obstruction for this, no such example has
been yet exhibited in the literature. Let us underline that for a given set of species,
the condition for the single-species periodic solutions to be unstable depends on the
periodic removal rate function, and not only on its mean value. Differently to the sta-
tionary environment for which the single break-even concentrations determine which
species can survive, the shapes of the growth functions come into play in periodic
environments.

In the present work, we investigate how having species whose growth functions
share similar shapes allow their coexistence and the multiplicity of neutrally stable
periodic orbits (with two or more species). We do not assume the single-species
periodic solutions to be hyperbolic, and generalize in a functional way the neutral
stability condition in constant environment (which is given by the equality of break-
even concentrations). The construction that we propose here is non-generic, relying
on a relatively strong condition on the growth functions that is deemed as unfeasible
in real life. However, one may face practical situations close from this non-generic
case, which may provide a better understanding of the periodic chemostat over a long
duration.

Our construction lies on the concept of ”taxon”, which in this paper, denotes a
group of species whose growth functions share the same shape, in a sense which is
made precise later on. We show that the fittest species from each taxon behave like
one species to some extent, and when they can coexist, then there exists an infinite
number of periodic orbits. Moreover, we also study the case when two taxa are present
in the chemostat. In this situation, we show that the fittest species from each taxon
can coexist all together, under an additional condition of instability of single-species
periodic solutions chosen in each taxon.

The paper is organized as follows. In the next Section 2, we recall the equa-
tions of the model with the usual assumptions and give some useful definitions and
preliminary results. In Section 3, we present our new conditions with a concept of
”taxon” and show some relevant properties. Sections 4 and 5 give our main results,
first for a single taxon and then for competition between taxa. Finally, we presents
and discusses several numerical simulations to illustrate our results Section 6, before
drawing conclusions in Section 7.

2. The setting. We consider the multi-species chemostat model written as fol-
lows

(2.1)
ṡ = u(t)(sin − s)−

n∑
i=1

µi(s)

Yi
xi,

ẋi = (µi(s)− u(t))xi, 1 ≤ i ≤ n,

(with n ≥ 2) where s is the substrate concentration, sin the input substrate concen-
tration and xi (1 ≤ i ≤ n) are the respective concentrations of the n populations. We
recall the well-known fact that the yield coefficients Yi, 1 ≤ i ≤ n can be taken equal
to one without loss of generality, by a change of variables (xi/Yi replaced by xi). As
usual, the growth functions µi(·) satisfy the following properties.
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Assumption 2.1. For any i = 1, . . . , n, µi is a C1 increasing function from R+ to
R+ with µi(0) = 0.

Under this assumption, we define classically the break-even concentration for each
species i = 1, . . . , n as the function

λi(v) := sup {s ∈ R+; µi(s) < v} , v > 0.

Note that when λi(v) is finite, one has necessarily µi(λi(v)) = v.

Assumption 2.2. The removal rate u(·) is a measurable function from [0,+∞) to
[u−, u+] with 0 < u− ≤ u+, which is T -periodic (with 0 < T < +∞). We posit

ū =
1

T

∫ T

0

u(t) dt.

Consider now the variable b := s+
∑n
i=1 xi, whose dynamics is given by

(2.2) ḃ = u(t)(sin − b).

Under Assumption 2.2, one has u(t) ≥ u− > 0 at any t ≥ 0 and one can deduce that
the solution of (2.2) converges exponentially to sin, independently of the initial con-
dition of (2.1). With Assumption 2.1, the solutions of (2.1) are uniquely defined and
bounded for any non-negative initial condition. Therefore the asymptotic behavior of
the n+ 1 dimensional system (2.1) is determined by the n dimensional dynamics

(2.3) ẋi =

µi
sin − n∑

j=1

xj

− u(t)

xi, 1 ≤ i ≤ n,

which leaves the set

∆0 :=

{
x ∈ Rn+ ; such that

n∑
i=1

xi ≤ sin

}

forwardly invariant. In the remaining, we shall consider the asymptotic dynamic (2.3)
on the set ∆0 only (which is biology relevant in the chemostat framework).

Note that solutions of (2.3) with xi(0) = 0 for some i are such that xi(t) = 0 for
any t. Therefore, by uniqueness of solutions of (2.3), we deduce that a solution x(·)
of (2.3) with a positive initial condition has to stay positive for any time.

We give below a Lemma that will be useful in the rest of the paper.

Lemma 2.3. There exists a number s ∈ (0, sin) such that the subset

∆ :=

{
x ∈ ∆0 ; sin −

n∑
i=1

xi > s

}

is forward invariant and attractive by the dynamics (2.3).
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Proof. Posit s = sin −
∑n
i=1 xi. Since x is a solution of (2.3) and the set ∆0 is

forward invariant, it comes

ṡ = −
n∑
i=1

µi(s)xi(t) + u(t)(sin − s)

≥ −
(

max
1≤i≤n

µi(s)

) n∑
i=1

xi(t) + u(t)(sin − s)

≥ −
(

max
1≤i≤n

µi(s)

)
sin + u(t)(sin − s)

≥ g(s) := −
(

max
1≤i≤n

µi(s)

)
sin + u−(sin − s).

The function g is continuous and decreasing with g(0) = u−sin > 0 and g(sin) < 0.
By the intermediate value Theorem, there exists a number sm ∈ (0, sin) such that
g(sm) = 0 with g(s) > 0 for s < sm. Therefore, for any s ∈ (0, sm), the domain
{s > s} is forwardly invariant and attractive by the dynamics of s, which amounts to
claim that the subset ∆ is forward invariant and attractive by the dynamics (2.3).

3. A taxonomic assumption and its consequences. We shall consider sub-
sets I ⊂ {1, . . . , n} of at least two species, whose growth functions µi (i ∈ I) share a
common property, defining what we propose to call a taxon in the present context.

Definition 3.1. A subset of populations I ⊂ {1, . . . , n} belong to a same taxon if
there exists a C1 increasing function ϕ with ϕ(s) < u− and ϕ(sin) > u+, and numbers
αi > 0, βi ∈ R for i ∈ I such that

(3.1) µi(s) = αiϕ(s) + βi, s ∈ [s, sin], i ∈ I.

We shall say that such a function ϕ is a generating growth function of the taxon. We
also define the subset I? ⊂ I, which is such that

I? := {i ∈ I; λi(ū) = min
j∈I

λj(ū)}.

In this definition, the choice of the generating function ϕ is not unique but it
can typically represent a canonical growth function that verifies Assumption 2.1 so
that the growth functions µi among a taxon differ only by an affine transformation
away for 0 i.e. on the interval [s, sin]. Note that condition (3.1) cannot be imposed
for any s > 0 if βi 6= 0, because growth functions have to be equal to 0 at the origin
(Assumption 2.1). Several examples of growth functions that satisfy Assumption 2.1
and condition (3.1) will be given in Section 6. Let us point out that this condition
does not prevent the graphs of the functions µi to cross on the domain [s, sin].

The second part of Definition 3.1 concerns the subset I? ⊂ I, which is made of all
the species that share the same minimal break-even concentration. In some sense, the
set I? contains the fittest species, as these are the surviving species in the autonomous
chemostat model [5]. Generically, the set I? is reduced to a singleton, but we shall
study in this work the non-generic situation where more than one species belong to
I?. Let us recall from [15] that sharing the same break-even concentration does not
ensure in general the existence of periodic orbits with coexistence: the instability of
periodic solutions with single species is required, which relies on an interplay between
the shapes of the growth functions and the time-varying removal rate.
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For convenience, we shall define some auxiliary numbers. The function ϕ being
increasing with ϕ(s) < u− and ϕ(sin) > u+, and as ū ∈ [u−, u+], there exists an
unique s̄ ∈ (s, sin) such that

(3.2) ϕ(s̄) = ū,

and for any i ∈ I we define the numbers

(3.3) γi := α−1i (µi(s̄)− ū) =
βi
αi

+ ū
(
1− α−1i

)
.

Remark 3.2. We have for any i ∈ I that µi(λi(ū)) = ū, which is equivalent to
write

ϕ(λi(ū)) = α−1i (ū− βi) = ū− γi, = ϕ(s̄)− γi.

Since the generating growth function ϕ is increasing, a higher value γi corresponds to
a lower break-even concentration λi. In particular, we have that i ∈ I? exactly when
γi = maxj∈I γj .

The key point in our study will be to consider particular ratios of powers of species
concentrations, for species that belong to I, defined as follows

ρij :=
αi
√
xi

αj
√
xj
, i, j ∈ I.

The dynamics of these variables present some particular properties, as shown in the
next Proposition.

Proposition 3.3. Let I be a subset of populations that belong to a same taxon.
For any solution positive solution in ∆, the dynamics of the ratios ρij are as follows

(3.4) ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I.

Proof. Let us first differentiate the equality αj
√
xjρij = αi

√
xi with respect to t:

1

αj
x

1
αj
−1

j ẋjρij + x
1
αj

j ρ̇ij =
1

αi
x

1
αi
−1

i ẋi, i, j ∈ I

and replace ẋk for k = i, j by the expression (αkϕ(s(t)) + βk − u(t))xk. One obtains

x
1
αj

j

(
ϕ(s(t)) +

βj
αj
− α−1j u(t)

)
ρij + x

1
αj

j ρ̇ij = x
1
αi
i

(
ϕ(s(t)) +

βi
αi
− α−1i u(t)

)
for i, j ∈ I. Multiplying by x

αj
j , one can write

ρ̇ij =

(
βi
αi
− βj
αi
− u(t)(α−1i − α1

j)

)
ρij , i, j ∈ I.

Finally, from the definition (3.3) of numbers γk, k ∈ i, j, one can also write

ρ̇ij =
(
γi − γj + (ū− u(t))(α−1i − α

−1
j )
)
ρij , i, j ∈ I.
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The dynamics (3.4) of the ratios ρij within a taxon presents thus the remarkable
feature that the time evolution of each ratio depends only on its initial value and
the function u, i.e. their dynamics are decoupled. As a consequence, one obtains the
following properties of the solutions of (2.3).

Proposition 3.4. Let I be a subset of populations that belongs to a same taxon.
For any positive solution in ∆, one has

1. For i, j in I?, ρij are periodic functions.
2. For i ∈ I \ I?, xi converges asymptotically to 0.
3. If lim inft>0 xi(t) > 0 for some i ∈ I?, then lim inft>0 xj(t) > 0 for any other
j ∈ I?.

Proof. From (3.4), one obtains the expression

d

dt
log ρij = (γi − γj) + (ū− u(t))(α−1i − α

−1
j ), t ≥ 0

that we integrate between t and t+ T :

log ρij(t+ T ) = log ρij(t) + (γi − γj)T, t ≥ 0

which gives equivalently

ρij(t+ T ) = ρij(t)e
(γi−γj)T , t ≥ 0.

Then, for i, j ∈ I?, γi = γj and the function ρij is thus periodic. If i /∈ I?, for any
j ∈ I?, one has γj > γi (see Remark 3.2) and thus xi(t) → 0 for t → +∞. The last
point of the Proposition is a straightforward consequence of point 1.

This result states that the Competitive Exclusion Principle occurs within a taxon
in the periodic chemostat. It also means that when one or several species of a same
taxon persist in a periodic chemostat, it can be invaded by a new one belonging
to the same taxon preserving the coexistence of all resident populations, under the
condition that all species have the same minimal break even concentration (for the
average removal rate). Diversity can be then (theoretically) augmented within a same
taxon. Once one has shown that ratios are periodic functions, it is not surprising that
one could obtain coexistence of species. However, one has to study the asymptotic
behavior of the total biomass within a taxon to show the effective convergence of the
solutions to a periodic orbit in Rn+, which is the matter of the next sections.

The (non-generic) property of having identical break-even concentrations that
implies coexistence of species is already known in the classical chemostat model with
constant removal rate (see for instance [5]). However, as we have recalled earlier, this
property does not guarantee the coexistence under periodic removal rate. Instead,
integral conditions which depends on the periodic function u have to be fulfilled
[15]. Here, the remarkable feature within a taxon is that under the simple condition
of equal break-even concentrations, coexistence can be guaranteed whatever is the
periodic function u (provided that its average value is equal to the fixed value ū). This
property presents thus a robustness with respect to the removal rate u(·) fluctuating
about its mean value.

Now and for the rest of the paper, we shall assume that each species population
can persist alone, which is ensured by the following hypothesis.

Assumption 3.5. One has µi(sin) > ū for any i = 1, . . . , n.
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4. Multiplicity of periodic solutions within a single taxon. In this sec-
tion, we consider that all the species belong to a same taxon. Let us underline that we
deal with dynamics in Rn+ (with n possibly larger than 2), for which the mathematical
tools for studying asymptotic periodic solutions that are specific to planar dynamics
[2] do not apply here. In the proof of the coming results, we shall exploit the re-
sults of Proposition 3.4 to rewrite the dynamics of each species as a non-autonomous
dynamical system and use the theory of asymptotic periodic semi-flows [19].

Proposition 4.1. Assume that the whole set I = {1, . . . , n} of populations belong
to a same taxon. Then for any positive initial condition in ∆, the solution of (2.3)
converges asymptotically to a periodic solution composed of all species in I?, the other
species being washout. Moreover, if I? is not reduced to a singleton, the system (2.3)
admits an infinite number of periodic solutions in ∆ with distinct orbits, which depend
on the initial proportions of species in I? only.

Proof. Let x(·) be a positive solution of (2.3) in ∆ and ρij(·), i, j ∈ I, be the
corresponding solutions of (3.4). Take i? in I? such that

αi? = min
i∈I?

αi.

We show that xi? converges asymptotically to a positive periodic solution.

The variable xi? can be written as the solution of the non-autonomous scalar
dynamics

ẋi? = (f(t, xi?)− u(t))xi?

where

f(t, y) := µi?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi? −

∑
i/∈I?

xi(t)

)
.

Let µ̃i? be a C1 increasing extension of the function µi? for negative arguments, and
consider the dynamics

(4.1) ẏ = (f̃(t, y)− u(t))y

on R, where f̃ consists in replacing µi? by µ̃i? in the expression of the function f . Note
that the choice of xi? implies that one has αi/αi? ≥ 1 for any i ∈ I?. Therefore, f̃ is
Lipschitz with respect to y and the solutions of (4.1) are well defined. At y = sin, the
argument of µ̃i? is negative, but as µi(0) = 0 and µ̃i? is increasing, one has necessarily
µ̃i? < 0 for negative arguments, and then f̃(t, sin) ≤ 0 for any t ≥ 0. The set [0, sin]
is thus forwardly invariant. Clearly, xi? is the solution of (4.1) for the initial value
y(0) = xi?(0) (which belongs to [0, sin]).

According to Proposition 3.4, the functions ρii? for i ∈ I? are T -periodic and
variables xi for i /∈ I? converge asymptotically to 0. We then consider the limiting
function

f̃l(t, y) := µ̃i?

(
sin −

∑
i∈I?

ρii?(t)αi y
αi
αi?

)
7



which is T -periodic and verifies

lim
t→+∞

|f̃(t, y)y − f̃l(t, y)y| = 0 uniformly for y ∈ [0, sin].

Consequently, by Proposition 3.2 in [19], the non-autonomous semi-flow of (4.1) in
[0, sin] is asymptotically periodic with limit periodic semi-flow of

(4.2) ẏ = (f̃l(t, y)− u(t))y

(for which [0, sin] is also forwardly invariant).

We follow now the approach exposed in [15] for one dimensional periodic dynam-
ics, but adapted here to our context. Let us consider the Poincaré map P associated
to the periodic dynamics (4.2)

P : y0 ∈ [0, sin] 7→ y(T, y0) ∈ [0, sin]

where y(·, y0) denotes the solution of (4.2) with y(0) = y0. One has clearly P (0) = 0,
and from the Theorem of continuous dependency of the solution of ordinary differential
equation with respect to the initial condition, P is continuously differentiable with
P ′(y0) = z(T ), where z(·) is solution of

ż =
(
∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t)

)
z, z(0) = 1

that is

z(T ) = exp

(∫ T

0

∂y f̃l(t, y(t, y0))y(t, y0) + f̃l(t, y(t, y0))− u(t) dt

)
> 0.

The map P is thus increasing and one has P ′(0) = exp
(
T (µi?(sin)− ū)

)
> 1 (by

Assumption 3.5). So 0 is a repulsive fixed point of the map P , and for any y0 > 0, the
sequence

{
P ky0

}
k∈N is strictly monotonic and bounded, thus converging to a positive

fixed point y? of P . Moreover, as y(·, y?) is periodic, one has∫ T

0

f̃l(t, y(t, y?))− u(t) dt = 0

and thus

P ′(ȳ) = exp

(∫ T

0

∂y f̃l(t, y
?)y(t, y?)dt

)
.

As the functions µ̃i are assumed to be increasing, one has µ̃′i? > 0 which implies
∂y f̃l < 0, and thus P ′(ȳ) < 1. Therefore the map y 7→ P (y)− y is decreasing at each
root, which implies that it cannot have more than one root. We conclude that the
(positive) fixed point y? is unique.

As P admits a finite number of fixed points (indeed only one), one can apply the
results about asymptotically autonomous discrete dynamical systems (Theorem 2.4
in [19]), from which one gets

lim
k→+∞

xi?(t+ kT ) = y(t, y?), t ∈ [0, T ].
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and we conclude that the solution x(·) converges asymptotically to a periodic solution
of (2.3) in ∆, for which all species in I? are present, the other species being excluded:

lim
k→+∞

|x(t+ kT )− xp(t)| = 0, t ∈ [0, T ]

where xp(·) is the periodic solution given by

xpi (t) =

{
ρii?(t)αi y(t, y?)

αi
αi? > 0, i ∈ I?,

0, i /∈ I?,

for t ∈ [0, T ].

Consider now another positive initial condition in ∆ but with the same initial
ratios ρii?(0) for i ∈ I?. According to (3.4), the functions ρii? (i ∈ I?) are identical and
consequently the limiting periodic dynamics (4.2) is also identical. As this later one
admits an unique periodic solution, we conclude that the solution of (2.3) converges
asymptotically to the same periodic solution xp(·).

We now show how to construct an infinity of distinct periodic solutions, when I?

is not reduced to a singleton. Consider a sequence {ρk0}k∈N of positive vectors in Rn
such that

(4.3) max
i∈I?\{i?}

(ρk+1
0 )i > max

t∈[0,T ]
max

i∈I?\{i?}
ρkii?(t), k ∈ N

where ρkii?(·) are the periodic solutions of (3.4) with ρkii?(0) = (ρk0)i for i ∈ I? \ {i?}.
Condition (4.3) imposes that for each i ∈ I? \ {i?}, the orbits γ+(ρkii?) = {ρkii?(t), t ∈
[0, T ]} of (3.4) are all disjoint for k ∈ N. Moreover, for each k, there exists an unique
periodic solution xpk(·) of (2.3) in ∆ for which all species in I? are present with
ratios given by the functions ρkii? . This implies that the periodic orbits γ+(xpk) =
{xpk(t), t ∈ [0, T ]}, k ∈ N, of (2.3) are all disjoint. Indeed, if γ+(xpk) = γ+(xpl) for
some k 6= l, there should exist τ ≥ 0 such that xpk(t) = xpl(t + τ) for any t ≥ 0. In

particular, one should have xpki (t) = xpli (t + τ) for i 6= i? in I? and any t ≥ 0, but
as the orbits γ+(ρkii?), γ+(ρlii?) are disjoint, one should have ρkii?(t + τ) 6= ρlii?(t) for

some t, that is xpki? (t) 6= xpli?(t + τ) and thus a contradiction with with the fact that
the orbits are non distinct.

The results of Proposition 4.1 are twofold. First, they complete those of Proposi-
tion 3.4, since we now have the persistence of the species of I?, while the less fit species
of I \ I? are washed-out. This stronger form of the competitive exclusion principle
comes from Assumption 3.5 and the fact that there is no species outside the taxon
I. This result allows coexistence in the periodic setting under the non-generic as-
sumption that the surviving species belong to I?. It generalizes known similar results
in the non-autonomous setting [5]. Then, the second aspect of this result concerns
the number of distinct periodic coexistence solutions of the system (2.3), which are
a continuum of neutrally stable periodic solutions. Proposition 4.1 shows that if the
growth functions are close enough to each other, in the sense that the corresponding
species belong to I?, then there are infinitely many periodic coexistence solutions. We
may expect that eventual sufficient conditions for uniqueness forbid growth functions
to be too close in a sense close to ours.
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5. Multiplicity of periodic solutions with more than one taxon. In this
section, we show that it is possible to have coexistence of two taxa in competition, each
of them preserving the proportions of species having the same break-even concentra-
tions, leading to an infinite number of periodic orbits. Roughly speaking, the idea of
the proof of Proposition 5.2 below is to consider a non-autonomous planar system that
is asymptotically periodic, and to revisit the results about periodic planar dynamics
in this framework, with the help of the theory of asymptotic periodic semi-flows. For
technicalities, we need in this section the following additional hypothesis.

Assumption 5.1. The functions µi, i ∈ {1, . . . , n}, are analytic at any s > s, and
u is an analytic function of t.

For convenience, we shall denote for any integrable scalar function ζ(·) the average
quantity by

〈ζ〉T :=
1

T

∫ T

0

ζ(t)dt.

Proposition 5.2. Assume that one has {1, . . . , n} = Ia t Ib, where species in
Ia, resp. Ib, belong to a same taxon. For any fixed positive initial condition in ∆,
let (spa(·), xpa(·)), resp. (spb(·), x

p
b(·)) be the asymptotic periodic solution of (2.1) when

only species in Ia, resp. Ib, are initially present. If the conditions

λba := 〈µi(spb)〉T − ū > 0, i ∈ I?a ,(5.1)

λab := 〈µi(spa)〉T − ū > 0, i ∈ I?b ,(5.2)

are fulfilled, then the solution of (2.3) converges asymptotically to a periodic solution
for which all species in I?a and I?b are present, the other species being washed out.
Moreover, when there exists at least one positive initial condition satisfying the above
conditions, and at least one of the subsets I?a , I?b is not reduced to a singleton, there
exists an infinity of distinct periodic orbits of (2.3) for which all the species in I?a t I?b
are present.

Proof. The taxa are characterized by generating functions ϕa, ϕb and numbers
αi > 0, βi ≥ 0 such that

µi(s) = αiϕa(s) + βi, i ∈ Ia, µi(s) = αiϕb(s) + βi, i ∈ Ib.

Take i?a ∈ I?a and i?b ∈ I?b . Let x(·) be a positive solution of (2.3) in ∆ and define the
functions, for i ∈ I?a t I?b

(5.3) ri(t) =

{
ρii?a(t), i ∈ I?a ,
ρii?b (t), i ∈ I?b ,

t ≥ 0.

Then, variables xi?a , xi?b are solutions of the non-autonomous planar dynamics

ẏa = (fa(t, ya, yb)− u(t))ya,
ẏb = (fb(t, ya, yb)− u(t))yb,

with

fa(t, ya, yb) := µi?a(s(t, ya, yb)), fb(t, ya, yb) := µi?b (s(t, ya, yb)),
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where

s(t, ya, yb) = sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?a
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?
b

b −
∑

i/∈I?atI?b

xi(t).

Let µ̃i?a , µ̃i?b be C1 increasing extensions of the functions µi?a , µi?b for negative argu-
ments, and consider the dynamics

(5.4)
ẏa = (f̃a(t, ya, yb)− u(t))ya,

ẏb = (f̃b(t, ya, yb)− u(t))yb,

in the plane, where the functions f̃a, f̃b are defined with the expressions of fa, fb
replacing the functions µi?a , µi?b by their extensions µ̃i?a , µ̃i?b . As one has αi/αi?a ≥ 1
for i ∈ I?a , and αi/αi?b ≥ 1 for i ∈ I?b , this dynamics is Lipschitz in (ya, yb). Moreover
the set

S := [0, sin]× [0, sin]

is forwardly invariant as one has fa(t, sin, yb) < 0, fb(t, ya, sin) < 0 for any (ya, yb) ∈ S
and t ≥ 0. Solutions of (5.4) are thus well defined in S and unique. The pair
(xi?a(·), xi?b (·)) is such a solution for (ya(0), yb(0)) = (xi?a(0), xi?b (0)).

With Proposition 3.4, we know that the functions ri with i ∈ I?a t I?b are T -
periodic, and variables xi with i /∈ I?a t I?b converge asymptotically to 0. We thus
consider the limiting dynamics

(5.5)
ẏa = (f̃ la(t, ya, yb)− u(t))ya,

ẏb = (f̃ lb(t, ya, yb)− u(t))yb,

where

f̃ la(t, ya, yb) := µ̃i?a(sl(t, ya, yb)), f̃ lb(t, ya, yb) := µ̃i?b (sl(t, ya, yb))

with

sl(t, ya, yb) := sin −
∑
i∈I?a

ri(t)
αiy

αi
αi?
a −

∑
i∈I?b

ri(t)
αiy

αi
αi?

b ,

which are time periodic functions. One has also

lim
t→+∞

|(f̃a(t, ya, yb)− f̃ la(t, ya, yb))ya| = lim
t→+∞

|(f̃b(t, ya, yb)− f̃ lb(t, ya, yb))yb| = 0

uniformly for (ya, yb) ∈ S. Therefore, the non-autonomous semi-flow of (5.4) in S is
asymptotically periodic with limit periodic semi-flow of (5.5) (see Proposition 3.2 in
[19]). The system (5.5) is competitive and we can apply the results of the literature
about periodic competitive planar systems, which states that any bounded solution
converges to a periodic solution (ypa(·), ypb (·)) (see for instance Theorem 4.2 in [15]).
Let P be the Poincaré map associated to this dynamics

P : Y0 ∈ S 7→ Y (T, Y0) ∈ S

where Y (·, Y0) denotes the solution (ya(·), yb(·)) of (5.5) with (ya(0), yb(0)) = Y0.
On the axis ya = 0 or yb = 0, the dynamics is with a single taxon. One can then
reproduce the arguments of the proof of Proposition 4.1 to show that there are unique
fixed points Y ?a = (y?a, 0), Y ?b = (0, y?b ) of P in S with y?a > 0, y?b > 0. Moreover,

11



one has y?a = (xpa)i?a(0), y?b = (xpb)i?b (0), where xpa(·), xpb(·) are the asymptotic periodic
solutions of (2.3) for the initial conditions ξ, ζ

ξi =

{
xi(0), i ∈ Ia,
0, i ∈ Ib,

ζi =

{
0, i ∈ Ia,
xi(0), i ∈ Ib

(remind from Proposition 3.4 that functions ρii?a (i ∈ Ia) or ρii?b (i ∈ Ib) remain the
same).

The linearized dynamics Ẏ = M(t)Y of (5.5) is given by the matrix

M(t) =

[
a(t) b(t)
c(t) d(t)

]
with

a(t) = f̃ la(t, ya(t), yb(t))− u(t) + ∂ya f̃
l
a(yt, ya(t), yb(t))ya(t),

b(t) = ∂yb f̃
l
a(t, ya(t), yb(t))ya(t),

c(t) = ∂ya f̃
l
b(t, ya(t), yb(t))yb(t),

d(t) = f̃ lb(t, ya(t), yb(t))− u(t) + ∂yb f̃
l
b(t, ya(t), yb(t))yb(t)).

Along the periodic solution (xpa(·), 0), one has

M(t) =

[
? ?
0 f lb(t, ((x

p
a)i?a(t), 0)− u(t)

]
for which the characteristics multiplier exp

∫ T
0
f lb(t, ((x

p
a)i?a(t), 0) − u(t) dt is equal to

exp(Tλba) and larger than 1 under condition (5.1). The fixed point Y ?a is thus hy-
perbolic repulsive. In a similar way, Y ?b is an hyperbolic repulsive fixed point under
condition (5.2). This implies that Y ?a and Y ?a are isolated fixed points of P .

For Y0 = 0, the solution of (5.5) is identically null and one has

M(t) =

[
µi?a(sin)− u(t) 0

0 µi?b (sin)− u(t)

]
.

The characteristics multipliers are thus exp
∫ T
0
µi?a(sin) − y(t) dt, exp

∫ T
0
µi?b (sin) −

y(t) dt which are larger than one under Assumption 3.5. The zero solution is thus
repulsive.

Along any positive solution ya(·), yb(·), note that one has b(t) < 0 and c(t) < 0
at any t ∈ [0, T ]. Then, one has Ẏ1 > 0 for Y1 = 0 and Y2 < 0, and Ẏ2 < 0 for Y1 > 0
and Y2 = 0. Therefore, the second and fourth quadrant are invariant by the linear
dynamics Ẏ = M(t)Y , which implies that the matrix P ′(Y0) has strictly positive
diagonal elements and strictly negative off-diagonal elements for a positive Y0 ∈ S.
Let S ′ = {Y ∈ S; sl(0, Y ) ∈ (s, sin]}. By Lemma 2.3, S ′ is invariant by P and any
fixed point of P belongs to S ′, including Y ?a and Y ?b . Following the arguments given in
[2], the positive fixed points of P lie on a continuous curve Γ in S ′, which connects the
fixed points Y ?a , Y ?b . Under Assumption 5.1, x(·) is analytic and the functions ri(·) as
well. Therefore, the map P is analytic on S ′. Then, the curve Γ is also analytic (see
[2, 4]). If there were an infinite number of fixed points of P in S then all the points
of the curve Γ will be fixed points by analyticity, which contradicts the fact that Y ?a
and Y ?b are isolated fixed points.
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Finally, as P has a finite number of fixed points on S, we can apply the results
about asymptotically autonomous discrete dynamical systems (Theorem 2.4 in [19]),
from which one gets

lim
k→+∞

(xi?a(t+ kT ), xi?b (t+ kT )) = Y (T, Y ?), t ∈ [0, T ].

where Y ? is a fixed point of P in S. As the fixed points on the axes 0, Y ?a and Y ?b are
all repulsive, we conclude that Y ? is positive, and that x(·) converges asymptotically
to the periodic solution xp(·) given by

xpi (t) =


ri(t)

αiya(t, Y ?)
αi
αi?a > 0, i ∈ I?a ,

ri(t)
αiyb(t, Y

?)
αi
αi?
b > 0, i ∈ I?b ,

0, i /∈ I?a t I?b ,

for t ∈ [0, T ].

When I?a is not reduced to a singleton, take i†a 6= i?a in I?a and consider perturba-
tions xε(·) of the solution x(·), as solutions of (2.3) for the initial condition

(5.6) xεi(0) =

{
xi(0), i 6= i†a,

(ri†a(0) + ε)
a
i
†
axi?a(0)

αi
αi?a , i = i†a,

with ε > 0. By continuity of solutions of (2.1) with respect to the initial condition,
there exists ε̄ > 0 such that for any ε ∈ (0, ε̄) xε(0) belongs to ∆ and conditions
(5.1), (5.2) are fulfilled for this new initial condition. As before, we deduce that xε(·)
converges asymptotically to a periodic solution xε,p(·) for which all species in I?a and
I?b are present.

Let ρεij be the ratio functions for the initial condition xεi(0). Note from (5.6) that
one has ρε

i†ai?a
(0) = ρi†ai?a

(0) + ε. One gets from (3.4)

ρε
i†ai?a

(t) = ρε
i†ai?a

(0) exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ

= ρi†ai?a
(t) + ε exp

∫ t

0

(ū− u(τ)
(
α−1
i†a
− α−1i?a

)
dτ, t ≥ 0.

Therefore, the orbits γ+(ρε
i†ai?a

) for ε ∈ (0, ε̄) are all distinct and we deduce, as in

the proof of Proposition 4.1 that the orbits of the periodic solutions γ+(xε,p) are all
distinct.

Remark 5.3. Conditions (5.1), (5.2) are independent of the choice of i ∈ I?a , I?b .
Indeed, let s̄a = λi(ū) which is identical for any i ∈ I?a , and one has

〈µi(spb)〉T − ū = αi〈ϕa(spb)〉T + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T + αiϕa(s̄a) + βi − ū
= αi〈ϕa(spb)− ϕa(s̄a)〉T

(using the property ū = µi(s̄a) = αiϕa(s̄a)+βi for i ∈ I?a). The sign of 〈µi(spb)〉T−ū is
thus independent of i ∈ I?a , the numbers αi being positive. One obtains symmetrically
the same property for the sign of 〈µi(spa)〉T − ū with i ∈ I?b .
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Similarly to Proposition 4.1, Proposition 5.2 generalizes known results providing
a continuum of neutrally stable periodic solutions of system (2.3). Indeed, when each
taxon contains only one species, we recover exactly the results in [15]. However, thanks
to our taxonomic assumptions, we are able to extend it from two species to two taxa,
under very similar conditions. Then, we are also able to establish the existence of an
infinite number of periodic coexistence solutions, generalizing the result of Proposition
4.1 from one to two taxa.

6. Numerical illustrations. In this section, we illustrate numerically our re-
sults with the class of Hill functions [8]

µ(s) =
µmaxs

p

Kp + sp

that are parameterized by the three positive numbers µmax, K and p. This class of
increasing growth functions is quite popular in microbiology, pharmacology or bio-
chemistry for its flexibility and effectiveness in fitting experimental data, and also
because it enlarges the well known class of Monod functions

µ(s) =
µmaxs

K + s

as the particular case of p equal to 1. The parameter p measures in some way a
distance from the Monod model. Quite often, practitioners conduct experiments first
with large values of s to estimate the maximal growth rate µmax = lims→+∞ µ(s) and
then look for the value of s for which the growth rate is equal to µmax/2. One can
straightforwardly check taht this value is equal to the affinity constant K (sometimes
also called the half-saturation constant), whatever is p. This is enough to identify the
Monod growth function, but without additional data, different candidates of growth
functions in the class of Hill functions could also suit, depending on the parameter p.

To obtain a variety of different situations, we have considered three generating
functions with p equal to 2 or 4

ϕa(s) =
mas

2

K2
a + s2

, ϕb(s) =
mbs

4

K4
b + s4

, ϕc(s) =
mcs

2

K2
c + s2

.(6.1)

with parameters given in Table 6.1, so that one of them (ϕb) has a significantly
different shape. Graphs of the functions ϕa, ϕb, ϕc are depicted on Figure 6.1. For
p > 1, the graphs of theses functions are convex up to K and then concave for larger
values. The larger is p, the more the convexity/concavity is pronounced, as one can
see on Figure 6.1. Mixing species from taxa a and b or from taxa a and c allows
then to generate contrasted situations. Imposing the same constant K is a way to
consider species having similar affinity for the resource and to focus on the impact of
the different shapes of the growth functions away from this point. We have generated
nine growth functions within these three taxa with characteristic numbers given in
Table 6.2 and s = 0.5. Let us denote the sets of indices of species belonging to a
same taxon Ia = {1, 2, 3}, Ib = {4, 5, 6}, Ic = {7, 8, 9}. The graphs of these functions
are depicted in Figure 6.2, where we have considered for each of these nine growth
functions a C1 extension for s ≤ s as a polynomial increasing on [0, s] and null at
0. Clearly, Assumptions 2.1, 2.2, 3.5, 5.1 are satisfied. Within a taxon, each species
i is characterized by the parameters αi and βi following Equation (3.1). Since αi
multiplies the generating growth function, it affects more the behavior of the species
for large values of the growth rates, hence for larger values of s (the larger is αi,
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the higher is the maximal growth rate). Since βi is added to the generating growth
function, its impact is greater for smaller values of the growth rates hence at small
values of s (the lower is βi, the smaller is the growth function). These effects can be
seen on Table 6.2 and Figure 6.2.

The operating conditions have been chosen as follows

sin = 4, ū = 0.8, T = 10

where the periodic removal rate is

(6.2) u(t) = ū+ 0.2 sin

(
2πt

T

)

For these values, we have checked in all our simulations that the solutions remain in
the set ∆ with s = 0.5. For the chosen value of ū, numbers s̄ and γi defined in (3.2)
and (3.3) are given in Table 6.3 for each taxon. Note that we do not impose the value
s̄ to be the same for each taxon. Accordingly to Remark 3.2, the fittest species within
each taxon are given by the subsets of indices I?a = {1, 2}, I?b = {4, 5}, I?c = {8, 9}.

i a b c

mi 2 2.95 1.8

Ki

√
3
√

3
√

3

Table 6.1: Parameters defining the generating functions ϕa, ϕb, ϕc

i 1 2 3 4 5 6 7 8 9

ϕ ϕa ϕb ϕc
αi 0.9 1.15 0.85 0.8 1.05 0.6 0.9 1.1 0.7
βi 0.161 −0.0165 0.1455 0.232 0.0545 0.326 0.161 0.019 0.261

Table 6.2: Characteristic numbers of the nine growth functions with respect to their
taxon

species 1 2 3 4 5 6 7 8 9

ϕ ϕa ϕb ϕc
s̄ 1.28 1.30 1.40
γi 0.09 0.09 0.03 0.09 0.09 0.01 0.09 0.09 0.03

Table 6.3: For each taxon, numbers s̄ and γi (with ū = 0.8)
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Fig. 6.1: Graphs of the generating growth functions: ϕa and ϕc are close to each other
with ϕa slightly above ϕc, while ϕb has a different shape.
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(c) taxon Ic

Fig. 6.2: Graphs of the growth functions within each taxon. The orange and blue
growth functions reach the value ū for lower values of s than the green one, implying
that the species associated with the latter is expected to be washed-out by the two
other ones.

6.1. Simulations with species of a single taxon. To illustrate Proposition
4.1, we have run simulations with all the three species in each taxon. For various
initial conditions, we found the same asymptotic orbits with the same initial ratios
of species, as expected. We observed that species that are not the fittest within their
taxon i.e. that do not belong to I?a , I?b or I?c are washed-out in presence of all the
species in Ia, Ib or Ic respectively. On the opposite, species with the largest values of
γi coexist, that are 1 and 2 for taxon a, 4 and 5 for taxon b, and 7, 8 for taxon c (see
Table 6.3). To illustrate trajectories over time, we have chosen for simplicity uniform
initial distribution between species. Figure 6.3 shows how the green species 3, 6 or 9
are washed-out within their taxon, while trajectories of the orange and blue species
which coexist are more or less close to each other depending on the taxon. This is
related to the distance of their graphs (see Figure 6.2) or how close are the values
of αi (see Table 6.2). Additionally, Figure 6.4 represents the solutions in the phase
portrait for different initial distributions. It shows the multiplicity of periodic orbits
with coexistence of two species, which is the main result of the present work. For
different initial distributions, we obtained qualitatively the same behaviors but with
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orbits that are more or less elongated. This is explained by the fact that proportions
are periodically conserved since initial time (but not the total biomass). One can also
observe on Figure 6.4 that the size of the orbits depends on the taxon. This is related
to the amplitude of the periodic solutions: the more similar the species are (i.e. the
closer their graphs are ), the largest amplitudes are. This is why orbits with taxon b
are smaller than for the two other taxa.
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1.5
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(a) i ∈ Ia
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(b) i ∈ Ib
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(c) i ∈ Ic

Fig. 6.3: Simulations with species of the same taxon, with xi(0) = 0.5 for each i.
One species is washed-out by the two others. The curves for taxa a and c look alike,
related to the similarity between ϕa and ϕc.
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Fig. 6.4: Multiplicity of periodic orbits among a single taxon. The shape of the
periodic solutions varies according to the taxon.

6.2. Simulations with species of two different taxa. In this section, we
have simulated species from two different pairs of taxa. As explained formerly, we
have considered two contrasted situations: significantly different taxa (a and b) and
taxa relatively close to each other (a and c). Initial conditions have been chosen with
uniform distribution between the six species (three from each taxon), for simplicity.
We have first computed numerically numbers λba, λab defined in (5.1), (5.2):

λba = 0.012576 > 0, λab = 0.006272 > 0

According to Proposition 5.2, inter-taxa coexistence is thus possible as these two
numbers are positive for the periodic function (6.2). On Figure 6.5, one can see that
species that were washed-out when together with species of the same taxon (species
3 and 6, see Section 6.1) are also washed-out here, as expected. We have now four
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species from I?a ∪ I?b that coexist. Additional information about the transients are
revealed. One can observe that species from taxon b (4 and 5) are initially raising
faster than those of taxon a (1 and 2). This is due to the fact that the initial level s of
the resource is relatively large, which favors species from the taxon b as their growth
functions take larger values (see Figure 6.2). One can also observe that the time to
reach a quasi-periodic regime is much slower than in the previous simulations with a
single taxon. Note that there are twice as many species that coexist than before, and
that the transient dynamics is governed by a scalar dynamics (4.1) for the single taxon
case while it is now ruled by a two dimensional one (5.4) for which the transients can
be slower.
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(c) run for t ∈ [0, 2500]

Fig. 6.5: Simulations with xi(0) = 0.5, for i ∈ Ia ∪ Ib. Species 5 and 6 are washed-out
while the others (which do not belong to the same taxon) are able to coexist together.

We have then considered species of Ia in presence with those of Ic (Figure 6.6).
In this case, we computed the numbers

λca = 0.071 > 0, λac = −0.0639 < 0.

According to Proposition 5.2, inter-taxa coexistence is now no longer guaranteed.
However, as the number λca is positive, we deduce that taxon a can settle. However,
although taxon c seems closer from taxon a than b if one looks at their growth curves
only (Figure 6.2), any species from taxon c looses the competition with taxon a. here,
one needs to explicitly compute the sign of numbers λba and λcc to predict the issue
of the competition. Finally, only species 1 and 2 are asymptotically present, with a
transient speed similar to the simulations with the single taxon a (cf Figure 6.3a).
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Fig. 6.6: Simulations with xi(0) = 0.5, for i ∈ Ia ∪ Ic. Species 1 and 2 from the taxon
a coexist but wash-out all the other species.
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6.3. Simulations under approximate taxon condition. The conditions for
species to belong to a same taxon, and that some of them have identical numbers
γi, are not generic among all increasing growth functions. In the spirit of former
works [12, 3] for constant removal rate, we investigate here numerically cases where
the condition (3.1) is only approximately satisfied.

For this purpose, we considered an additional species labeled 2′ whose growth
function µ2′ is closed to µ2 but that does not belong to the taxon Ia. For the illus-
tration, we have simply taken µ2′ = µ2 + εη, where η is a smooth function null at 0
with η(λ2(ū)) > 0 that is not proportionate to ϕa, and ε is a small number.

Remark 6.1. In the particular case where the perturbation is such that µ2′ still
satisfies the taxonomic assumption with α2′ = α2 and γ2′ = γ2−ε (recall that γ2 = γ1),
it is possible to study how the perturbation propagates over time. Indeed, we have
from Proposition 3.3 that

ρ̇12′ =
(
ε+ (ū− u(t))(α−11 − α

−1
2 )
)
ρ12′ .

If x2(0) = x2′(0) and the other initial conditions are the same, we can integrate this
dynamics over k ∈ N periods from t = 0 and obtain the following comparison result:

ρ12′(kT ) = ρ12(kT )ekεT .

For the numerical illustration, we have taken η(s) = s
1+s and first run simulations

with species 1, 2 and 2′. For ε < 0, the species 2′ is asymptotically conducted to wash-
out. However, as one can see on Figure 6.7, the transients can be very long when µ2′ is
very close to µ2 so that the three species coexist in an almost periodic manner during
a long time horizon. On the opposite, for ε > 0, the species 2′ is the final winner of
the competition (Figure 6.8). However, it can take a long time for the other species
to decline, so that here also the three species coexist in an almost periodic manner
during a long time period.
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Fig. 6.7: Simulations with species 1, 2, 2′ together when ε < 0. Species 2′ is washed-
out after a transient regime whose length depend on ε.
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Fig. 6.8: Simulations with species 1, 2, 2′ together when ε > 0. Species 1 and 2 are
both washed-out after a transient regime whose length depend on ε.

Then, we have considered species of taxa Ia and Ib together, as before (Figure 6.5),
but where species 2 is replaced by species 2′. Figures 6.9, 6.10 show that depending
on the sign of ε, species 2′ belongs to the the final composition of the ecosystem or
not, and that the time necessary to distinguish this issue can be very long, even for
values of ε not extremely small. Note that coexistence of several species is maintained
in both cases. A message here is that the analysis of non generic situations, as we
do here, could be of some interest when facing cases likely to be closed from the non-
generic case, and we believe that this could be even more likely when considering a
large number of species.
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Fig. 6.9: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = −10−3. Species
2′ does not belong to I?a and is washed-out after a long transient regime.
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Fig. 6.10: Simulations with species 1, 2′, 3, 4, 5, 6 together when ε = 10−3. Now I?a
is reduced to species 2′, which is the only species of taxon a to persist.

7. Conclusion. In this work, we have proposed a taxonomic condition on growth
functions, that allows the coexistence under periodic removal rate of two or more
species with the same break-even concentrations within a single taxon. This gener-
alizes the neutral condition of identical break-even concentrations in the chemostat
with constant removal rate, which ensures coexistence at steady state.

Our condition is defined relatively to a generating growth function that charac-
terizes a taxon, independently of the period and the shape of the periodic signal.
This makes the coexistence result robust with this respect, as well as the extinction
of species in the taxon with larger break-even concentrations. Relying on the theory
of asymptotic periodic semi-flows, we have shown that when persistence of a taxon is
guaranteed, then any solution converges to a periodic orbit, and moreover that there
exists an infinite number of distinct periodic orbits depending on the initial propor-
tions of the species (within the taxon). There exists then a continuum of neutrally
stable periodic orbits. In addition, we have generalized the existing results about
coexistence of two species in the periodic chemostat model to the case of two taxa in
competition, leading to a double infinity of periodic orbits with species of both taxon.

The condition of belonging to a taxon is non-generic and gives non-hyperbolic
periodic orbits, but we believe that it could guide future constructions of sufficient
conditions for the uniqueness of hyperbolic periodic orbits in the chemostat model
with periodic removal rate, an open problem for general classes of growth functions.

Finally, we have shown with the help of numerical simulations that when these
non-generic conditions are just ”almost” fulfilled, what is likely to happen among a
huge number of species, then one can observe many almost periodic solutions with
coexistence on a long time window, justifying a posteriori the present analysis of
neutrally stable periodic solutions.
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