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MULTIPLICITY OF NEUTRALLY STABLE PERIODIC ORBITS
WITH COEXISTENCE IN THE CHEMOSTAT SUBJECT TO
PERIODIC REMOVAL RATE

THOMAS GUILMEAU AND ALAIN RAPAPORT Y

Abstract. We identify a taxonomic property on the growth functions in the multi-species
chemostat model which ensures the coexistence of a subset of species under periodic removal rate.
We show that proportions of some powers of the species densities are periodic functions, leading
to an in nity of distinct neutrally stable periodic orbits depending on the initial condition. This
condition on the species for neutral stability possesses the feature to be independent of the shape of
the periodic signal for a given mean value. We give also conditions allowing the coexistence of two
distinct subsets of species. Although these conditions are non-generic, we show in simulations that
when these conditions are only approximately satis ed, then the behavior of the solutions is close
from the non-generic case over a long time interval, justifying the interest of our study.

Key words.  Chemostat model, Periodic removal rate, Coexistence, Poincae map, Multiplicity
of periodic orbits, Neutral stability.

MSC codes. 34C25, 37C25, 92-10, 92D25, 92D40

1. Introduction. The mathematical model of the chemostat can represent a
vast array of natural phenomena where di erent living species compete for a common
limiting resource. In particular, it is widely used to model waste water bio-processes
or to capture competition for a single resource in ecological modeling [15, 5]. Recall
that the chemostat is originally an experimental device in which bacterial species grow
in a perfectly stirred vessel of constant volume, continuously removed and fed with
fresh substrate. Of course, the mathematical model of the chemostat re ects also the
behavior of this device.

When several species (of densities;, i =1;2;:::) all consume a single substrate
that is fed in the ecosystem at a constant rate, then the mathematical theory of the
chemostat claims that the Competitive Exclusion Principle holds, meaning that all the
species will asymptotically disappear from the system, except the ttest one [15, 5].
However, in more complex environments, this property does not always hold. This is
for instance the case of periodic operation of bioreactors [13] or temporal uctuations
in ecology [6, 4, 10]. If the environment favors for some time one species and then
another one in a balanced way, then one may expect the two species to coexist. A
large part of the literature is dedicated to the study of the asymptotic behavior of
theses dynamics, with two or more species, under periodic removal rate [16, 1, 7, 9]
or periodic nutrient input [6, 14, 4, 17] or both [18, 11].

Indeed, when a vessel with two species of concentrations (t) attime t (i =1;2)
is fed with a periodic removal rate, the system can exhibit the following di erent
behaviors :

The two species are washed out, that is lim +1 Xi(t)=0, for i =1;2.
One species only is washed out while the other survives.
The two species coexist, that isx;(t) > > 0,fort 0Oandi =1;2, for some
> 0.
Those behaviors can be predicted using the Floquet theory. Namely, the Flo-

CVN, Univ. Paris-Saclay, Inria, CentraleSugelec, Gif-sur-Yvette, France
(thomas.guilmeau@inria.fr).
YMISTEA, Univ. Montpellier, INRAE, Institut ~ Agro, Montpellier, France

(alain.rapaport@inrae.fr).


mailto:thomas.guilmeau@inria.fr
mailto:alain.rapaport@inrae.fr

guet exponents allow to determine if the periodic solutions with only one species are
unstable. If both of these single-species periodic solutions are hyperbolic unstable,
then the theory of competitive planar systems [2] applied to the chemostat model
shows that any positive solution converges asymptotically to a periodic solution with
species coexistence (a complete description of this theory is given for instance in [15]).
However, the possibility of having several attracting periodic orbits remains an open
problem. Although there is no theoretical obstruction for this, no such example has
been yet exhibited in the literature. Let us underline that for a given set of species,
the condition for the single-species periodic solutions to be unstable depends on the
periodic removal rate function, and not only on its mean value. Di erently to the sta-
tionary environment for which the single break-even concentrations determine which
species can survive, the shapes of the growth functions come into play in periodic
environments.

In the present work, we investigate how having species whose growth functions
share similar shapes allow their coexistence and the multiplicity of neutrally stable
periodic orbits (with two or more species). We do not assume the single-species
periodic solutions to be hyperbolic, and generalize in a functional way the neutral
stability condition in constant environment (which is given by the equality of break-
even concentrations). The construction that we propose here is non-generic, relying
on a relatively strong condition on the growth functions that is deemed as unfeasible
in real life. However, one may face practical situations close from this non-generic
case, which may provide a better understanding of the periodic chemostat over a long
duration.

Our construction lies on the concept of "taxon”, which in this paper, denotes a
group of species whose growth functions share the same shape, in a sense which is
made precise later on. We show that the ttest species from each taxon behave like
one species to some extent, and when they can coexist, then there exists an in nite
number of periodic orbits. Moreover, we also study the case when two taxa are present
in the chemostat. In this situation, we show that the ttest species from each taxon
can coexist all together, under an additional condition of instability of single-species
periodic solutions chosen in each taxon.

The paper is organized as follows. In the next Section 2, we recall the equa-
tions of the model with the usual assumptions and give some useful de nitions and
preliminary results. In Section 3, we present our new conditions with a concept of
"taxon" and show some relevant properties. Sections 4 and 5 give our main results,
rst for a single taxon and then for competition between taxa. Finally, we presents
and discusses several numerical simulations to illustrate our results Section 6, before
drawing conclusions in Section 7.

2. The setting. We consider the multi-species chemostat model written as fol-
lows

Ut (sn S ‘Y(f’)

(s u®x: 10 m

S Xi;

(2.1)

Xj

(with n  2) where s is the substrate concentration, si, the input substrate concen-
tration and x; (1 i n) are the respective concentrations of then populations. We
recall the well-known fact that the yield coe cients Y;, 1 i n can be taken equal
to one without loss of generality, by a change of variablesx;=Y; replaced byx;). As
usual, the growth functions () satisfy the following properties.
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Assumption 2.1. Foranyi =1;:::;n, ; is aC? increasing function from R, to
R:+ with (0)=0.

Under this assumption, we de ne classically thebreak-even concentrationfor each

i(v):=supfs2 Ry; i(s)<vg; v>0

Note that when (v) is nite, one has necessarily ;( i(v)) = v.

Assumption 2.2. The removal rateu( ) is a measurable function from [Q+1 ) to
[u ;us]with O <u u. , which is T-periodic (with 0 <T < +1 ). We posit
Zy

u(t) dt:

|~

0

P
Consider now the variableb:= s+, x;, whose dynamics is given by
(2.2) b= u(t)(sin b):

Under Assumption 2.2, one hasu(t) u > Oatanyt 0 and one can deduce that
the solution of (2.2) converges exponentially tos;, , independently of the initial con-
dition of (2.1). With Assumption 2.1, the solutions of (2.1) are uniquely de ned and
bounded for any non-negative initial condition. Therefore the asymptotic behavior of
the n + 1 dimensional system (2.1) is determined by then dimensional dynamics

2 0 1 3
X
(2.3) x; = 4 ; @, ;A u)Sx;; 1 i n
j=1
which leaves the set
( , )
0:= X 2R} ; such that Xi  Sin

i=1

forwardly invariant. In the remaining, we shall consider the asymptotic dynamic (2.3)
on the set ¢ only (which is biology relevant in the chemostat framework).

Note that solutions of (2.3) with x;(0) = 0 for some i are such that x; (t) = O for
any t. Therefore, by uniqueness of solutions of (2.3), we deduce that a solutior( )
of (2.3) with a positive initial condition has to stay positive for any time.

We give below a Lemma that will be useful in the rest of the paper.
Lemma 2.3. There exists a numbers 2 (0; sj, ) such that the subset

( o )

= X2 0;Sn Xj >s
i=1
is forward invariant and attractive by the dynamics (2.3).
3



. P . . . .
Proof. Posit s = s, i”:1 Xj. Sincex is a solution of (2.3) and the set ¢ is
forward invariant, it comes

xXo
s= i(sxi(t)+ u)(sin s)
i-1

X
ppﬁdﬁ Xi(t) + u(t)(sin 9)
i=1

max i(S) sin + u(t)(sin 9)
a(s) = p?§i© Sn + U (Sn S):

The function g is continuous and decreasing withg(0) = u sj, > 0 and g(sin) < O.
By the intermediate value Theorem, there exists a numbers,, 2 (0;sj,) such that
o(sm) = 0 with g(s) > O for s < sy,. Therefore, for any s 2 (0;sy), the domain
fs > sgis forwardly invariant and attractive by the dynamics of s, which amounts to
claim that the subset is forward invariant and attractive by the dynamics (2.3). O

3. A taxonomic assumption and its consequences. We shall consider sub-
setsl f 1;:::;ng of at least two species, whose growth functions; (i 2 ) share a
common property, de ning what we propose to call ataxon in the present context.

Definition  3.1. A subset of populationd f 1;:::;ng belong to a samedaxon if
there exists aC? increasing function' with' (s) <u and' (siy) > u+, and numbers
i>0, j2Rfori2l such that

(3.1) i(s)= i'(s)+ i; s2[ssnl P21

We shall say that such a function' is a generating growth function of the taxon. We
also de ne the subsetl > |, which is such that
1?:=fi2l; i(u):njﬂzrl] i (u)g:

In this de nition, the choice of the generating function ' is not unique but it
can typically represent a canonical growth function that veri es Assumption 2.1 so
that the growth functions ; among a taxon di er only by an a ne transformation
away for 0 i.e. on the interval [s;siy ]. Note that condition (3.1) cannot be imposed
for any s> 0 if ; 6 0, because growth functions have to be equal to 0 at the origin
(Assumption 2.1). Several examples of growth functions that satisfy Assumption 2.1
and condition (3.1) will be given in Section 6. Let us point out that this condition
does not prevent the graphs of the functions ; to cross on the domain §; si, ].

The second part of De nition 3.1 concerns the subset ” |, which is made of all
the species that share the same minimal break-even concentration. In some sense, the
setl? contains the ttest species, as these are the surviving species in the autonomous
chemostat model [5]. Generically, the set ? is reduced to a singleton, but we shall
study in this work the non-generic situation where more than one species belong to
I?. Let us recall from [15] that sharing the same break-even concentration does not
ensure in general the existence of periodic orbits with coexistence: the instability of
periodic solutions with single species is required, which relies on an interplay between
the shapes of the growth functions and the time-varying removal rate.
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For convenience, we shall de ne some auxiliary numbers. The function being
increasing with ' (s) <u and"' (si;) > u.+, and asu 2 [u ;u.], there exists an
unique s 2 (s; sin ) such that

(3.2) "(s)=u;

and for any i 2 | we de ne the numbers

(3.3) = M W= trul
i
Remark 3.2. We have for anyi 2 | that ;( ;(u)) = u, which is equivalent to
write

)= s Nu o D)=u =) e

Since the generating growth function' is increasing, a higher value ; corresponds to
a lower break-even concentration ;. In particular, we have that i 2 | 7 exactly when
i =maxjz; j.
The key point in our study will be to consider particular ratios of powers of species

concentrations, for species that belong td , de ned as follows

P

i = p— Ij 21

i Xj
The dynamics of these variables present some particular properties, as shown in the
next Proposition.

Proposition  3.3. Let | be a subset of populations that belong to a same taxon.
For any solution positive solution in , the dynamics of the ratios j; are as follows

(3.4) G= 0 pr(uoum it s Bj2n
Proof. Let us rst di erentiate the equality Pﬁ i = F.)Kwith respect to t:
1 4+ L 1 L1 .
—X "X X g o= X Xy b 21
] 1

and replacexy for k = i;j by the expression ( ' (s(t))+ «k u(t))xx. One obtains
e L ey =) ) G
J i

fori;j 2 1. Multiplying by x; I, one can write

= — —’ u®( ot s i 2

i i
Finally, from the de nition (3.3) of numbers , k 2 i;j , one can also write

G5 i gr(uoum gt h g ij2n 0
5



The dynamics (3.4) of the ratios j within a taxon presents thus the remarkable
feature that the time evolution of each ratio depends only on its initial value and
the function u, i.e. their dynamics are decoupled. As a consequence, one obtains the
following properties of the solutions of (2.3).

Proposition  3.4. Let | be a subset of populations that belongs to a same taxon.
For any positive solution in , one has
1. For i;j in 17, j are periodic functions.
2. Fori 21 nl?, x; converges asymptotically tc0.
3. If liminf s ¢ X (t) > O for somei 2 17, then liminf o0 Xj (t) > O for any other

j21°.
Proof. From (3.4), one obtains the expression
d
gileg i =Ci )+ (u u®) S H

that we integrate betweent andt + T:
log j(t+ T)=log § ()+( i T, t O
which gives equivalently

p(t+T)= e DTt

Then, fori;j 217, ; = j and the function j is thus periodic. If i 2 |7, for any
j 217 one has ;| > ;| (see Remark 3.2) and thusx;(t) ! Ofort! +1 . The last
point of the Proposition is a straightforward consequence of point 1. |

This result states that the Competitive Exclusion Principle occurs within a taxon
in the periodic chemostat. It also means that when one or several species of a same
taxon persist in a periodic chemostat, it can be invaded by a new one belonging
to the same taxon preserving the coexistence of all resident populations, under the
condition that all species have the same minimal break even concentration (for the
average removal rate). Diversity can be then (theoretically) augmented within a same
taxon. Once one has shown that ratios are periodic functions, it is not surprising that
one could obtain coexistence of species. However, one has to study the asymptotic
behavior of the total biomass within a taxon to show the e ective convergence of the
solutions to a periodic orbit in R}, which is the matter of the next sections.

The (non-generic) property of having identical break-even concentrations that
implies coexistence of species is already known in the classical chemostat model with
constant removal rate (see for instance [5]). However, as we have recalled earlier, this
property does not guarantee the coexistence under periodic removal rate. Instead,
integral conditions which depends on the periodic functionu have to be fullled
[15]. Here, the remarkable feature within a taxon is that under the simple condition
of equal break-even concentrations, coexistence can be guaranteed whatever is the
periodic function u (provided that its average value is equal to the xed valueu). This
property presents thus a robustness with respect to the removal ratai( ) uctuating
about its mean value.

Now and for the rest of the paper, we shall assume that each species population
can persist alone, which is ensured by the following hypothesis.
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4. Multiplicity of periodic solutions within a single taxon. In this sec-
tion, we consider that all the species belong to a same taxon. Let us underline that we
deal with dynamics in R? (with n possibly larger than 2), for which the mathematical
tools for studying asymptotic periodic solutions that are specic to planar dynamics
[2] do not apply here. In the proof of the coming results, we shall exploit the re-
sults of Proposition 3.4 to rewrite the dynamics of each species as a non-autonomous
dynamical system and use the theory of asymptotic periodic semi- ows [19].

Proposition  4.1. Assume that the whole set = f1;:::;ng of populations belong
to a same taxon. Then for any positive initial condition in , the solution of (2.3)
converges asymptotically to a periodic solution composed of all species liR, the other
species being washout. Moreover, if? is not reduced to a singleton, the systen{2.3)
admits an in nite number of periodic solutions in  with distinct orbits, which depend
on the initial proportions of species in|? only.

Proof. Let x() be a positive solution of (2.3) in and (), i;j 2 I, be the
corresponding solutions of (3.4). Takei” in 1? such that

We show that x;» converges asymptotically to a positive periodic solution.

The variable xj» can be written as the solution of the non-autonomous scalar
dynamics

xiz = (F(t;x52) u(t))x;»

where

!
X

o X .
f(ty)= i Sn i2(t) 'y 7 xi(t)
i21° 217

Let ~i» be aC? increasing extension of the function ;- for negative arguments, and
consider the dynamics

(4.1) y=(f(ty) u)y

on R, wheref~consists in replacing i» by ~j» in the expression of the functionf . Note
that the choice of x;» implies that one has ;= ;- 1 foranyi 2 |?. Therefore, f7is
Lipschitz with respect to y and the solutions of (4.1) are well de ned. Aty = sj, , the
argument of ~- is negative, but as {(0) = 0 and ~j- is increasing, one has necessarily
~i» < 0 for negative arguments, and thenfTt;siy) Oforanyt 0. The set [Qsiy]
is thus forwardly invariant. Clearly, x;- is the solution of (4.1) for the initial value
y(0) = x;-(0) (which belongs to [0, siy ])-

According to Proposition 3.4, the functions - for i 2 17 are T-periodic and
variables x; for i 2 1? converge asymptotically to 0. We then consider the limiting
function

|
X -
fi(ty) =~i» s iz(t) 'y 7
i217
7



which is T-periodic and veri es
tlIirp1 ifty)y  fi(t y)yj = 0 uniformly for y 2 [O; sin ]:

Consequently, by Proposition 3.2 in [19], the non-autonomous semi- ow of (4.1) in
[0; sin ] is asymptotically periodic with limit periodic semi- ow of

(4.2) y=(fity) u(®)y
(for which [0; sin ] is also forwardly invariant).

We follow now the approach exposed in [15] for one dimensional periodic dynam-
ics, but adapted here to our context. Let us consider the Poincae mapP associated
to the periodic dynamics (4.2)

P:yo2[0;sin] 7' ¥(T;¥o0) 2 [O;Sin]

wherey( ;yo) denotes the solution of (4.2) with y(0) = yo. One has clearlyP (0) = 0,

and from the Theorem of continuous dependency of the solution of ordinary di erential
equation with respect to the initial condition, P is continuously di erentiable with

PYyo) = z(T), where z( ) is solution of

z= @fi(ty(tyo)y(tyo)+ fi(ty(tyo)) wu(t) z; z(0)=1

that is
Z !

z(T) =exp , @fi(ty(tyo))y(tiyo) + fi(ty(tyo)) wu(t)dt > O

The map P is thus increasing and one haP%0) = exp T( i»(sm) u) > 1 (by
Assumption 3.5). So 0 is a repulsive xed point of the mapP, and for any yo > 0, the
sequence PXyy w2 IS strictly monotonic and bounded, thus converging to a positive
xed point y? of P. Moreover, asy( ;y?) is periodic, one has

Zq
TLy(ty?) u(t)dt=0
and thus . I
PYy) =exp . @fi(ty?)y(ty?)dt

As the functions ~ are assumed to be increasing, one has%~> 0 which implies
@f7 < 0, and thus Py) < 1. Therefore the mapy 7! P(y) y is decreasing at each
root, which implies that it cannot have more than one root. We conclude that the
(positive) xed point y? is unique.

As P admits a nite number of xed points (indeed only one), one can apply the
results about asymptotically autonomous discrete dynamical systems (Theorem 2.4
in [19]), from which one gets

Jim - xie (t+ KT) = y(ty?); t2[0;T]:
I+
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and we conclude that the solutionx( ) converges asymptotically to a periodic solution
of (2.3) in , for which all species in |? are present, the other species being excluded:

k'Iiml jx(t+ KkT) xP(t)j=0; t2][0;T]

where xP () is the periodic solution given by
P ( . 7(t) i y(t.y?)i.io > 0 I 2 | ?.
Pt) = e ’ v ’ ’
xm= P27

fort2 [0;T].

Consider now another positive initial condition in  but with the same initial
ratios i~ (0)fori 2 | 7. According to (3.4), the functions ;- (i 2 | ?) are identical and
consequently the limiting periodic dynamics (4.2) is also identical. As this later one
admits an unique periodic solution, we conclude that the solution of (2.3) converges
asymptotically to the same periodic solution xP( ).

We now show how to construct an in nity of distinct periodic solutions, when |?
is not reduced to a singleton. Consider a sequende Kgk2n Of positive vectors in R
such that

4.3 max ( K™) > max max K.(t); k2N
(43) i217nfi7g" ° )i t2[0;T]i217nfi7g " ®

where &.() are the periodic solutions of (3.4) with X,(0)=( K); fori 2 17 nfi’g.
Condition (4.3) imposes that for eachi 2 | ” nfi’g, the orbits *( K,)=f k,(1); t 2
[0; T]g of (3.4) are all disjoint for k 2 N. Moreover, for eachk, there exists an unique
periodic solution xPk() of (2.3) in for which all species in |7 are present with
ratios given by the functions &,. This implies that the periodic orbits * (xPk) =

fxPK(t); t 2 [0;T]g, k 2 N, of (2.3) are all disjoint. Indeed, if *(xP%)= *(xP) for
somek 6 |, there should exist 0 such that xPK(t) = xP'(t+ )foranyt 0. In
particular, one should havex™(t) = x"(t+ )fori 6 i”in1? and anyt 0, but
as the orbits *( X,), *( k) are disjoint, one should have X,(t+ )6 L.(t) for
somet, that is xﬂk (t) 6 x{’?' (t+ ) and thus a contradiction with with the fact that

the orbits are non distinct. d

The results of Proposition 4.1 are twofold. First, they complete those of Proposi-
tion 3.4, since we now have the persistence of the speciesldf while the less t species
of I n17? are washed-out. This stronger form of the competitive exclusion principle
comes from Assumption 3.5 and the fact that there is no species outside the taxon
|. This result allows coexistence in the periodic setting under the non-generic as-
sumption that the surviving species belong tol ?. It generalizes known similar results
in the non-autonomous setting [5]. Then, the second aspect of this result concerns
the number of distinct periodic coexistence solutions of the system (2.3), which are
a continuum of neutrally stable periodic solutions. Proposition 4.1 shows that if the
growth functions are close enoughto each other, in the sense that the corresponding
species belong td ?, then there are in nitely many periodic coexistence solutions. We
may expect that eventual su cient conditions for uniqueness forbid growth functions
to be too close in a sense close to ours.
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5. Multiplicity of periodic solutions with more than one taxon. In this
section, we show that it is possible to have coexistence of two taxa in competition, each
of them preserving the proportions of species having the same break-even concentra-
tions, leading to an in nite number of periodic orbits. Roughly speaking, the idea of
the proof of Proposition 5.2 below is to consider a non-autonomous planar system that
is asymptotically periodic, and to revisit the results about periodic planar dynamics
in this framework, with the help of the theory of asymptotic periodic semi- ows. For
technicalities, we need in this section the following additional hypothesis.

u is an analytic function of t.

For convenience, we shall denote for any integrable scalar function( ) the average

quantity by
hir = 1ZT (t)dt:
T .— T o .

Proposition  5.2. Assume that one hasfl;:::;ng = I, t |y, where species in
la, resp. lp, belong to a same taxon. For any xed positive initial condition in
let (sB();xB()), resp. (sg( );xg( )) be the asymptotic periodic solution of (2.1) when
only species inl,, resp. |y, are initially present. If the conditions

(5.1) ba = hi(shir u>0 212
(5.2) ab=hi(sDit u>0 21

are ful lled, then the solution of (2.3) converges asymptotically to a periodic solution
for which all species inl? and I are present, the other species being washed out.
Moreover, when there exists at least one positive initial condition satisfying the above
conditions, and at least one of the subsets?, |/ is not reduced to a singleton, there
exists an in nity of distinct periodic orbits of (2.3) for which all the species inl ] t |g
are present.

Proof. The taxa are characterized by generating functions' 4,
i >0, ;i 0 suchthat

b and numbers

i(s)= i"a(S)+ ;1 21a (8= i"p(s)+ i;i2ly

Take iz 212 andi} 2 1. Let x() be a positive solution of (2.3) in and de ne the
functions, fori 2 12t I/

o i) P21
53) "0 w2

Then, variables x;:, Xjz are solutions of the non-autonomous planar dynamics

Ya = (fa(tyaiyp) u(t))ya;
Yo = (fo(tiya;yp)  u(t))yb;

with

fa(tya;yp) = iz(s(tya;yn)); foltiya;yp) = iz(s(t;ya;yp));
10



where
X L X X
S(t;Ya:Yb) = Sin ri(t) 'ya?® ri(t) 'yy ° X (t):

i212 i212 212017

Let ~iz, ~i; be C! increasing extensions of the functions i2, i for negative argu-
ments, and consider the dynamics

Ya = (fa(tya;yn) u(t))Ya;
4) Yo = (T5(Eyaivs)  U()yo:

in the plane, where the functionsf3, f; are de ned with the expressions off 5, fy

replacing the functions iz, iz by their extensions ~z, ~2. Asone has =iz 1
fori212,and = iz 1lfori2 |2, this dynamics is Lipschitz in (Ya;Yb). Moreover
the set

S:=[0;sin] [0;Sin]

is forwardly invariant as one hasf 5 (t; Sin ; Vo) < 0, fu(t;Ya;Sin) < Oforany (ya;yp) 2 S
and t 0. Solutions of (5.4) are thus well de ned in S and unique. The pair
(Xiz ();xiz()) is such a solution for (ya(0); yn(0)) = ( xiz (0); Xiz (0)).

With Proposition 3.4, we know that the functions r; with i 2 12t I are T-
periodic, and variablesx; with i 2 12t I converge asymptotically to 0. We thus
consider the limiting dynamics

Ya = (FA(tyaiye)  U(L))Ya;
59) Yo = (F(tyaye)  U(®)Ys:
where
Fa(tYaryo) = ~iz(S' (G Yya;¥o);  TH(EYaryb) = ~iz(S'(tYa; Vb))
with X X L
S'(t;Ya; ¥b) = Sin rit) 'ya'’ ORI
i212 i217

which are time periodic functions. One has also
MMt yaive)  Fa(tyaiyo)yai = fim j(fh(tyaiye)  o(tYaiye))yei =0

uniformly for (ya;Yyp) 2 S. Therefore, the non-autonomous semi- ow of (5.4) inS is
asymptotically periodic with limit periodic semi- ow of (5.5) (see Proposition 3.2 in
[19]). The system (5.5) is competitive and we can apply the results of the literature
about periodic competitive planar systems, which states that any bounded solution
converges to a periodic solution ¥B( );yg( )) (see for instance Theorem 4.2 in [15]).
Let P be the Poincae map associated to this dynamics

P:Yo2S 7 Y(T;Y)2S

where Y (;Yo) denotes the solution (a();yu()) of (5.5) with (ya(0);yn(0)) = Yo.

On the axis y; = 0 or y, = 0, the dynamics is with a single taxon. One can then

reproduce the arguments of the proof of Proposition 4.1 to show that there are unique

xed points Y, = (y2;0), Y, = (0;y7) of P in S with y2 > 0, y? > 0. Moreover,
11



one hasy? = (x8)iz(0), Yo = (xg)ig(O), where x8(), xg( ) are the asymptotic periodic
solutions of (2.3) for the initial conditions

xi(0); i2lg; ._(0; i 215
0; i 2 lp; - xi(0); 121y

(remind from Proposition 3.4 that functions iz (i 2 15) or i 2 (i 2 1p) remain the
same).
The linearized dynamicsY.= M (t)Y of (5.5) is given by the matrix

() b
MO=" ot d)

with

a(t) = fFtya();ye(t)  u®)+ @, Fayt;ya(t); yo(t)ya(t);
b(t) = @, T4 (6 ya(t); yo(t) Ya(t);

c(t) = @, Fh(t yalt); yo(t) yu(t);

d(t) = Fa(tya(t);ye(t)  u(t) + @,Fi(t ya(t); yo(t)ys(t)):

Along the periodic solution (x&( );0), one has

)

o
MO= 0 e 00 ul)
for which the characteristics multiplier exp ROT fit ((xB)iz(t);0) u(t)dtis equal to
exp(T pa) and larger than 1 under condition (5.1). The xed point Y, is thus hy-
perbolic repulsive. In a similar way, Y, is an hyperbolic repulsive xed point under
condition (5.2). This implies that Y,? and Y. are isolated xed points of P.

For Yp = 0, the solution of (5.5) is identically null and one has

_izlsin) u(®) 0
M(© = 0 i7(sin) u(t)

- - Ry Ry
The characteristics multipliers are thus exp , iz(sin) Y(t)dt, exp 5 iz2(Sin)
y(t) dt which are larger than one under Assumption 3.5. The zero solution is thus
repulsive.

Along any positive solution ya( ), Yu( ), note that one hasb(t) < 0 and c(t) < O
atany t 2 [0;T]. Then, one hasYy > OforY; =0and Yo < 0,andY, < OforY; >0
and Y, = 0. Therefore, the second and fourth quadrant are invariant by the linear
dynamics Y. = M (t)Y, which implies that the matrix P%Y,) has strictly positive
diagonal elements and strictly negative o -diagonal elements for a positiveYy 2 S.
Let S°= fY 2S; §'(0;Y) 2 (s;Sin]g. By Lemma 2.3, SCis invariant by P and any
xed point of P belongs toS? including Y; andY,’. Following the arguments given in
[2], the positive xed points of P lie on a continuous curve in S% which connects the
xed points Y, Y;?. Under Assumption 5.1,x( ) is analytic and the functions r;( ) as
well. Therefore, the mapP is analytic on S° Then, the curve is also analytic (see
[2, 4]). If there were an in nite number of xed points of P in S then all the points
of the curve will be xed points by analyticity, which contradicts the fact that Y,
and Y,’ are isolated xed points.

12



Finally, as P has a nite number of xed points on S, we can apply the results
about asymptotically autonomous discrete dynamical systems (Theorem 2.4 in [19]),
from which one gets

kIIiml (Xiz (t+ kT);xig(t+ kT)) = Y(T;Y7); t2[0;T]:
I+
whereY? is a xed point of P in S. As the xed points on the axes 0,Y; and Y,’ are

all repulsive, we conclude thatY ? is positive, and that x( ) converges asymptotically
to the periodic solution xP( ) given by

8 N
30 YaltY) T >0 i217
Xip(t):§ () YY) 5 >0 217

0; 212t 17
fort 2 [0; T].

When | is not reduced to a singleton, takei¥ 6 i2 in 12 and consider perturba-
tions x" () of the solution x( ), as solutions of (2.3) for the initial condition

(Xi(O); i 6

| i
(ry @+ " ¥xiz (0) 145 i=iY;

(0]

(5.6) X (0) =

with " > 0. By continuity of solutions of (2.1) with respect to the initial condition,
there exists" > 0 such that for any " 2 (0;") x (0) belongs to and conditions
(5.1), (5.2) are ful lled for this new initial condition. As before, we deduce that x ()
converges asymptotically to a periodic solutionx P () for which all species inl? and
| are present.

Let ; be the ratio functions for the initial condition x; (0). Note from (5.6) that
one has ig\i?(O) = ig\i;(O) + ". One gets from (3.4)

Z'[
b ® = LLO@exp (uou() bt d
a a 0 Zt ¥y
= i‘;ig(t)+ " exp . (u u() igl igl d; t O

Therefore, the orbits * ( ;'yi?) for * 2 (0;") are all distinct and we deduce, as in
the proof of Proposition 4.1 that the orbits of the periodic solutions * (x"P) are all

distinct. 0
Remark 5.3. Conditions (5.1), (5.2) are independent of the choice of 2 17, 1.
Indeed, lets, = ;(u) which is identical for any i 2 17, and one has
hi(shit u = Ha(sPir+ i u
= in a(SE) "a(Sa)iT+ i"a(sa)* i U

in a(SE) "a(Sa)iT

(using the property U= (sa) = ' a(Sa)+ i fori217). Thesignofh i(sp)it uis
thus independent ofi 2 |7, the numbers ; being positive. One obtains symmetrically
the same property for the sign ofh (sB)it+ u with i 2 17.

13



Similarly to Proposition 4.1, Proposition 5.2 generalizes known results providing
a continuum of neutrally stable periodic solutions of system (2.3). Indeed, when each
taxon contains only one species, we recover exactly the results in [15]. However, thanks
to our taxonomic assumptions, we are able to extend it from two species to two taxa,
under very similar conditions. Then, we are also able to establish the existence of an
in nite number of periodic coexistence solutions, generalizing the result of Proposition
4.1 from one to two taxa.

6. Numerical illustrations. In this section, we illustrate numerically our re-
sults with the class of Hill functions [8]
( ) = max Sp
KP+ gP

that are parameterized by the three positive numbers ., K and p. This class of
increasing growth functions is quite popular in microbiology, pharmacology or bio-
chemistry for its exibility and e ectiveness in tting experimental data, and also
because it enlarges the well known class of Monod functions

_ max S
(s) = K+s

as the particular case ofp equal to 1. The parameter p measures in some way a
distance from the Monod model. Quite often, practitioners conduct experiments rst
with large values of s to estimate the maximal growth rate ax =limg +1  (S) and
then look for the value of s for which the growth rate is equal to max =2. One can
straightforwardly check taht this value is equal to the a nity constant K (sometimes
also called the half-saturation constant), whatever isp. This is enough to identify the
Monod growth function, but without additional data, di erent candidates of growth
functions in the class of Hill functions could also suit, depending on the parametep.

To obtain a variety of di erent situations, we have considered three generating
functions with p equal to 2 or 4

, My S? , mps* , ms?
(6.1) (8= gy g b(S) = Ki+ st 0= Kz &

with parameters given in Table 6.1, so that one of them () has a signi cantly

di erent shape. Graphs of the functions' 4, ' p, ' ¢ are depicted on Figure 6.1. For

p > 1, the graphs of theses functions are convex up t& and then concave for larger
values. The larger isp, the more the convexity/concavity is pronounced, as one can
see on Figure 6.1. Mixing species from taxa and b or from taxa a and c allows
then to generate contrasted situations. Imposing the same constankK is a way to
consider species having similar a nity for the resource and to focus on the impact of
the di erent shapes of the growth functions away from this point. We have generated
nine growth functions within these three taxa with characteristic numbers given in
Table 6.2 ands = 0:5. Let us denote the sets of indices of species belonging to a
same taxonl, = f1;2;3g, |, = f4;5;69, | = f7;8;99. The graphs of these functions
are depicted in Figure 6.2, where we have considered for each of these nine growth
functions a C! extension fors s as a polynomial increasing on [0s] and null at

0. Clearly, Assumptions 2.1, 2.2, 3.5, 5.1 are satis ed. Within a taxon, each species
i is characterized by the parameters ; and ; following Equation (3.1). Since
multiplies the generating growth function, it a ects more the behavior of the species
for large values of the growth rates, hence for larger values of (the larger is |,
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the higher is the maximal growth rate). Since ; is added to the generating growth
function, its impact is greater for smaller values of the growth rates hence at small
values ofs (the lower is , the smaller is the growth function). These e ects can be
seen on Table 6.2 and Figure 6.2.

The operating conditions have been chosen as follows

Sin =4; u=0:8 T=10

where the periodic removal rate is
2t
(6.2) u(t) = u+0:2 sin T

For these values, we have checked in all our simulations that the solutions remain in
the set with s=0:5. For the chosen value ofu, numberss and ; de ned in (3.2)
and (3.3) are given in Table 6.3 for each taxon. Note that we do not impose the value
s to be the same for each taxon. Accordingly to Remark 3.2, the ttest species within
each taxon are given by the subsets of indicek? = f1;2g, I = f4;5g, 17 = £8;9g.

i la] b |c
mi | 2 | 2,95 18
Ki| 3] "3]"3

Table 6.1: Parameters de ning the generating functions' 5, ' b, ' ¢

a C
i 0:9 1:.15 0:85 0:8 1:.05 0:6 0:9 1.1 0.7
i | 0:161 0:0165| 0:1455|| 0:232 | 0:0545| 0:326 || 0:161 | 0:019 | 0:261

Table 6.2: Characteristic numbers of the nine growth functions with respect to their
taxon

species|] 1 | 2 | 3 || 4| 5 |6 | 7] 809
' ' a ' b ' c
S 1:28 1:30 1:40
. | 0:09] 0:09 0:03 | 0:09 | 0:09 | 0:01 || 0:09 | 0:09 | 0:03

Table 6.3: For each taxon, numberss and ; (with u=0:8)
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Fig. 6.1: Graphs of the generating growth functions:' ; and' . are close to each other
with ' 5 slightly above ' ¢, while ' ,, has a di erent shape.

(a) taxon |4 (b) taxon 1y (c) taxon I,

Fig. 6.2: Graphs of the growth functions within each taxon. The orange and blue
growth functions reach the valueu for lower values ofs than the green one, implying
that the species associated with the latter is expected to be washed-out by the two
other ones.

6.1. Simulations with species of a single taxon. To illustrate Proposition
4.1, we have run simulations with all the three species in each taxon. For various
initial conditions, we found the same asymptotic orbits with the same initial ratios
of species, as expected. We observed that species that are not the ttest within their
taxon i.e. that do not belong to I2, I or I are washed-out in presence of all the
species inl 4, I, or I respectively. On the opposite, species with the largest values of

i coexist, that are 1 and 2 for taxona, 4 and 5 for taxon b, and 7, 8 for taxon c (see
Table 6.3). To illustrate trajectories over time, we have chosen for simplicity uniform
initial distribution between species. Figure 6.3 shows how the green species 3, 6 or 9
are washed-out within their taxon, while trajectories of the orange and blue species
which coexist are more or less close to each other depending on the taxon. This is
related to the distance of their graphs (see Figure 6.2) or how close are the values
of ; (see Table 6.2). Additionally, Figure 6.4 represents the solutions in the phase
portrait for di erent initial distributions. It shows the multiplicity of periodic orbits
with coexistence of two species, which is the main result of the present work. For
di erent initial distributions, we obtained qualitatively the same behaviors but with
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orbits that are more or less elongated. This is explained by the fact that proportions
are periodically conserved since initial time (but not the total biomass). One can also
observe on Figure 6.4 that the size of the orbits depends on the taxon. This is related
to the amplitude of the periodic solutions: the more similar the species are (i.e. the
closer their graphs are ), the largest amplitudes are. This is why orbits with taxonb
are smaller than for the two other taxa.

" N .

\1,4‘ x 1

. wof A : v —
= Xs Vo Xa
| —x e —x

0. = o.

N

@i2la () i 21y ©i2le

Fig. 6.3: Simulations with species of the same taxon, withx; (0) = 0:5 for eachi.
One species is washed-out by the two others. The curves for taxa and c look alike,
related to the similarity between ' 5, and ' ..

47 o 4
,/ '9 =
/,/ = | —
(a) orbits in the ( x1;X2) (b) orbits in the ( Xa4;X5) (c) orhits in the ( x7;Xsg)
plane when species inl 2 plane when species inl plane when species inl{
only are present only are present only are present

Fig. 6.4: Multiplicity of periodic orbits among a single taxon. The shape of the
periodic solutions varies according to the taxon.

6.2. Simulations with species of two dierent taxa. In this section, we
have simulated species from two di erent pairs of taxa. As explained formerly, we
have considered two contrasted situations: signi cantly di erent taxa (a and b) and
taxa relatively close to each other @& and c). Initial conditions have been chosen with
uniform distribution between the six species (three from each taxon), for simplicity.
We have rst computed numerically numbers 5, s dened in (5.1), (5.2):

ba = 0:012576> 0; 4, =0:006272> 0

According to Proposition 5.2, inter-taxa coexistence is thus possible as these two
numbers are positive for the periodic function (6.2). On Figure 6.5, one can see that
species that were washed-out when together with species of the same taxon (species
3 and 6, see Section 6.1) are also washed-out here, as expected. We have now four
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species froml? [ 1 that coexist. Additional information about the transients are
revealed. One can observe that species from taxoh (4 and 5) are initially raising
faster than those of taxona (1 and 2). This is due to the fact that the initial level s of
the resource is relatively large, which favors species from the taxob as their growth
functions take larger values (see Figure 6.2). One can also observe that the time to
reach a quasi-periodic regime is much slower than in the previous simulations with a
single taxon. Note that there are twice as many species that coexist than before, and
that the transient dynamics is governed by a scalar dynamics (4.1) for the single taxon

case while it is now ruled by a two dimensional one (5.4) for which the transients can
be slower.

=F

(a) run for t 2 [0;100] (b) run for t 2 [0;500] (c) run for t 2 [0; 2500]

Fig. 6.5: Simulations with x;(0) =0:5, fori 2 I,[ |,. Species 5 and 6 are washed-out
while the others (which do not belong to the same taxon) are able to coexist together.

We have then considered species df, in presence with those ofl . (Figure 6.6).
In this case, we computed the numbers

ca =0:071> 0; ac = 0:0639< O

According to Proposition 5.2, inter-taxa coexistence is now no longer guaranteed.
However, as the number ., is positive, we deduce that taxona can settle. However,
although taxon c seems closer from taxora than b if one looks at their growth curves
only (Figure 6.2), any species from taxonc looses the competition with taxona. here,
one needs to explicitly compute the sign of numbers ,; and . to predict the issue
of the competition. Finally, only species 1 and 2 are asymptotically present, with a
transient speed similar to the simulations with the single taxon a (cf Figure 6.3a).

(a) run for t 2 [0;100] (b) run for t 2 [0;500] (c) run for t 2 [0; 2500]

Fig. 6.6: Simulations with x;(0) =0:5, fori 2 1] |.. Species 1 and 2 from the taxon
a coexist but wash-out all the other species.
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6.3. Simulations under approximate taxon condition. The conditions for
species to belong to a same taxon, and that some of them have identical numbers
i, are not generic among all increasing growth functions. In the spirit of former
works [12, 3] for constant removal rate, we investigate here numerically cases where

the condition (3.1) is only approximately satis ed.

For this purpose, we considered an additional species labeled® #vhose growth
function 4o is closed to , but that does not belong to the taxon I,. For the illus-
tration, we have simply taken = ,+ " , where is a smooth function null at 0
with  ( 2(u)) > 0 that is not proportionate to ' 5, and " is a small number.

Remark 6.1. In the particular case where the perturbation is such that 5o still
satis es the taxonomic assumption with 0= ,and = , (recallthat ,= 1),
it is possible to study how the perturbation propagates over time. Indeed, we have
from Proposition 3.3 that

a= (U ou)( Y o

If x2(0) = x20(0) and the other initial conditions are the same, we can integrate this
dynamics overk 2 N periods fromt = 0 and obtain the following comparison result:

120(KT) = 1p(kT)e T :

For the numerical illustration, we have taken (s) = 25 and rst run simulations
with species 1, 2 and 2 For " < 0, the species 2is asymptotically conducted to wash-
out. However, as one can see on Figure 6.7, the transients can be very long whep is
very close to ; so that the three species coexist in an almost periodic manner during
a long time horizon. On the opposite, for" > 0, the species 2is the nal winner of
the competition (Figure 6.8). However, it can take a long time for the other species
to decline, so that here also the three species coexist in an almost periodic manner

during a long time period.

(@"= 10?2 (by"= 101

Fig. 6.7: Simulations with species 1, 2, 2together when" < 0. Species 2is washed-
out after a transient regime whose length depend on.
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@@ " =10 2 (b) "=10 *

Fig. 6.8: Simulations with species 1, 2, 2together when" > 0. Species 1 and 2 are
both washed-out after a transient regime whose length depend on.

Then, we have considered species of taXa and |, together, as before (Figure 6.5),
but where species 2 is replaced by specie$. Figures 6.9, 6.10 show that depending
on the sign of", species 2 belongs to the the nal composition of the ecosystem or
not, and that the time necessary to distinguish this issue can be very long, even for
values of" not extremely small. Note that coexistence of several species is maintained
in both cases. A message here is that the analysis of non generic situations, as we
do here, could be of some interest when facing cases likely to be closed from the non-
generic case, and we believe that this could be even more likely when considering a
large number of species.

(a) run for t 2 [0;100] (b) run on t 2 [0;500] (c) run on t 2 [0; 2500]

Fig. 6.9: Simulations with species 1, 2 3, 4, 5, 6 together when" = 10 3. Species
20 does not belong tol 7 and is washed-out after a long transient regime.

20



(&) run for t 2 [0; 100] (b) run for t 2 [0;500] (c) run for t 2 [0; 2500]

Fig. 6.10: Simulations with species 1, 2 3, 4, 5, 6 together when" = 10 3. Now I}
is reduced to species 2 which is the only species of taxona to persist.

7. Conclusion. Inthis work, we have proposed a taxonomic condition on growth
functions, that allows the coexistence under periodic removal rate of two or more
species with the same break-even concentrations within a single taxon. This gener-
alizes the neutral condition of identical break-even concentrations in the chemostat
with constant removal rate, which ensures coexistence at steady state.

Our condition is de ned relatively to a generating growth function that charac-
terizes a taxon, independently of the period and the shape of the periodic signal.
This makes the coexistence result robust with this respect, as well as the extinction
of species in the taxon with larger break-even concentrations. Relying on the theory
of asymptotic periodic semi- ows, we have shown that when persistence of a taxon is
guaranteed, then any solution converges to a periodic orbit, and moreover that there
exists an in nite number of distinct periodic orbits depending on the initial propor-
tions of the species (within the taxon). There exists then a continuum of neutrally
stable periodic orbits. In addition, we have generalized the existing results about
coexistence of two species in the periodic chemostat model to the case of two taxa in
competition, leading to a double in nity of periodic orbits with species of both taxon.

The condition of belonging to a taxon is non-generic and gives non-hyperbolic
periodic orbits, but we believe that it could guide future constructions of su cient
conditions for the uniqueness of hyperbolic periodic orbits in the chemostat model
with periodic removal rate, an open problem for general classes of growth functions.

Finally, we have shown with the help of numerical simulations that when these
non-generic conditions are just "almost” ful lled, what is likely to happen among a
huge number of species, then one can observe many almost periodic solutions with
coexistence on a long time window, justifying a posteriori the present analysis of
neutrally stable periodic solutions.
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