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Abstract  

The rumen represents a dynamic microbial ecosystem where fermentation metabolites and 

microbial concentrations change over time in response to dietary changes. The integration of 

microbial genomic knowledge and dynamic modelling can enhance our system-level 

understanding of rumen ecosystem’s function. However, such an integration between 

dynamic models and rumen microbiota data is lacking. The objective of this work was to 

integrate rumen microbiota time series determined by 16S rRNA gene amplicon sequencing 

into a dynamic modelling framework to link microbial data to the dynamics of the volatile fatty 

acids (VFA) production during fermentation. For that, we used the theory of state observers 

to develop a model that estimates the dynamics of VFA from the data of microbial functional 

proxies associated with the specific production of each VFA. We determined the microbial 

proxies using CowPi to infer the functional potential of the rumen microbiota and extrapolate 

their functional modules from KEGG (Kyoto Encyclopedia of Genes and Genomes). The 

approach was challenged using data from an in vitro RUSITEC experiment and from an in vivo 

experiment with four cows. The model performance was evaluated by the coefficient of 

variation of the root mean square error (CRMSE). For the in vitro case study, the mean 

CVRMSE were 9.8% for acetate, 14% for butyrate and 14.5% for propionate. For the in vivo 

case study, the mean CVRMSE were 16.4% for acetate, 15.8% for butyrate and 19.8% for 
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propionate. The mean CVRMSE for the VFA molar fractions were 3.1% for acetate, 3.8% for 

butyrate and 8.9% for propionate. Ours results show the promising application of state 

observers integrated with microbiota time series data for predicting rumen microbial 

metabolism.  

 

Keywords. Dynamic modelling, microbial time series, observers, rumen microbiota, volatile 

fatty acids 

1 Introduction 
The function of the rumen microbiota affects animal production phenotypes, feed efficiency 

and methane emissions (Wallace et al., 2019). Our knowledge on the structure and function 

of the rumen microbiota has been greatly improved due to the progress on culture 

independent omic techniques (Gruninger et al., 2019; Huws et al., 2018). A powerful use of 

these techniques is the analysis of microbial time series data allowing to characterise the 

dynamics of the rumen microbial ecosystem. Applications include the study of microbial 

colonization of feed particles (Belanche et al., 2017; Edwards et al., 2008; Huws et al., 2021), 

microbial resilience in response to perturbations (Li et al., 2012), impact of acidotic challenge 

on microbial function (Petri et al., 2017), activity of methanogens in response to the 

supplementation of a methane inhibitor (Pitta et al., 2021) and evolution of gut microbiota 

through weaning transition (Hennessy et al., 2020; Huuki et al., 2022).  

 

In parallel to the use of omics techniques to characterise rumen microbiota patterns, dynamic 

models have been developed to represent the rumen fermentation profile under in vitro 

(Muñoz-Tamayo et al., 2016, 2021) and in vivo (Gregorini et al., 2015; Huhtanen et al., 2015; 

van Lingen et al., 2019) conditions. Existing models of rumen function consider an aggregated 

representation of the rumen microbiota and its metabolic function. However, none of these 

models integrate microbial genomic knowledge and thus do not capitalize on the rich 

information that microbial genomic sequencing provides. Integration of dynamic modelling 

and microbial data has the potential to improve the understanding of the rumen ecosystem, 

to enhance predictive power of rumen models and to help the design of microbial 

manipulation strategies to improve rumen function (Muñoz-Tamayo et al., 2023). Recently, 

some studies have applied the genome-scale metabolic approach to reconstruct metabolic 

networks of rumen microbes species (Fakih et al., 2023; Lee et al., 2020; Pereira et al., 2018)  

and to predict the metabolism of minimal rumen microbial consortium (Islam et al., 2019).  

 

Another model approach consists in exploiting microbial time series data, with a variety of 

dedicated mathematical approaches (Faust et al., 2015) including the generalized Lotka-

Volterra (gLV) model (Gonze et al., 2018; Stein et al., 2013). In its standard form, the gLV 

approach determines interactions between microbes but it does not provide either 

mechanistic insights or predictions on the dynamics of microbial metabolism. Dumont et al., 

(2016) did an attempt to couple the gLV approach with a kinetic metabolic model that 
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integrates both microbial interactions and metabolism in a nitrification reactor. The model 

was useful to identify qualitative aspects of the system such as the coexistence of two 

competing bacteria. However, this type of modelling approach based on pairwise microbial 

interactions is limited to ecosystems with few species due to the high number of parameters 

that need to be estimated.  

 

In this work, we aim at integrating microbial time series within a dynamic modelling 

framework via the application of state observers (also called software sensors). An observer 

is an algorithm that combines measurements and a mathematical model to estimate 

unmeasured variables (see, e.g., Dochain (2003) for a review). Within the classes of state 

observers, asymptotic observers are of particular interest since they do not require knowledge 

on the kinetic functions representing the reaction rates. Asymptotic observers have been 

applied in simple microbial processes with few microbial species or in processes where the 

microbiota is represented in aggregated fashion by few microbial functional groups (Aceves-

Lara et al., 2010; Selişteanu et al., 2014). Observers in combination with optimization routines 

have been used to assign the metabolic functions of species (Operational Taxonomic Units - 

OTUs) participating in a nitrification process (Dumont et al., 2009; Ugalde-Salas et al., 2019). 

In these previous works, the functional assignment of species was translated into an 

optimization problem which assumes that one species participates only in one reaction. Such 

a hypothesis might hold for the nitrification process. However, the assumption of single 

microbial function does not seem to apply to the rumen microbiota, since microbes 

participate in various metabolic pathways simultaneously. To circumvent the single functional 

constraint, here we propose a novel approach that uses OTU data to derive microbial 

functional proxies for specific process of rumen metabolism such as volatile fatty acid (VFA) 

production. Our approach was tested firstly using published experimental data from an in vitro 

study (Belanche et al., 2017). We performed further an experiment with four cows to assess 

the modelling approach under in vivo conditions. Following open science practices (Muñoz-

Tamayo et al., 2022), the data and scripts are freely available.  

 

2 Methods 

In this section, we provide a general overview of the experimental case studies. Next, we 

describe the modelling approach.   

2.1 In vitro case study 
We used data from an in vitro experiment carried out in RUSITEC (Rumen Simulation 

Technique) systems by Belanche et al., (2017) to study the feed microbial colonization 

dynamics of fresh ryegrass or ryegrass hay. Rumen inoculum was obtained from rumen 

fistulated cows, and the incubation ran for 18 consecutive days in 16 vessels. Fermentation 

vessels (800 mL effective volume) were inoculated with rumen fluid and incubated with the 

experimental diets (80:20 forage to concentrate ratio). One bag containing feed (11.25 g DM) 

was daily supplied to each vessel and incubated for 48h. Artificial saliva was continuously 
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infused at a dilution rate of 3.35%/h (equivalent to 645 mL/d). After 14 days of adaptation to 

the experimental diets, the fermentation dynamics was monitored during 3 consecutive days. 

For each day, samples were taken at 2, 4, 8 and 24 h for determination of acetate, butyrate 

and propionate and for microbial characterization. Metabolite concentrations for each 

sampling time was reported as the mean value of the three samples. For microbial 

characterization, the samples were pooled per time point. The microbial RNA was extracted 

from the liquid and solid phases and the bacterial community structure was  characterized by 

16SrRNA (cDNA) Next Generation Sequencing (NGS) as previously described (Belanche et al., 

2017). Raw sequence reads are accessible at the EBI Short Read Archive from the European 

Nucleotide Archive (accession number PRJEB20255).  

 

2.2 In vivo experiment   
We conducted an experiment with four Nordic Red dairy cows, selected based on similar 
calving dates and equipped with rumen fistulas to provide dynamic data to assess our 
modelling approach in vivo. For 10 days of diet adaptation period, cows were offered total 
mixed ration consisting of grass silage (timothy-meadow fescue sward) preserved with formic 
acid based additive (AIV Ässä Na; 5 litres/tonne) provided at 45:55 forage to concentrate ratio 
on a dry matter basis. Concentrate mixture consisted of barley 210, oats 210, wheat 100, sugar 
beet pulp 220, rapeseed meal 230, and a mixture of minerals and vitamins 30 g/kg on as fed 
basis. Following the adaptation period, cows were located to metabolic chambers. Day 1 was 
dedicated to adaptation to the chamber conditions, while on d 2 and d 3 gas exchanges were 
measured for 48 h (for details see Bayat et al., (2022)). To determine circadian changes in 
rumen fermentation and rumen microbial community composition, on chamber d 4 and d 5 
for 48 h period  rumen liquid samples were collected every 3 h through ruminal fistula from 
the ventral site of the rumen using 500-mL bottle. Two sub-samples were taken for VFA and 
ammonia-N determination as described by Huuki et al. (2022) and were stored at –20°C for 
later analysis. Rumen liquid samples for microbial analysis were mixed to get homogenous 
distribution of microorganisms in the liquid, aliquoted into 2-mL sterile screw cap tubes, snap 
frozen on dry ice and stored at -80°C until DNA extraction. The total DNA was extracted from 
500 µL of rumen liquid following protocol described by Rius et al. (2012). Libraries of the 
bacterial 16S ribosomal RNA (rRNA) V4 region were prepared using 515F and 806R primers 
(Caporaso et al., 2011) and sequenced on Illumina MiSeq (Finnish Functional Genomics Centre, 
Turku) using the Paired-End approach and 2 x 250 bp chemistry. The sequencing data are 
accessible at NCBI SRA under the BioProject PRJNA1023082. 
 

2.3 Asymptotic observer and microbial functional proxies  
Let us consider a metabolic process occurring in a continuous reactor where 𝑛 microbial 
species 𝑥𝑖  grow at specific kinetic rates 𝑟𝑖 and produce the compound 𝑠. We consider that the 
reactor has a known dilution rate 𝐷 and that the microbes leave the system at a lower rate 
than the dilution rate, which implies that the residence time of microbes is higher than the 
residence time of soluble compounds. The higher microbial residence time results from 
biological phenomena such as attachment to solid particles and formation of microbial 
aggregates. A simple way to model this phenomena is by adding a residence time factor α 
(Bernard et al., 2001). The dynamics of 𝑠 and a microbial species 𝑥𝑖  follow: 
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𝑑𝑥𝑖

𝑑𝑡
= 𝑟𝑖 − α𝐷𝑥𝑖          [1] 

 
𝑑𝑠

𝑑𝑡
= ∑ 𝑌𝑠,𝑖𝑟𝑖

𝑛
𝑖=1 − 𝐷𝑠         [2] 

 

with 𝑌𝑠,𝑖 the production yield for the reaction 𝑟𝑖. The kinetic rates 𝑟𝑖 can be represented by a 

mathematical function like the Monod or Haldane equations. These kinetic functions are 

defined by specific parameters for each microbe 𝑥𝑖. The model equations [1,2] assume that 

the microbe 𝑥𝑖  participates only in reaction 𝑟𝑖 which does not hold for many rumen microbes. 

We developed here an alternative approach adapted to the rumen microbiota that overpasses 

the need of assigning functionalities to microbial species. As observed in equation [2], the 

production of 𝑠 results from the collective metabolic activity of the microbial consortium. In 

our approach, we assumed that the production of 𝑠 can be related to a subunit of the specific 

metabolic pathways involved in the production of 𝑠. This subunit gathers the functional 

activity of the full consortium and can be used as a proxy of microbial activity of the rumen 

microbiome. The construction of the microbial proxy will be detailed later on. We will call 𝑚𝑗 

the microbial proxy associated with the production of 𝑠𝑗. Here, our compounds 𝑠𝑗 are the 

major VFA from rumen fermentation: acetate (𝑠ac), butyrate (𝑠bu) and propionate (𝑠pr).  

For the compound 𝑠𝑗, the resulting model is defined by two equations   

 
𝑑𝑚𝑗

𝑑𝑡
= 𝜌𝑗 − α𝐷𝑚𝑗         [3] 

 
𝑑𝑠𝑗

𝑑𝑡
= 𝑌𝑗𝜌𝑗 − 𝐷𝑠𝑗         [4] 

 

Where 𝜌𝑗 represents the reaction rate catalysed by the microbial proxy 𝑚𝑗. The next step of 

the approach consists of building an asymptotic observer that will enable us to estimate the 

dynamics of  𝑠𝑗 from measurements of 𝑚𝑗. For that, let us consider the following state 

transformation:   

 

𝑧𝑗 =  𝑠𝑗 − 𝑌𝑗𝑚𝑗         [5] 

 

By deriving in time [5], we get  

 
𝑑𝑧𝑗

𝑑𝑡
= −𝐷[𝑧𝑗 + (1 − 𝛼)𝑌𝑗𝑚𝑗]        [6] 

Let us denote �̂�𝑗 an on-line estimate of 𝑧𝑗.  The dynamics of �̂�𝑗  follows  

𝑑�̂�𝑗

𝑑𝑡
= −𝐷[�̂�𝑗 + (1 − 𝛼)𝑌𝑗𝑚𝑗]        [7] 
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To simulate �̂�𝑗, we require dynamic data of 𝑚𝑗 and the parameters 𝛼, 𝑌𝑗 to be known. Under 

these conditions, we can use the estimate �̂�𝑗 and the dynamic data 𝑚𝑗 to provide an estimate 

�̂�𝑗 at each sampling time:  

 

�̂�𝑗 =  �̂�𝑗 + 𝑌𝑗𝑚𝑗          [8] 

 

The asymptotic observer is the conjunction of the measurements 𝑚𝑗 with equations [7,8]. As 

mentioned before, the approach does not require an explicit definition of the kinetic rate 

function 𝜌𝑗. We applied this development for acetate, butyrate and propionate, which 

requires measurements of the microbial proxies 𝑚ac, 𝑚bu, 𝑚pr and the yields 𝑌ac, 𝑌bu, 𝑌pr. 

For both in vitro and in vivo case studies, the specific microbial proxy associated to the 

production of each VFA was derived from rumen microbial time series data determined by 

16S rRNA gene amplicon sequencing. Raw data were analyzed using QIIME2 (version 2021.8) 

(Bolyen et al., 2019) using the script (run-samples) in https://github.com/frubino/cowpi and 

https://doi.org/10.5281/zenodo.8401851. Data were imported and denoised using the trim 

length option set at 400 and clustered using vsearch (Rognes et al., 2016), in particular the 

`cluster-features-de-novo` command with a percent identity set to 0.99. Classification was 

performed using the `feature-classifier classify-consensus-blast` that uses BLAST (Camacho et 

al., 2009) to classify the representative sequences, using default options and the Silva 

database (version 138) (Quast et al., 2013). Finally, the OTU table was exported to be used in 

subsequent analysis steps. The resulting OTU table and representative sequences were then 

analyzed using CowPI (Wilkinson et al., 2018) and modified using the information available at 

https://github.com/frubino/cowpi. The approach used here includes scaling data using 

DESeq2 (Love et al., 2014) and infers modules from KEGG (Furumichi et al., 2021) instead of 

pathways, using the information in CowPi data. The pipeline for the inference of the functional 

modules is available at https://github.com/frubino/cowpi. KEGG modules resolve more 

specific processes and allow for greater precision when performing metabolic analysis, and 

like pathways, genes are their building blocks, so CowPI data can be used. For our analysis, 

modules allowed us to focus on more detailed aspects of metabolism for our model that 

pathways would not permit. Consequently, we used information about modules instead of 

pathways. However, there was no module in KEGG to present the butyrate metabolism. 

Therefore, an additional module for the metabolism of butyrate was introduced using 

information from Hackmann and Firkins (2015). These modules are the microbial proxies 𝑚𝑗.  

 

The abundances of the microbial proxies are relative measurements. However, since the data 

are scaled, we assumed that the absolute concentrations of microbial proxies are proportional 

to their relative abundances. As mentioned above, the asymptotic observer requires α and 

the yield factors to be known. The factor α was set to 0.85 according to (Mills et al., 2001). We 

estimated the yield factors via the maximum likelihood (ML) approach as implemented in the 

Matlab IDEAS toolbox (Muñoz-Tamayo et al., 2009), which is freely available at 

http://genome.jouy.inra.fr/logiciels/IDEAS. For the optimization step, the Nelder–Mead 
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Simplex method (Lagarias et al., 1998) implemented in the fminseach function  was used. The 

model performance was assessed by computing the coefficient of variation of the root mean 

squared error (CVRMSE). The Matlab scripts are available at (Davoudkhani et al., 2023) 

https://doi.org/10.5281/zenodo.8386786.  

 

3 Results  

The scripts for the inference of the functional microbial modules are available at 
https://github.com/frubino/cowpi and https://doi.org/10.5281/zenodo.8401851. The 
abundances of each module for each case study are in the Tables modules.Rusitec.xls and 
modules.Cows in (Davoudkhani et al., 2023). A total of 308 modules were identified. The 
microbial proxies for VFA production are named as M00579 (𝑚ac), M99999 (𝑚bu), M00013 
(𝑚pr). The implementation of the observer for each case study is available at (Davoudkhani et 

al., 2023). 
 

3.1 In vitro case study 
 

Table 1 shows the estimated abundance of the microbial proxies of VFA production. The 
values are the sum of the abundances from the liquid and solid phase. Figures 1 shows the 
dynamics of VFA (acetate, butyrate, and propionate) compared to the estimated VFA 
concentrations by the observer for the in vitro experiments with grass and hay using the 
rumen inoculum from two cows. Table 2 shows the model evaluation in terms of the CVRMSE.  
The model performance is satisfactory with average CVRMSE for acetate, butyrate and 
propionate of 9.8%, 14% and 14.5%. Table 3 shows the estimated yield factors for each diet 
and inoculum. The average values of the yields of acetate, butyrate and propionate are 
0.13x10-6, 0.39 x10-7 and 0.49 x10-6.  
 
Table 1. Microbial abundance time series of functional proxies of VFA production for the in vitro case 
study. Values are the sum of the abundances from the liquid and solid phase. 

  Sampling time (h) 

  2 4 8 24 

Cow 1 Grass 𝑚ac 33139 37601 60680 70338 

 𝑚bu 52574 57719 116469 109282 

 𝑚pr 3503 3669 8181 8971 

Cow 1 Hay 𝑚ac 14487 42303 36663 82646 

 𝑚bu 18600 61808 49934 118876 

 𝑚pr 640 4323 3673 13470 

Cow 2 Grass 𝑚ac 87093 91845 105360 83174 

 𝑚bu 184833 206660 227768 235760 

 𝑚pr 23114 27944 24257 36697 

Cow 2 Hay 𝑚ac 111166 106780 101168 102789 

 𝑚bu 240822 240218 194157 218833 

 𝑚pr 31287 31758 22945 22005 
𝑚ac, 𝑚bu, 𝑚pr: abundances of microbial functional proxies for acetate, butyrate and propionate production. 
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Table 2. Coefficient of variation of the root mean square error (%) for the observer applied to in vitro 

data of VFA concentrations.    

 Acetate Butyrate Propionate 

Cow 1 Grass 7.1 11.8 13.2 

Cow 2 Grass  4.6 7.8 1.3 

Cow 1 Hay 16.9 20 25.6 

Cow 2 Hay 10.5 16.4 18 

Mean ± s.d.  9.8 ± 5.3 14 ± 5.3 14.5 ± 10.2 

 

 
 

Fig. 1. Experimental data of VFA concentrations from a RUSITEC experiment with two feeds 

(Grass and Hay) and rumen fluid from two cows (○: cow 1; ◊: cow 2) are compared against the 

estimated concentrations by the state observer (red solid line for cow 1, dashed blue line for 

cow 2). 

 
 
Table 3. Estimated yield parameters for the in vitro data.  

 

 𝑌ac 𝑌bu 𝑌pr 

Cow 1 Grass 0.19x10-6 0.77x10-7 0.93x10-6 

Cow 2 Grass  0.17x10-6 0.26x10-7 0.14x10-6 

Cow 1 Hay 0.07x10-6 0.30x10-7 0.29x10-6 

Cow 2 Hay 0.11x10-6 0.22x10-7 0.23x10-6 

Mean ± s.d. 0.13x10-6 ± 5.3x10-8 0.39x10-7±2.54x10-8 0.40x10-6±3.61x10-7 
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𝑌ac, 𝑌bu, 𝑌pr: yields of acetate, butyrate and propionate production (mol VFA / microbial functional 

proxy abundance).
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3.2 In vivo case study 
 
Table 4 shows the estimated abundance of the microbial proxies of VFA production from the 
liquid phase. Figures 2 shows the dynamics of VFA compared to the estimated VFA 
concentrations by the observer.  

 
Fig. 2. Experimental data of VFA concentrations (○) from an in vivo experiment with four cows 

are compared against the estimated concentrations by the state observer (blue solid line). 
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Table 4. Microbial abundance time series of functional proxies of VFA production for the in vivo case study. Values are from the liquid phase. 

 
 

  Sampling time (h) 

  7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 

Cow 
1 

𝑚ac 47708 45126 55602 57647 64097 56031 54965 65061 54497 69391 57204 67378 63766 67489 57861 56384 

 𝑚bu 76650 72740 92161 95845 108538 89023 90047 108791 90950 117048 94074 115549 109147 112391 96751 97451 

 𝑚pr 7229 6963 10052 9955 11753 8104 8651 11608 9396 12755 10278 13197 11730 11249 10067 11329 

Cow 
2 

𝑚ac 49745 48073 52536 49837 59831 58632 58376 40248 66988 69821 67276 54960 64366 50587 58103 54381 

 𝑚bu 80804 80864 87082 84439 98867 102169 97994 67514 113688 118291 114353 94216 110819 87848 100618 96853 

 𝑚pr 8064 8626 9009 8991 9808 11502 9774 6934 12201 12928 12633 10080 12292 9732 11186 10745 

Cow 
3 

𝑚ac 42144 48535 50274 55855 45496 58116 49365 54277 52852 66731 60735 53184 54231 65121 49727 51256 

 𝑚bu 73426 84226 85419 97337 78949 102467 80924 93929 89409 111399 102816 90607 92020 110914 84625 91281 

 𝑚pr 8149 9554 9264 11066 8440 11366 7839 10324 9596 11580 11227 10341 9335 11322 9163 10974 

Cow 
4 

𝑚ac 46298 12944 58665 60244 54556 55437 53430 54539 60154 64751 56813 56088 58200 53288 52679 57640 

 𝑚bu 77495 24482 99615 100443 90413 95868 86833 90640 103506 114801 93832 93850 101479 89818 91936 98357 

 𝑚pr 8128 2847 10811 10838 9539 10574 8927 9399 12079 13578 10265 9756 11216 9414 10771 11167 

𝑚ac, 𝑚bu, 𝑚pr: abundances of microbial functional proxies for acetate, butyrate and propionate production. 

 
 
 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.05.560454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.560454
http://creativecommons.org/licenses/by-nc/4.0/


 

PEER C 12 

Table 5 shows the CVRMSE for the VFA concentrations. The model performance is adequate 
with average CVRMSE for acetate, butyrate and propionate of 16.4%, 15.8% and 19.8%. As 
shown in Table 6, the model performance is very satisfactory with regard to prediction of VFA 
molar proportions. The CVRMSE for the molar proportions of acetate, butyrate and 
propionate are 3.1%, 3.8% and 8.9%. Table 7 shows the estimated yield factors for each cow. 
The average values of the yields of acetate, butyrate and propionate are 1.43 x10-6, 1.62x10-7 
and 2.43x10-6. 
 
Table 5. Coefficient of variation of the root mean square error (%) for the observer applied to in vivo 

data of VFA concentrations.  

 Acetate Butyrate Propionate 

Cow 1 10.1 10.2 14.7 

Cow 2 15.4 14.1 17.1 

Cow 3 16.5 18.4 25.9 

Cow 4 23.8 20.5 21.3 

Mean± s.d. 16.4 ± 5.6 15.8 ± 4.6  19.8 ± 4.9 

 

Table 6. Coefficient of variation of the root mean square error (%) for the observer applied to in vivo 

data of VFA molar proportions.  

 Acetate Butyrate Propionate 

Cow 1 2.9 3.4 8.3 

Cow 2 1.8 2.8 5.7 

Cow 3 3.6 4.6 10.9 

Cow 4 4.2 4.5 10.5 

Mean± s.d. 3.1 ± 1.0 3.8 ± 0.9 8.9 ± 2.4 

 

Table 7. Estimated yield parameters for the in vivo data.  

 𝑌ac 𝑌bu 𝑌pr 

Cow 1 1.38x10-6 1.73x10-7 2.37x10-6 

Cow 2 1.52x10-6 1.55x10-7 2.16x10-6 

Cow 3 1.43x10-6 1.50x10-7 2.64x10-6 

Cow 4 1.39x10-6 1.83x10-7 2.54x10-6 

Mean ± s.d. 1.43x10-6 ± 6.28x10-8 1.62x10-7±1.56x10-8 2.43x10-6±2.10x10-7 

𝑌ac, 𝑌bu, 𝑌pr: yields of acetate, butyrate and propionate production (mol VFA / microbial functional 

proxy abundance).
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4 Discussion 

The objective of this work was to integrate rumen microbiota time series determined by 16S 

rRNA gene amplicon sequencing into a mathematical model linking microbial data to the 

dynamics of the volatile fatty acids (VFA) production during rumen fermentation. This 

objective followed the rational that microbial data can be used to enhance predictive 

capabilities of rumen fermentation models. Our model development provided satisfactory 

results for estimating the dynamics of VFA from microbial data. The in vivo study showed that 

yield factors for the specific VFA production are similar between the cows.  

Given the limited number of animals used in our study, it is difficult to provide a fair 

comparison with existing rumen models. Furthermore, few rumen modelling studies have 

compared model predictions against dynamic data of VFA concentrations, with the exception 

of the work of (van Lingen et al., 2019). Under this context, however, it should be mentioned 

that the CVRMSE of our modelling approach are lower than those reported in the work of van 

Lingen et al. (2019), which strengthens our model development. From the modelling 

perspective, the structure of the model developed here is very simple compared to the 

structure of the existing rumen models. This parsimonious property is of usefulness for the 

development of in silico tools to predict rumen function from microbial data within a Precision 

Livestock Farming context. It should be said, however, that our study is a theoretical work that 

demonstrates the proof of concept that rumen microbial data can be used to predict rumen 

fermentation variables. However, the application of our modelling approach in farm 

conditions is currently unfeasible due to the need of rumen sampling and the costs of 

microbial analysis. To overcome the obstacle of rumen accessibility, it will be useful to test 

our approach using buccal microbial samples as proxies of the rumen microbiota (Kittelmann 

et al., 2015; Tapio et al., 2016). Buccal sampling might be a solution for getting quick samples 

and if it is coupled with easy sequencing instrument, it might become possible to use this 

approach to estimate rumen VFA using our modelling approach. 

The fundamental aspect of our approach is the definition of the microbial proxies for each 

VFA. The microbial proxies here developed followed the principle that the rumen ecosystem 

operates as supra-organism provided with all the metabolic capabilities of its species. This 

approach does not account for species connectivity which is a relevant aspect in gut microbial 

ecosystems (Walker et al., 2014). It is indeed interesting that the aggregated microbial proxies 

provided an adequate representation of VFA dynamics. Although the results are promising, 

future research is needed to refine the definition of these proxies, by taking into account 

quantitative transcriptomic information to identify the actual metabolic activity.  

Our study has taken a step in the direction of capitalizing on microbial data to predict rumen 

function. In this first step, we used asymptotic state observers due to its simple structure and 

the advantage of not requiring information on the mathematical functions describing the 

metabolic kinetic rates. However, asymptotic observers have the limitation that the 
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convergence rate cannot be tuned because it is determined by operational conditions (e.g., 

ruminal fractional passage rate). This limitation can be overcome by other observers. 

However, more sophisticated technicalities are needed for the design and implementation of 

such observers (Dochain, 2003). Our approach was applied to estimate VFA dynamics. We 

think that the approach can be extended to estimate other metabolites including methane 

production by the rumen methanogenic archaea. Such an application will be of great 

interesting for the monitoring of methane emissions and for the evaluation of methane 

inhibition strategies.  

 

Conclusions  

Existing mechanistic models of rumen fermentation consider an aggregated representation of 

the rumen microbiota and its metabolic function. However, none of these models integrate 

microbial genomic knowledge and thus do not capitalize on the rich information of microbial 

genomic sequencing. In this work, we integrated microbial time series of the rumen 

microbiota determined by 16S rDNA into a dynamic model of the rumen microbiome. Our 

results showed the estimated VFA concentrations converge towards the real VFA 

concentration dynamics demonstrating the promising potential of our approach.  
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