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The rumen ecosystem harbours a galaxy of microbes working in syntrophy to carry out a metabolic cas-
cade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest
nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between
the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and
methane emissions and suggests the potential of reducing methane emissions and enhancing feed con-
version into animal products by manipulating the rumen microbiota. Whilst significant technological
progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (mi-
crobiome), translating omics knowledge into effective microbial manipulation strategies remains a great
challenge. This challenge can be addressed by modelling approaches integrating causality principles and
thus going beyond current correlation-based approaches applied to analyse rumen microbial genomic
data. However, existing rumen models are not yet adapted to capitalise on microbial genomic informa-
tion. This gap between the rumen microbiota available omics data and the way microbial metabolism is
represented in the existing rumen models needs to be filled to enhance rumen understanding and pro-
duce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, the inte-
gration of computational biology tools and mathematical modelling frameworks is needed to translate
the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a
mathematical object. In this paper, we aim to discuss the potential use of two modelling approaches
for the integration of microbial genomic information into dynamic models. The first modelling approach
explores the theory of state observers to integrate microbial time series data into rumen fermentation
models. The second approach is based on the genome-scale network reconstructions of rumen microbes.
For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabo-
lism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a
plethora of methods comprised within the constraint-based reconstruction and analysis approaches. We
will discuss how these methods can be used to produce the next-generation models of the rumen
microbiome.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

Ruminants and their rumenmicrobiota exhibit an intimate rela-
tionship that shapes key animal phenotypes such as feed efficiency
and methane emissions. Advances in omics techniques have deeply
enlarged our knowledge on the rumen microbiota and its genome
(microbiome). But, how can we capitalise on the large omic infor-
mation to develop predictive tools that can guide the design of
strategies for sustainable ruminant production? In this paper, we
aim at responding partly to this question by discussing two math-
ematical approaches adapted to integrate microbial genomic infor-
mation of the rumen microbiome into dynamic models.
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Introduction

Ruminants are able to harvest nutrients from forage diets rich
in fibres and transform them into human-edible products with
high-quality proteins. Fibre degradation occurs predominantly
in the rumen thanks to the action of a complex microbial commu-
nity (microbiota) constituted by hundreds of species that include
bacteria, archaea, protozoa, fungi and viruses. The rumen
microbes encode a repertoire of enzymes for degrading plant cell
wall carbohydrates allowing the animal host to harvest nutrients
that are otherwise inaccessible. Due to its metabolic capabilities,
the rumen microbiota can be viewed as an organ within the host.
Ruminants and their microbiota have co-evolved in an intimate
and symbiotic relationship, which makes us consider them as
holobionts. The close connection between the ruminant and its
rumen microbiota shapes key animal phenotypes such as feed
efficiency and methane emissions (Wallace et al., 2019) and sug-
gests the potential of reducing methane emissions and enhancing
feed conversion into animal products by manipulating the rumen
microbiota. However, only a few examples of direct microbial
manipulation have shown beneficial outcomes (Huws et al.,
2018). The design of successful manipulation strategies for sus-
tainable ruminant production requires a better understanding
of the dynamic interactions between the diet, the animal and
its rumen microbiota. Disentangling this triad interplay requires
to elucidate firstly central dynamic features of the rumen micro-
biota ecosystem such as interspecies interactions and resilience
(Weimer, 2015). The significant technological progress in omics
techniques has increased our knowledge of the rumen micro-
biota. The omic techniques applied to the rumen microbiota
(summarised in Table 1) have been discussed in dedicated
reviews (Firkins and Yu, 2015; McAllister et al., 2015; Denman
et al., 2018; Huws et al., 2018; Wallace et al., 2017; Gruninger
et al., 2019). Although important knowledge has been gained
from omic studies on the rumen microbiota, a great challenge
needs to be overcome for translating omics knowledge into effec-
tive microbial manipulation strategies. Most of the findings
derived from metataxonomic and metagenomic studies are
mainly descriptive and follow a simple correlation basis, while
groups of microbes are linked by many interrelationships. Also,
the data are normalised as relative abundance which does not
represent an absolute quantification of taxa or genes. Further-
more, a great number of identified taxa have unknown function,
and a high proportion of genes from the characterised taxa code
for unknown proteins. To enhance our system-level understand-
ing of the rumen ecosystem and translate genomic data into pre-
Table 1
Meta-omics analyses used to study the rumen microbiome, and their specific
contribution to our understanding of the rumen functions.

METAGENOMICS METATRANSCRIPTOMICS
� Discovery of uncul-
tured microbial
genomes

� Potential activity of
microbiota

� Taxa-related metabolic
features

� Putative interaction
network

� Gene expression profiling
� Gene expression regulation
� Identification of active taxa
� Identification of microbiota activity Rapid
response to various factors (environmental
stimuli. . .)

METAPROTEOMICS METABOLOMICS
� Taxa-specific protein
profiles

� Identification of micro-
biota activity

� Localisation of protein
activity

� Metabolite profiling
� Identification of metabolites associated
with animal phenotype (biomarkers) or
rumen microbiota profile
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dictive tools for sustainable ruminant production, modelling
approaches integrating causality principles that shape rumen
metabolism are needed. Rumen modelling started in the seven-
ties with empirical and mechanistic developments which can
be either static or dynamic (Tedeschi et al., 2014). In the category
of dynamic models, the most popular modelling structures are
Molly (Baldwin et al., 1987), the Dijkstra model (Dijkstra et al.,
1992) and Karoline (Danfær et al., 2006). These models have
been incrementally improved over the years. Examples of exten-
sions are Gregorini et al. (2015) for Molly, Huhtanen et al. (2015)
for Karoline and van Lingen et al. (2019) for the Dijkstra model.
Recent modelling efforts have been done to include the dynamics
of methanogens (Muñoz-Tamayo et al., 2016; van Lingen et al.,
2019), thermodynamic control and the impact of methane inhibi-
tors on the rumen fermentation pattern and methane production
(Muñoz-Tamayo et al., 2021; van Lingen et al., 2021). Modelling
works have also been developed to study ecological interactions
within the methanogen rumen community (Lynch et al., 2019;
Muñoz-Tamayo et al., 2019). However, despite the model
improvements before mentioned, existing rumen fermentation
models do not integrate microbial genomic information of the
rumen microbiome. This gap between the available rumen
microbiota omics data and the representation of microbial meta-
bolism in the existing rumen models needs to be filled to improve
rumen understanding (Bannink et al., 2016). Filling this gap can
lead to novel mathematical models with better predictive power
and capabilities to guide nutritional strategies. A variety of math-
ematical modelling approaches have been developed to study the
human gut microbiome. Kumar et al. (2019) have categorised
these modelling approaches into four groups: (i) dynamic mod-
elling that account for phenotypic traits of microorganisms, (ii)
modelling based on sequence read abundance, (iii) constraint-
based modelling using annotated genomes and (iv) agent-based
modelling. The interested reader is referred to the review of
Kumar et al. (2019) that discussed the advantages and challenges
of these modelling approaches. It goes without saying that mod-
elling approaches developed for the human gut microbiome can
be applied to the rumen microbiome. In this paper, we discuss
the potential use of two modelling approaches for the integration
of microbial genomic information into dynamic models, namely
state observers and genome-scale metabolic models (GEMs). A
GEM is a detailed model of microbial metabolism that links the
metabolites and biochemical reactions that an organism is able
to perform as a result of its genetic potential. While the GEM
approach has been applied to study the human gut microbiota
(Heinken et al., 2023; Kumar et al., 2019), genome-based mod-
elling of the rumen microbiota is at an infant stage. It is yet
unclear how these GEMs can be integrated into whole rumen
models adapted to evaluate a wide range of nutritional condi-
tions (Bannink et al., 2020). This paper aims to foster the incorpo-
ration of genome-scale-based approaches into rumen modelling
efforts.

Modelling approaches for integrating microbial genomic
knowledge

Existing dynamic models of rumen fermentation are kinetic
models where microbial metabolism is represented in a simplified
aggregated pathway consisting of a few macroscopic reactions
defined either empirically or from dedicated literature. The
dynamics of metabolism of a single rumen microbe or of the full
microbial ecosystem can be described by the following differential
equation resulting from applying mass balances in a stirred system

dx
dt

¼ S r x;pð Þ þ g x;qð Þ ð1Þ



R. Muñoz-Tamayo, M. Davoudkhani, I. Fakih et al. Animal 17 (2023) 100984
Eq. (1) is a generic equation that can be applied to any microbial
process (Bastin and Dochain, 1990). Here, x is the vector containing
the concentrations of metabolites, which can be either intracellular
(xi) or extracellular (xe). The fluxes associated to the metabolic
conversions are represented by the term S r x;pð Þ, where S is the
stoichiometric matrix and r is the vector of reaction rates (per unit
of time). The reactions rates are expressed as mathematical func-
tions of the concentrations x and the parameter vector p. These
reactions are catalysed by a proxy of microbial biomass activity
and might depend on environmental conditions such as the pH.
The Monod kinetic function is a typical equation used to represent
the reaction rates of microbial processes. The fluxes related to mass
transport phenomena (e.g., passage rate, absorption, liquid–gas
transfer) are represented by the vector g, which is function of x
and the parameter vector q. The prediction capabilities of any
rumen model will depend on how accurate is the representation
of the microbial fermentation (described by S; r;p) and the trans-
port phenomena (described by g;q). This paper focuses on the
microbial fermentation. However, it should be noted that defining
the structure of g and numerical values of q for the transport phe-
nomena is also a challenging task.

In existing rumen models, r is a vector with few macroscopic
reactions representing an aggregated pathway of the rumenmicro-
biota. Here, the rumen microbiota is described by few major func-
tional groups (e.g., sugar utilisers, amino acid utilisers and
hydrogen utilisers (Muñoz-Tamayo et al., 2016)). As previously
mentioned, existing rumen models do not integrate microbial
genomic information. The integration of such an information
implies to translate the knowledge of the metabolic potential of
the rumen microbes (inferred from their genomes) into a mathe-
matical object. In the following sections, we will discuss two mod-
elling approaches that allow such an integration. The first approach
explores the theory of state observers to integrate microbial time
series into rumen fermentation models. The second approach is
based on the genome-scale network reconstruction of rumen
microbes. It should be noted that these two modelling approaches
follow the same generic Eq. (1).

Microbial time series and state observers

Microbial communities change over time in response to envi-
ronmental changes. The analysis of microbial time series is a useful
tool for monitoring and characterising the evolution of microbial
community and the interactions between its members. The analy-
sis of microbial time series can also provide insight on key dynamic
properties of the ecosystem such as stability and resilience to per-
turbations. Analysis of rumen microbial time series has been
applied to characterise rumen microbial colonisation patterns both
in vivo (Huws et al., 2021; Piao et al., 2014) and in vitro (Belanche
et al 2017), and the dynamic response of the methanogenic com-
munity to the supplementation of the methane inhibitor 3-
nitrooxypropanol (Pitta et al., 2021).

When sufficient time points are measured, a variety of methods
are available to analyse microbial time series (Faust et al., 2015).
These methods include network inference reconstructions and
community dynamic models, with the generalised Lotka–Volterra
(gLV) model being one of the most widely approaches used to
model microbial communities. Gonze et al. (2018) provide a
detailed review on gLV approach, its applications and limitations.
One of the limitations of the gLV approach is that it is not well-
suited to analyse high-dimensional microbiome time series data.
Another limitation is that the gLV approach does not integrate
information on the concentration of fermentation metabolites. An
alternative to exploit microbial time series within a mechanistic
modelling framework like the one represented by Eq. (1) is the
use of state observers (also called software sensors). An observer
3

is an algorithm that uses a mathematical model and measured
variables to estimate unmeasured variables of a given system.
Observers have been widely applied to monitor and control biolog-
ical processes including engineering anaerobic reactors (Jimenez
et al., 2015). State observers for anaerobic processes are often
applied to estimate the concentrations of key compounds such as
volatile fatty acids (VFAs) concentrations from available measure-
ments (e.g., H2, and CO2 gas rates) (Aceves-Lara et al., 2010). A
potential application of the state observers is the estimation of
functional microbial species within microbial consortia. This type
of application has been rarely applied. One of these applications
includes the estimation of the evolution of ammonia and nitrite-
oxidising bacteria in a nitrifying chemostat (Dumont et al., 2009;
Ugalde-Salas et al., 2019). A theoretical work addressed the estima-
tion of two microbial strains in a consortium exhibiting cross-
feeding interactions (dos Reis de Souza et al., 2023). The capability
of the state observers to link information on microbial abundance
and fermentation metabolites can be of great value for the rumen
microbiota, as we discuss below.

To illustrate the concept of state observers, let us consider the
following set of equations representing the concentration dynam-
ics of a microbe (B) and a product (P) in an in vitro continuous reac-
tor with dilution rate D:

dB
dt

¼ r � D � B ð2Þ
dP
dt

¼ k � r � D � P ð3Þ

The growth of B follows the reaction rate r. The production of P
is given by r and the stoichiometry coefficient k. Under the hypoth-
esis that B can be measured in time and P is not measured, the goal
of the observer is to estimate P from B. We will assume here that
the reaction rate r is unknown while the coefficient k is known.
We can then construct a new variable z defined by

z ¼ k � B� P ð4Þ
By deriving z with respect to time and using Eqs. (2)–(4), we

obtain

dz
dt

¼ k � dB
dt

� dP
dt

¼ k � r � k � D � B� k � r þ D � P
¼ �D � k � B� Pð Þ ¼ �D � z ð5Þ
Let us denote bz an on-line estimate of z. The dynamics of bz

follows

dbz
dt

¼ �D � bz ð6Þ

If dynamic data of B are available and given than an estimate ofbz is obtained from Eq. (6), we can use Eq. (4) to have the estimate bP
as

bP ¼ k � B� bz ð7Þ
This observer is called asymptotic observer. The great advan-

tage of this type of observer is that it does not require knowledge
on r. Indeed, defining the mathematical function of r is one of the
most challenging parts in the model construction of microbiologi-
cal systems. A limitation of the asymptotic observer is that the rate
at which the observer estimate converges to the real value is fixed
by the operating conditions of the system (e.g. the dilution rate).
Another limitation is that the stoichiometric coefficients k should
be known. These limitations can be overcome by other state obser-
vers, but more sophisticated mathematical technicalities are
required for the design of such observers (Dochain, 2003).
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The previous observer for P constituted by Eqs. (6) and (7) and
data on biomass B can be extended to the case of consortia with n
microbial species (represented for example by Operational Taxo-
nomic Units - OTUs). Hence, the model equations of the system are

dBi

dt
¼ ri � D � Bi ð8Þ
dP
dt

¼
Xn

i¼1

ki � ri � D � P ð9Þ

With ki; ri the stoichiometry coefficients and the reaction rates
for the microbe Bi (i ¼ 1;2; � � � ;n). The variable z is thus defined by

z ¼
Xn
i¼1

ki � Bi � P ð10Þ

If the concentrations of the different microbial species Bi can be
measured on time, we can then build an observer for P following
the same procedure than that used for a single species previously
illustrated.

In a theoretical study, we applied this approach using the math-
ematical model of rumen in vitro fermentation developed by
Muñoz-Tamayo et al. (2016) extended to account for continuous
mode operation. The model considers three functional microbial
groups namely sugar utilisers, amino acid utilisers and hydrogen
utilisers. Fig. 1 displays the schematic representation of the fer-
mentation pathway of our model. For our theoretical exercise
applying the state observer approach, we assumed a hypothetical
simulation scenario where sugar utilisers and amino acid utilisers
were constituted by five microbial species with different kinetic
rates (Davoudkhani et al., 2022a). Fig. 2 shows the dynamics of
the five microbial species for each functional group and the simu-
lation results of the observer for acetate, butyrate and propionate.
The initial condition was set far from the ‘‘real” condition to illus-
Fig. 1. Schematic representation of the rumen fermentation in the mathematical mod
approach. Feed polymers (fibre, on-fibre carbohydrates, and proteins) are hydrolysed i
specific functional microbial groups, namely sugar utilisers and amino acid utilisers which
group of hydrogen utilisers uses hydrogen and carbon dioxide to produce methane.

4

trate that the estimation given by the observer converges to the
real value (Davoudkhani et al., 2022a).

The approach assumes that functional assignment of the
microbes is possible. However, this functional assignment is a chal-
lenging issue that can be addressed as an optimisation problem
(Ugalde-Salas et al., 2019). Another strong assumption for the state
observer approach is that each microbe (OTU) participates only in
one macroscopic reaction. This assumption only holds for few
microbes, such as the hydrogenotrophic methanogens. Indeed,
many microbes are capable of participating in various metabolic
pathways. The inability to account for the overlapping of metabolic
functions is a limitation of the observer approach when applied to
individual OTU data. To circumvent the obstacle of deriving a state
observer on the OTU basis, an alternative is to substitute OTUs by
microbial functional proxies. Following this rationale, we have
recently developed an approach that exploits CowPI (Wilkinson
et al., 2018) to infer, from microbial time series based on 16S data,
the abundances of microbial functional proxies involved in specific
processes of VFA production. Our approach was used to estimate,
via an asymptotic observer, the dynamics of acetate, butyrate
and propionate concentrations in a RUSITEC experiment carried
out by Belanche et al. (2017). Our results indicated the promising
application of observers and microbial time series data to investi-
gate alternatives to connect omics data and mathematical mod-
elling for studying the rumen microbial ecosystem (Davoudkhani
et al., 2022b).
Genome-scale metabolic modelling

The core of a genome-scale metabolic model is the stoichiome-
try matrix S of the metabolism. For a genome-sequenced microor-
ganism, the stoichiometry matrix is built on the basis of genome-
scale network reconstructions following a detailed protocol
el developed by Muñoz-Tamayo et al. (2016) used to illustrate the state observer
nto sugar and amino acid monomer pools. Monomers are further metabolised by
produce acetate, butyrate, propionate, hydrogen and carbon dioxide. The microbial



Fig. 2. Simulation study to assess the performance of an asymptotic observer applied to the mathematical model of rumen fermentation developed by Muñoz-Tamayo et al.
(2016). In the original model, acetate, butyrate and propionate are produced by the action of two functional microbial groups, namely sugar utilisers and amino acid utilisers.
For our theoretical exercise, we assumed a hypothetical simulation scenario where each microbial functional group (sugar utilisers and amino acid utilisers) were constituted
by five microbial species with different kinetic rate parameters. The top figure (A) shows the concentration dynamics of the five species for each microbial group. The bottom
figure B shows the estimated values of acetate, butyrate and propionate of the state-observer (solid line) converge to the ‘‘real” values (s).
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(Thiele and Palsson, 2010) that can be briefly summarised by the
next five steps:

i. Functional genome annotation. This step aims at associating
genes, proteins, and reactions to a draft of metabolic
reactions.

ii. Orthology: reconstruction based on the comparison with
GEMs of other microorganisms.

iii. Gap-filling: process of completion of pathways.
iv. Manual curation: the network is curated on the basis of

expert knowledge, experimental data and dedicated
literature.

v. Translation of the reconstruction to a computational model.
The final result is a detailed metabolic reaction network that
can be represented mathematically in a matrix form that
captures the stoichiometry of the metabolism.

Several databases and toolboxes are available to facilitate the
reconstruction of GEMs including KEGG (Kanehisa and Goto,
2000), Metacyc (Caspi et al., 2016), BiGG (King et al., 2016), Path-
way Tools (Karp et al., 2002), CarveMe (Machado et al., 2018),
KBase (Arkin et al., 2018) and AuReMe (Aite et al., 2018). The inter-
ested reader is referred to the benchmark study by Mendoza et al.
5

(2019) which assessed several features of seven genome-scale
reconstruction tools.

The stoichiometry matrix contains a high number of rows
(metabolites) and reactions (columns). From the reconstruction
of draft GEMs, an average GEM of a rumen microbe can consist
of 1 155 reactions and 1 422 metabolites (Belcour et al., 2020).
We have reconstructed a metabolic network of the cellulolytic
rumen bacterium Fibrobacter succinogenes S85, which comprised
1 565 reactions and 1 586 metabolites (Fakih et al., 2023). While
kinetic models derive the stoichiometric matrix by prior knowl-
edge and dedicated literature, in the GEM approach, the stoichio-
metric matrix is derived directly from the genome of the microbe
of interest. The stoichiometry matrix can be analysed by a plethora
of methods comprised within the constraint-based reconstruction
and analysis (COBRA) approaches (see, e.g., the review by Lewis
et al., 2012). The constraint-based term results from the analysis
that the capabilities of the microbes are bounded by constraints
that include thermodynamics and enzyme capacities.

The stoichiometric matrix S contains the stoichiometric matri-
ces for intracellular (Si) and extracellular (Se) metabolites. That is:

S ¼ Si
Se

� �
ð11Þ
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COBRA approaches overcome the need of defining kinetic rates
and its parameters by assuming that internal metabolism operates
at steady-state condition. Consequently, genomic-scale modelling
focuses mainly on the analysis of the intracellular matrix Si. For
simplicity, let us omit the transport phenomena in Eq. (1) and
focus only on the metabolism phenomena, represented by the term
S r x;pð Þ. Applying the steady-state condition for the intracellular
metabolites results in

dxi
dt

¼ Sir ¼ 0 ð12Þ

Since the number of reactions is typically higher than the num-
ber of metabolites, Eq. (12) is often underdetermined. All admissi-
ble solutions of Eq. (12) constitute the solution space, that
mathematically corresponds to the null space (kernel) of the stoi-
chiometric matrix Si. COBRA approaches are centred on the analy-
sis of Si and aim to predict the potential phenotypes of an organism
on the basis of its genome. Flux balance analysis (FBA) (Varma and
Palsson, 1993) and elementary flux mode analysis (EFM) (Schuster
and Hilgetag, 1994) are the basic frameworks of COBRA. FBA and
EFM have served as scaffolds for the development of a plethora
of approaches that counts with more than 100 methods (Lewis
et al., 2012). The principles of FBA and EFM are briefly described
below.

Flux balance analysis

An infinite number of solutions exist that fulfil the steady-state
Eq. (12). To reduce the solution space, FBA looks at finding the flux
vector r by optimising a regulatory optimal condition. The most
used optimisation criterion applied in FBA is the maximisation of
the biomass growth rate. Other optimal criteria are for example
the maximisation of production of ATP and the production of a
desired by-product. FBA solves the system of linear equations
(12) under defined constraints and an objective function by using
linear programming. FBA is included in the collection of methods
of the COBRA toolboxes (Heirendt et al., 2019) for the analysis of
GEMs. Within the FBA framework, it is possible to predict the max-
imal growth rate of an organism and the production rates of
metabolites. However, FBA does not allow the prediction of
metabolite concentrations. Other applications of interest of FBA
include robustness analysis that allows to assess the impact of
varying a particular reaction of the network on the growth rate.
For small networks, the optimal solution is often unique, while
for large networks, multiple optimal solutions are frequently
found. Multiple solutions are the result of the redundancy capabil-
ity of the microbe, a property that is linked to metabolic robust-
ness. Once the maximal growth rate is obtained, it is possible to
perform multiple optimisations to calculate the maximum and
minimum flux values of each reaction in the network to charac-
terise the range of metabolic functions. This approach is called flux
variability analysis (FVA) (Lewis et al., 2012). As previously men-
tioned, FBA is based on the steady-state assumption. However, a
further extension, named as dynamic FBA (DFBA) (Mahadevan
et al., 2002), has been developed to account for the dynamics of
microbial metabolism. DFBA allows to predict the dynamics of
metabolites. The DFBA approach is often applied on a reduced
metabolic network. FBA applications require high-quality GEMs
that result from an exhaustive reconstruction protocol based on
detailed biochemical data, high level of curation and knowledge
on gene functions. Nevertheless, a good portion of any genome
contains genes whose functions are unknown (Zengler and
Palsson, 2012). Accordingly, high-quality level reconstructions
might not be feasibly reached yet for the complex rumen microbial
community without a massive effort. Whereas high-quality level
reconstructions of rumen microbes are not available, GEM applica-
6

tions for the rumen ecosystem can focus on metabolic core func-
tionalities. It should be noted that, as presented, the construction
of a GEM appears disconnected from the process of transcriptional
regulation. A variety of methods have been developed to integrate
gene expression into genome-based models as reviewed and
assessed by Machado and Herrgård (2014). These methods should
also be considered within the endeavour of constructing genome-
based models of the rumen microbiome.

Elementary flux modes analysis

In contrast to FBA, EFM analysis is a non-optimisation tech-
nique. EFM analysis is intended to study the full capabilities of a
given metabolic network by finding the simplest biochemical flux
vectors, in terms of which all other flux vectors can be expressed
(Schuster and Hilgetag, 1994). This means that the solution space
can be spanned by a set of basis vectors. To find those vectors,
Schuster and Hilgetag (1994) made use of concepts and tools from
convex analysis. The vector that fulfils the condition in Eq. (12) –
without any additional optimality constraint – are non-negative
vectors contained in the null-space of the stoichiometric matrix
Si. The space of admissible fluxes is a convex polyhedral cone.
The generating vectors of the cone are called elementary flux
modes. Any steady-state flux distribution can be expressed as a
non-negative linear combination of the EFMs. Biochemically, in
the words of Schuster et al. (2002), ‘‘EFMs (direct reaction routes)
are minimal sets of enzymes that can operate at steady state, with
all irreversible reactions used in the appropriate direction. They
can be interpreted as component pathways of a (bio)chemical reac-
tion network”. In other words, EFMs are minimal pathways (func-
tional building blocks) though the network (Zanghellini et al.,
2013). An EFM is composed of a minimal number of reactions,
where the term minimal implies that if a reaction is omitted from
the reaction route, the full pathway is blocked. Zanghellini et al.
(2013) used an illustrative metaphor of a subway map to explain
the EFM.

Dedicated software is available for EFM computation (Klamt
et al., 2007). Applications of EFMs include the assessment of yields
for all independent pathways, analysis of functional redundancy of
a network, and robustness of an organism subject to gene deletions
and additions approaches (Lewis et al., 2012). The EFMs can be
exploited to derive macroscopic kinetic models. Indeed, each
EFM can be translated into a macroscopic reaction and thus be
used to build a dynamic model. This type of approach has been
used to model the metabolism of Chinese hamster ovary cells
(Provost et al., 2006), microalgae (Baroukh et al., 2014) and yeast
(Robles-Rodriguez et al., 2017). The key point is to select a minimal
set of EFMs that span the metabolic capabilities of the organisms.
This task can be done by using yield analysis (Song and
Ramkrishna, 2009). The calculation of EFMs can become computa-
tionally expensive for large networks. Therefore, GEM reduction
methods are required to provide networks with core functionali-
ties. The Supplementary Material S1 discusses some GEM reduc-
tion methods. This model reduction follows the principle of
parsimony, which states, as a general rule, that simpler theories
should be preferred to more complex ones. Regarding model con-
struction, one would like to build the less complex model that
can represent adequately the system under study. Model simplifi-
cation offers various advantages in terms of numerical simulation
and structural properties such as parameter identifiability
(Muñoz-Tamayo et al., 2018; Muñoz-Tamayo and Tedeschi,
2022), which is a key aspect that should be considered to provide
reliable models without over-parameterisation.

Fig. 3 sums up the FBA and EFM approaches applied on the anal-
ysis of the solution space of Eq. (12). The capability of the EFM-
based approach to translate microbial genomic knowledge into
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macroscopic reactions makes the EFM framework a suited
approach for modelling the rumen ecosystem. Indeed, the resulting
macroscopic reactions derived from EFM analysis can be integrated
into dynamic models accounting for the fluctuating rumen envi-
ronment and the interaction between the rumen microbiome, the
host and the diet. Fig. 4 summarises the workflow of constructing
a dynamic genome-based model.
Microbial community modelling

The previous sections addressed the GEM approach applied to
single microbes. The construction of GEMs of key rumen species
is a key step towards the generation of a rumen microbiome
model. However, to model the rumen microbiome, it is needed to
address how the GEM approach should be extended to the whole
microbial ecosystem. The mathematical modelling of metabolic
networks of microbial consortia at genome scale is still at an early
stage (Zengler and Palsson, 2012). To model microbial communi-
ties, the main challenge to be addressed relates to the question
of how the species, their metabolic networks, and interspecies
interactions should be represented. Tackling this challenge
becomes critical when analysing high diverse ecosystems such as
the rumen. The critical issue of representing the species (and their
metabolic capabilities) into GEMs has been addressed by two
frameworks, namely the compartmental (Stolyar et al., 2007) and
the supra-organismal approaches (Klitgord and Segre, 2011). The
two approaches are depicted in Fig. 5. In the compartmental
approach, the metabolic network of each microbial species is trea-
ted as a separate compartment, whereas the supra-organismal
approach assumes that the microbial community behaves as a sin-
gle microorganism provided with all the metabolic capabilities of
the individual species of the consortia. The supra-organism
approach is strongly linked to the principles of whole genome
sequencing.

For highly diverse ecosystems, the compartmental approach
sensu stricto results in a highly complex model (for the rumen
ecosystem, a compartmental model will imply hundreds of micro-
bial species, and thus thousands of reactions and metabolites). On
Fig. 3. COBRA approaches are based on the analysis of the allowable states of a metab
generating vectors of the cone are the elementary flux modes (EFMs). Flux balance anal
EFMs can be projected in a yield space (B). The EFMs at the vertices of the polygon are
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the other hand, the main weakness of the supra-organism
approach is that due to its level of aggregation, it lacks a descrip-
tion of the connectivity principle among species which is a deter-
mining factor of the function of the whole community (Biggs
et al., 2015). Thus, the supra-organism approach offers limited
capabilities to study central metabolic interactions such as cross-
feeding and interspecies hydrogen transfer. Following the evidence
of a rumen core microbiota (Creevey et al., 2014; Henderson et al.,
2015; Wallace et al., 2019), a potential alternative between the two
approaches is to represent the rumen microbial community by a
mini-consortium of microbes covering the rumen functional core.
The selection of the members of a rumen functional core micro-
biome can be supported by existing literature and by the use of
tools such as Metage2Metabo (Belcour et al., 2020) which uses
draft GEMS to identify minimal communities and keystone species
for a targeted set of compounds. The development of a rumen
microbiome model will require strong integration between mod-
elling approaches and dedicated in vitro experiments designed to
characterise in deep rumen microbial interactions and the influ-
ence of such interactions on the fermentation profile (Popova
et al., 2022). The expected data from these in vitro experiments
should be dynamic including metabolites and microbial biomass
at different sampling times to have enough information to calcu-
late metabolic fluxes and accurate mass balance. This accuracy is
critically needed to study for example the fate of hydrogen under
methanogenesis inhibition (Morgavi et al., 2023). The synergy
between experimentation and modelling will provide useful data
for the determination of the model parameters related to microbial
metabolism following the principle of parsimony previously dis-
cussed. That is, that one may not need to model all rumen species
but rather a minimal set of (meta) species covering the rumen
functional core.
Applications of genome-scale metabolic modelling approaches to
rumen microbiome

Major potential applications of genome-based approaches for
the rumen microbiota include the design of cultivation media for
olic network. These admissible states are contained in a polyhedral cone (A). The
ysis aims at finding an optimal solution in the solution space (blue circle in A). The
a minimal set spanning the metabolic capabilities of the microorganism.



Fig. 4. The steps to build a dynamic kinetic genome-based model of microbial metabolism. SBML: Systems biology markup language; GEMs: Genome-scale metabolic models.

Fig. 5. Approaches for modelling microbial communities. (A) Compartmental approach; (B) Supra-organism approach. In the compartmental approach, the metabolic
network of each microbial species is treated as a separate compartment. In the supra-organismal, all metabolic networks are aggregated into one supra-organism with the
metabolic capabilities of all individual microbial species.
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uncultured microorganisms, the identification of probiotics to
enhance rumen function, the design of strategies for methane inhi-
bition, and the exploitation of rumen microbes for the production
of valuable compounds. GEMs also allow to characterise the inter-
connection between microbes within an ecosystem and provide
insight into central ecosystem properties such as robustness, resi-
lience and functional redundancy (Weimer, 2015) which should be
considered when designing microbial manipulation strategies.

Few applications of genome-based approaches are reported for
the rumen microbiota.
8

Within an industrial context of microbial synthesis of valuable
compounds, the GEM reconstruction of Actinobacillus succinogenes
130Z allowed to investigate the metabolic potential of this ruminal
strain for the production of succinic acid from low-cost raw mate-
rials (Pereira et al., 2018). The model was identified as a useful
resource for metabolic engineering strategies aiming at improving
succinic acid yields. In the same industrial-driven approach, the
GEM construction of the lactate-utilising bacterium Megasphera
elsdenii allowed the identification of pathways involved in the
mechanism of metabolic production of hexanoic acid, which is an
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industry-valuable product (Lee et al., 2020). We have recently
reconstructed the GEM of Fibrobacter succinogenes S85 using the
AuReMe toolbox (Aite et al., 2018). We applied further the EFM
framework on the GEM to produce a dynamic model that predicts
the production of acetate, succinate and formate from the metabo-
lism of glucose, cellobiose and cellulose (Fakih et al., 2023).

At the community level, a GEM compartmental approach was
applied to study a mini-consortia composed of the keystone rumen
species Ruminococcus flavefaciens, Prevotella ruminicola, and
Methanobrevibacter gottschalkii (Islam et al., 2019). The resulting
GEM allowed to predict the metabolic yields of the community
and its relative populations, but also led to the identification of
22 new inter-species interactions into this community. The
authors also investigated the presence of a possible metabolic syn-
ergy between viruses and the members of the community via the
addition of viral functionalities by local alignment. A significantly
disrupted bacterial metabolism was detected, which confirmed
the crucial role of viral auxiliary metabolic genes in the reprogram-
ming of microbial metabolism.

By using the Metage2Metabo software, Belcour et al., 2020 con-
structed draft GEMs from the collection of 913 cow rumen MAGs
(Metagenome Assembled Genomes) published in Stewart et al.
(2018). Metage2Metabo allowed to identify a minimal community
of 44 GEMs capable of producing the 296 metabolic end-products
that the whole rumen community can potentially produce syner-
gistically. This type of findings provides valuable information for
the development of synthetic ecology strategies aiming at advanc-
ing fundamental understanding of the rumen microbiome. It
should be said, however, that the computational identification of
key species is a first step for the construction of minimal consortia
but further experimental work is needed to verify that the fluxes of
metabolic reactions are actually active and quantitatively similar
to those of the whole rumen ecosystem. An iterative process
should be then required for the construction of functional repre-
sentative minimal consortia of the rumen.
Final remarks

The integration of microbial omics data into mathematical
models of the rumen microbiome can produce novel tools with
enhanced power for predicting rumen function. The potential
applications of these next-generation models are broad including
the design of microbial manipulation strategies to enhance feed
efficiency and mitigate emissions from the ruminant sector. To
reach this expected impact, a Cartesian approach build on the anal-
ysis of systems at different levels of microbial complexity (co-
culture, mini-consortia and whole consortia) is needed to derive
parsimonious and representative models of the rumen microbiome
that can be integrated into whole rumen models that incorporate
the biological levels associated with the host. This exciting chal-
lenge can only be reached via a strong interdisciplinary synergy
between scientists with expertise in microbiology, animal physiol-
ogy, computational biology, biochemistry and mathematical mod-
elling. Such a synergy is required to provide high informative data
that allow accurate mass-balance predictions of rumen microbial
fluxes.

The embracement of the GEM framework into rumen modelling
will require the appropriation of new skills by the rumen mod-
elling community. In this direction, we can learn and take advan-
tage of the developments made by the system biology
community on the modelling of microbial communities such as
the human gut and artificial communities. The learning process
should include the enhancement of open science practices
(Muñoz-Tamayo et al., 2022) to strengthen the sharing of models
9

and resources which will result in enhanced rumen microbiome
models accessible to the community.
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