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Review Article
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Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evi-
dence also posits these organelles as hubs for innate immune signalling and activation,
particularly in macrophages. Macrophages are front-line cellular defenders against
endogenous and exogenous threats in mammals. These cells use an array of receptors
and downstream signalling molecules to respond to a diverse range of stimuli, with mito-
chondrial biology implicated in many of these responses. Mitochondria have the capacity
to both divide through mitochondrial fission and coalesce through mitochondrial fusion.
Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular
functions, including innate immune pathways in macrophages. In these cells, mitochon-
drial fission has primarily been associated with pro-inflammatory responses and meta-
bolic adaptation, so can be considered as a combative strategy utilised by immune cells.
In contrast, mitochondrial fusion has a more protective role in limiting cell death under
conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strat-
egy. Here we broadly review the role of mitochondria in macrophage functions, with a
focus on how regulated mitochondrial dynamics control different functional responses in
these cells.

Introduction
Macrophages are innate immune cells with central roles in host defence in mammals. These cells con-
stantly survey their surroundings, using pattern recognition receptors (PRRs) and other detection
systems to sense and respond to indicators of danger, for example, infection or injury [1,2]. This
results in the engagement of antimicrobial defence systems, coordination of inflammatory responses,
priming of adaptive immunity, and initiation of repair processes. Macrophage-expressed PRRs recog-
nise both exogenous pathogen-associated molecular patterns (PAMPs) such as components of micro-
organisms, as well as endogenous danger signals such as products released from dead or dying cells,
tumour cells, and certain mitochondrial components that are collectively referred to as danger-
associated molecular patterns (DAMPs). The innate immune system is equipped with diverse families
of PRRs, including the toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene
1 (RIG-1)-like helicase receptors (RLRs), and nucleotide-binding oligomerization domain-like recep-
tors (NLRs), with each family being comprised of several different receptors [3]. Despite this diversity,
there is often overlap in the downstream biological responses that are generated upon sensing PAMPs
and/or DAMPs. This may partly reflect the involvement of the mitochondrion, a key organelle inte-
grating extracellular signals, cell metabolism, and biological outputs in macrophages.
The conception of mitochondria as a signalling organelle began with the discovery that the release

of cytochrome c from mitochondria initiates a signalling cascade that leads to apoptotic cell death
[4,5]. Since then, a vast literature has revealed that mitochondria have central roles in cell activation,
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cell survival, and many forms of cell death, with these organelles profoundly influencing numerous biological
processes [6,7]. This has been extensively studied in immune responses, where mitochondria regulate both host
defence [8] and sterile inflammation [9]. Mitochondria are dynamic organelles that can exist within a spectrum
of morphological states within cells. This is governed by the cellular processes of mitochondrial fission and
fusion, with the balance between fission and fusion often referred to as mitochondrial dynamics. Mitochondrial
dynamics control many cellular pathways, including metabolism [10,11] and inflammatory responses [12–15].
In this review, we briefly describe the role of mitochondria in innate immunity, before focusing on how
mitochondrial dynamics influence the metabolic status of macrophages, as well as the functional responses of
these cells.

Mitochondrial biology
Mitochondria are double membrane energy-generating organelles. The endosymbiont theory of mitochondrial
origin proposes that a free-living α-proteobacterium was engulfed by an eukaryotic precursor cell ∼2 billion
years ago, resulting in a mutually beneficial relationship [16]. During evolution, mitochondria lost most of the
proteobacterial genomic materials and transferred many genes to the nuclear genome via endosymbiotic gene
transfer [17]. Thus, most mitochondrial components are encoded by the nuclear genome. The small circular
mitochondrial genome (mtDNA) mostly encodes translation machinery and components of respiratory chain
complexes I, III, IV, and V for carrying out the key mitochondrial function of oxidative phosphorylation
(OXPHOS), via the co-ordinated actions of the tricarboxylic acid (TCA) cycle and the electron transport chain
(ETC). ETC complexes I, II, and III also generate mitochondrial reactive oxygen species (mROS) which con-
tribute to various functions in innate immunity (see ahead).

Functions for mitochondria in innate immunity
Beyond their roles in energy generation, mitochondria control diverse cellular processes. In innate immune
cells, mitochondria serve as signalling platforms for some PRR pathways, control PRR-inducible metabolic
reprogramming, generate free radicals and metabolites that contribute to host defence and inflammation, and
provide a reservoir of DAMPs for cellular activation upon disruption of homeostasis (Figure 1). Below we
briefly describe examples of each of these.
Mitochondria are intimately connected to many innate immune signalling pathways. One of the most

intensely studied examples of this involves the adaptor protein mitochondrial antiviral signalling protein
(MAVS) that initiates antiviral responses upon RLR-mediated sensing of cytosolic viral RNA. MAVS is posi-
tioned at the mitochondrial outer membrane (OMM) where it forms complexes with the RLRs RIG-I [18] and
MDA5 [19] upon activation by viral RNA. This interaction consequently triggers antiviral responses via the
transcription factors interferon (IFN) regulatory factor (IRF) 3, IRF7, and nuclear factor-κB (NF-κB), leading
to inducible expression of type I IFNs and other antiviral genes [20,21].
The burgeoning field of immunometabolism encompasses the role of mitochondria-regulated metabolism

and metabolites in modulating the immune functions of cells, such as macrophages. Mitochondria-mediated
metabolic changes alter macrophage functions, particularly their inflammatory and antimicrobial status. In
response to lipopolysaccharide (LPS) and other inflammatory stimuli, cells rewire their metabolism from
OXPHOS towards aerobic glycolysis, leading to a metabolic shift. For instance, LPS-inducible TLR4-activation
redirects metabolic fluxes to generate acetyl-coenzyme A from glucose and increases ATP-citrate lyase activity,
thus facilitating inducible histone acetylation in macrophages [22]. Moreover, Jha et al. [23] showed that the
metabolites succinate and itaconate accumulate in activated macrophages due to a TLR-inducible break in the
TCA cycle. Intriguingly, several studies have revealed that these metabolites have immunomodulatory and/or
antimicrobial properties [24–28], though further studies are required to understand the in vivo relevance of
some of these effects. One possible mechanism underlying metabolic reprogramming could be the translocation
of TLR signalling molecules such as ECSIT [29] and STAT3 [30] to mitochondria in macrophages.
Under steady-state conditions, the mitochondrial ETC generates a small amount of ROS; however, this is

amplified during cell stress and/or during metabolic adaptations. In macrophages, for example, LPS-inducible
metabolic reprogramming leads to succinate accumulation that drives mROS production [25]. The increased
mROS can activate pro-inflammatory signalling pathways [31,32], with this linked to many inflammatory con-
ditions, for example, chronic obstructive pulmonary disease [33], chronic kidney disease [34], and type-1
diabetes-associated vascular inflammation [35]. Furthermore, TLR-inducible mROS also contributes to
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macrophage antibacterial responses [29,36]. Such studies have established mROS as an effector molecule of
innate immunity.
Owing to their bacterial origin, mitochondria contain DAMPs, such as mtDNA, N-formyl peptides (n-FP),

and mitochondrial transcription factor A (TFAM). Release of mitochondrial contents from damaged or nec-
rotic cells can thus initiate sterile inflammation. For example, the concomitant release of n-FP and TFAM from
necrotic cells activates monocytes [37] and promotes immune cell recruitment [38], while circulating mtDNA
can trigger TLR9-mediated inflammatory responses [39,40] in cardiovascular-related conditions [41,42]. In this
way, mitochondrial components can drive innate immune inflammatory responses.

Mitochondrial dynamics: the interplay between fission and
fusion
Mitochondria are dynamic organelles that exist in a continuum of states ranging from long filamentous to
small spherical structures. The opposing processes of mitochondrial fission and fusion, referred to as mitochon-
drial dynamics, co-ordinate, and determine the overall mitochondrial morphology in a cell at any given time

Figure 1. The multifaceted roles of mitochondria in innate immunity.

Mitochondria have diverse functions in innate immune cells, including: (1) cell signalling, as exemplified by RLR-mediated

engagement of MAVS for antiviral gene expression and TLR-inducible activation of ECSIT via TRAF6, as well as mROS and

mitochondria-derived metabolites acting as signalling molecules; (2) metabolic reprogramming, as is apparent during TLR

activation in which there is a metabolic shift from OXPHOS to glycolysis, as well as increased production of succinate,

itaconate, fumarate, and mROS, all of which have inflammatory and/or antimicrobial roles; (3) generation of antimicrobial

responses, with the antimicrobial effector molecule mROS and antibacterial metabolites all being produced downstream of TLR

activation; and (4) DAMP-mediated cellular activation, in which mitochondrial DAMPs, such as TFAM, n-FP, and mtDNA, can

all trigger innate immune activation. mtDNA, mitochondrial DNA; n-FP, N-formyl peptides; TFAM, mitochondrial transcription

factor A. Created with BioRender.com.
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[43]. Mitochondrial dynamics play a vital role in mitochondrial quality control, cell division, and cellular stress
responses. Underlying the importance of this process, the genetic deletion of essential regulators of mitochon-
drial dynamics results in embryonic lethality in mice [44,45]. For example, mice defective in genes required for
mitochondrial fusion die in mid-gestation [44], while Wakabayashi et al. [45] demonstrated genetically that
fission is essential for mouse embryonic and brain development, as well as mitochondrial morphogenesis,
mitotic division, and cell death. In a healthy undisturbed cell, the balance in mitochondrial dynamics is gener-
ally skewed more towards a fused interconnected network of mitochondria, although fragmented spherical
mitochondria are also normally present. When nutrients are limiting, the mitochondrial pool becomes hyper-
fused to enable functional cooperativity between mitochondria and cellular protection [46,47]. Conversely,
excess nutrients and other stress signals lead to a hyperfragmented mitochondrial population, with fission
exceeding fusion. This can have various functional consequences, including initiating apoptosis [48], aiding in
metabolic adaptations [49], and regulating energy expenditure [50].
Cells use a specialised set of mechanical GTPases to control mitochondrial dynamics. One such GTPase,

dynamin-related protein 1 (DRP1), encoded by DNM1L, is essential for mitochondrial fission [51,52]. DRP1 is
a cytosolic protein that localises to mitochondria, forming an oligomeric complex upon activation. The act of
fission occurs in two sequential steps. First, the endoplasmic reticulum (ER) and actin collaborate to mark a
scission site where DRP1 assembles on the OMM. Next, DRP1 monomers form a large oligomer encircling this
site, with the GTPase activity of DRP1 then facilitating membrane scission [53–56]. A recent study showed that
the ER transmembrane protein CTRP1 directly interacts with DRP1 and facilitates its recruitment to mitochon-
dria, suggesting a mechanism of ER–mitochondrial interaction during the initial stages of fission [57]. Several
OMM-localised adaptor proteins have also been implicated in regulating DRP1-dependent fission. These
include mitochondrial fission factor (MFF), mitochondrial dynamics of 51 kDa protein (MiD51), MiD49, and
mitochondrial fission protein 1 (FIS1) [58–61]. DRP1 can bind to each of these adaptor proteins on the OMM,
with the exact mechanisms by which they act being an intense area of current investigation.
MFF can directly bind to DRP1 to facilitate its recruitment, with the absence of MFF in HeLa cells skewing

cells towards fusion [60,62]. There are contrasting studies on MiD49- and MiD51-mediated control of mito-
chondrial dynamics, with evidence that they promote both fission and fusion in different cell types [61,63,64].
Similarly, there may be context-dependent roles for FIS1 in mitochondrial fission. Zhang et al. [65] showed
that FIS1 competitively binds to MiD51, suppressing its inhibitory effect on DRP1 to promote mitochondrial
fission in a human lung-adenocarcinoma cell line. In contrast, Otera et al. [62] reported that FIS1 was dispens-
able for fission in HeLa cells. Kleele et al. [66] recently provided key insights into how different adaptor pro-
teins regulate mitochondrial fission in different contexts to enable distinct functional outputs. Specifically, two
distinct forms of DRP1-dependent fission were reported, one occurring at the periphery and another at the
midzone of mitochondria. Peripheral fission occurs during mitochondrial stress and requires the establishment
of FIS1-mediated lysosomal–mitochondrial contact sites. In contrast, midzone fission occurs during mitochon-
drial proliferation and requires MFF, along with ER-and actin-mediated pre-constriction of mitochondria. In
this way, different DRP1 adaptor proteins can engage fission for distinct biological responses, namely quality
control of mitochondria and cell division.
Both recruitment of DRP1 to mitochondria, along with its activation, are controlled by several post-

translational modifications (PTMs). These include phosphorylation, S-nitrosylation, sumoylation, acetylation,
and ubiquitination of specific residues. The contributions of specific PTMs on DRP1 to its activation and func-
tional responses in different cell types are summarised in Table 1. This summary table highlights the diversity
in DRP1 PTM sites, as well as in the enzymes involved in mediating these effects in different cell types. It is
likely that different PTMs on DRP1 may influence its interactions with different adaptors for initiating or con-
straining fission, an area of investigation that is still evolving. For example, UV-stimulation of human
lung-adenocarcinoma cells decreased phosphorylation of DRP1 at serine (S) 637, thus promoting a DRP1-MFF
interaction and enhancing fission during apoptosis [65].
In comparison with fission, fusion requires more stringent regulation by multiple GTPases, both at the

OMM and the IMM [67]. The IMM lipid cardiolipin interacts with the GTPase optic atrophy 1 (OPA1) to
promote its GTPase activity [68,69], enabling it to initiate IMM fusion. In contrast, the GTPases mitofusin 1
(MFN1) and MFN2 drive OMM fusion [44,68,70]. In addition, two OMM proteins, FAM73a and FAM73b,
facilitate fusion downstream of MFNs via the mitochondrial phospholipase D [71]. The fusion-promoting
GTPases are also regulated via distinct PTMs. For example, MFN1 and OPA1 deacetylation by the lysine deace-
tylases HDAC6 [72] and sirtuin 3 [73], respectively, activate these GTPases to promote mitochondrial fusion.
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In contrast, MFN1 phosphorylation results in its ubiquitin-mediated proteasomal degradation, thus inhibiting
fusion [74]. Given the diverse regulatory mechanisms that control each GTPase involved in fission and fusion,
it is evident that complex mechanisms connect cell signalling to mitochondrial dynamics, with much yet to be
understood about how mitochondrial dynamics are regulated.

Table 1. PTM sites on DRP1, along with mechanisms involved (serine, S; alanine, A; threonine, T; cysteine, C; lysine, K; aspartic acid, D;
glutamic acid, E; arginine, R)

Type of PTM PTM site Responsible enzyme
Effect on DRP1
activity

Specific DRP1
point mutations
assessed Cell type References

Phosphorylation S616 CDK1/cyclin Activation S to A HeLa cells, human liver
cells

[125,126]

PKCδ Activation — Mouse cardiomyocytes [127]
ERK2 (also known as
MAPK1)

Activation S to A HEK-TtH cells [128]
S to A Huntington’s disease

mouse striatal cells
[129]

PINK1 Activation S to A
S to D

HEK293 cells [130]

S to A
S to D

Mouse primary neurons [131]

CDK5 Activation S to A
S to E

Glioblastoma cells [132,133]

Inhibition S to A
S to D

Mouse primary neurons [134]

Ca2+/calmodulin-dependent
kinase II (CaMKII)

Activation S to A Rat cardiomyocytes [135]

S412 S684 TBK1 Inhibition S to A
S to D

HEK293T cells [136]

S637 PKA Inhibition S to A
S to D

Rat PC12 cells, African
green monkey kidney
fibroblast cells

[137]

CaMKIa Inhibition S to A
S to D

Rat primary neurons,
HeLa cells

[138]

T595 LRRK2 Activation T to A
T to D

HeLa cells, HEK293T
cells

[139]

Dephosphorylation S637 Calcineurin (also known as
PP2B)

Activation S to A
S to D

Rat PC12 cells, African
green monkey kidney
fibroblast cells

[137]

Neuron-specific PP2A/Bβ2
phosphatase

Activation — Mouse hippocampal
neurons

[140]

S-nitrosylation C644 Redox-mediated catalysis
(donor is nitric oxide)

Activation C to A Mouse cerebrocortical
neurons

[141]

Not
indicated

Protein disulphide isomerase Facilitates DRP1 S616
phosphorylation and
activation

— Mouse hippocampal
neurons

[142]

Sumoylation Not
indicated

SUMO E3 ligase, MAPL Activation — HeLa cells [143]

De-sumoylation Not
indicated

SENP5 Inhibition — COS-7 murine fibroblast
like cells

[144]

K557, K560,
K569 or
K571

SENP3 Activation K557, 560, 569,
and 571 to R

Mouse primary cortical
neurons

[145]

Enhanced DRP1-MFF
binding

K557, 560, 569,
and 571 to R

HEK293 cells [146]

Ubiquitination Not
indicated

E3 ubiquitin ligase, MARCH Activation — HeLa cells [147]
Inhibition — COS-7 murine fibroblast

like cells, HeLa cells
[148,149]

Acetylation K642 Not identified yet Activation K to R Mouse cardiomyocytes [150]
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Regulated mitochondrial dynamics in macrophages
Several innate immune stimuli and pathogens modulate and/or disrupt mitochondrial dynamics (Table 2), with
this having many consequences for cellular functions (Figure 2). Given the range of stimuli that can affect
fission and fusion, it seems likely that multiple PRRs and PRR signalling pathways may converge to modulate
mitochondrial dynamics. The consequences of this modulation on macrophage metabolism, inflammatory
outputs, phagocytosis, and the host–pathogen dynamic, are discussed below.

The link between mitochondrial fission and metabolic
reprogramming
Alterations in mitochondrial dynamics are interwoven with changes in the metabolic phenotype of a cell.
When fusion is favoured over fission, cells generally occupy a catabolic state and generate ATP through
OXPHOS [49]. In fibroblasts, fusion was shown to have a causative role in promoting OXPHOS, with this
required for cell proliferation [75]. In contrast, a hyperfragmented mitochondrial pool portrays an anabolic
state and a shift towards aerobic glycolysis [76]. In cancer cells, one of the rate-limiting enzymes of glycolysis,
pyruvate kinase isoform M2, directly binds to MFN2. This interaction results in augmented mitochondrial
fusion and a subsequent metabolic shift towards OXPHOS, in this case leading to suppression of cancer cell
growth [77]. On the contrary, Nair et al. [10] showed that LPS induces mitochondrial fission and skews metab-
olism from OXPHOS to glycolysis in primary microglia. They demonstrated that pharmacological inhibition of
mitochondrial fission with Mdivi1 [78] reversed this metabolic reprogramming and attenuated LPS-induced
pro-inflammatory cytokine and chemokine production in these cells. Similarly, Zhang et al. [11] showed that
genetic silencing of DRP1 inhibited LPS-inducible glycolysis in airway smooth muscle cells, as well as cell pro-
liferation. Thus, growing evidence connects TLR-inducible mitochondrial fission to metabolic reprogramming.

Mitochondrial dynamics and macrophage inflammatory
responses
As discussed above, mROS and mitochondrial metabolites regulate macrophage inflammatory responses. Given
the intricate link between mitochondrial dynamics and metabolism, current research in this area is dissecting
the role of mitochondrial dynamics in inflammation. Most studies in this area have primarily focused on neu-
roinflammation [13] and neurodegenerative diseases [79] (see ahead). However, several in vitro studies using
the primary mouse or human macrophages have investigated specific molecular pathways and inflammatory
outputs. For example, LPS triggered mitochondrial fission in both primary human and mouse macrophages,
with genetic or pharmacological targeting of DRP1 in mouse macrophages and embryonic fibroblasts inhibiting
the LPS-inducible production of a subset inflammatory mediators including IL-12p40, IL-6, and TNF [12]. Gao
et al. [80] also established that LPS- or Staphylococcus aureus-mediated activation of DRP1 in mouse macro-
phages facilitated the production of the pro-inflammatory cytokine TNF. Furthermore, depletion of the fusion-
promoting protein FAM73b skewed towards fission, impaired OXPHOS and promoted specific TLR-induced
pro-inflammatory responses in murine macrophages and dendritic cells [81]. This resulted in increased Il12a
expression, as well as decreased Il10 and Il23a expression, enhancing macrophage-mediated anti-tumour
immune responses [81]. Similarly, genetic silencing of MFN2 in primary human macrophages enhanced
TLR2-mediated pro-inflammatory outputs [82]. However, MFN2-silenced cells showed only a mild mitochon-
drial fragmentation, with this attributed to compensatory expression of MFN1 in the absence of MFN2. In con-
trast, Tur et al. demonstrated that Mfn2-deficient mouse macrophages were defective in LPS-inducible
production of pro-inflammatory cytokines and nitric oxide (NO). However, they did not ascribe this phenotype
to defective mitochondrial fusion, rather reduced ROS production. Interestingly, MFN2 was also shown to be
essential for inflammasome activation upon RNA virus infection in mouse macrophages [83], suggestive of a
role for mitochondrial fusion in this PRR pathway. In line with this, skewing towards fusion by silencing Drp1
in murine macrophages increased ERK signalling, leading to subsequent activation of the NLRP3 inflamma-
some pathway and IL-1β release [84]. These studies on MFN2 are suggestive of pro-inflammatory functions for
fusion, contrasting with the general view that fission and fusion are linked to pro- and anti-inflammatory
responses, respectively. However, it is also possible that MFN2 may have an additional mitochondrial
fusion-independent function that may account for these phenotypes. Overall, a growing body of literature has
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demonstrated that TLR agonists and other inflammatory stimuli alter mitochondrial dynamics (Table 2), with
consequent initiation of specific inflammatory responses in macrophages. It should be noted that much of the
existing literature on TLR-regulated mitochondrial dynamics has focused on TLR4, however, with additional
studies now being required to ascertain whether other TLRs influence this cellular process and downstream bio-
logical effects.

Table 2. Modulation of mitochondrial dynamics by innate immune stimuli

Stimuli Cell type

Effect on
fission or
fusion

Functional
consequences Evidence References

Extracellular signals

LPS Murine macrophages.
Murine microglial cells

Fission ↑ Inflammatory cytokines ↑ Drp1 silencing or treatment with
Mdivi1

[10,12,81]

Succinate Rat cardiomyocytes Fission ↑ Cell apoptosis, myocardial
ischaemia injury

DRP1 recruitment to mitochondria
and activation of MFF

[127]

IL-4 Murine macrophages Fusion ↑ OXPHOS↑ Mitochondrial morphology, MFN1
and MFN2 ↑

[81]

TNF H9C2 cardiomyocytes Fission ↑ Cell death during sepsis ↑ Inhibition of DRP1 by
Rho-associated kinases inhibitor

[151]

Poly(I:C) HEK293T cells Fusion ↑ Cell survival TBK1 inhibits mitochondrial
aggregation of DRP1

[136]

Bacterial infections

Shigella flexneri HeLa cells Fission ↑ Cell death ↑
Cell-to-cell spreading ↑

DRP1 silencing or treatment with
Mdivi1

[152]

Legionella pneumophila Human macrophages Fission ↑ Glycolysis ↑
Bacterial survival ↑

DRP1 inhibition with Mdivi1 [112]

Chlamydia trachomatis HUVECS, HeLa cells Fusion ↑ OXPHOS ↑
Bacterial survival ↑

DRP1 levels ↓ [153]

Vibrio cholerae HEK cells, CHO cells, HeLa
cells

Fission ↑ Host inflammatory
responses ↑

Bacterial VopE interacts with Miro
GTPases at mitochondria

[154]

Listeria
monocytogenes

HeLa cells Fission ↑ ATP production ↓
Bacterial survival ↑

Genetic silencing of DRP1, MFN1
and MFN2

[111,155]

Helicobacter pylori Human epithelial AZ-521
cells

Fission ↑ Cell apoptosis ↑ DRP1 inhibition with Mdivi1 [156]

Viral Infections

Dengue virus Human hepatoma 7 cells Fusion ↑ Viral replication ↑ DRP1 expression ↓ [157,158]

Sendai virus HEK293T cells, HeLa cells Fusion ↑ Viral persistence, virus
detection and signalling ↑

DRP1, FIS1, OPA1 and MFN1
silencing

[159]

Venezuelan equine
encephalitis virus

U87MG (human
glioblastoma cell line)

Fission ↑ Mitophagy, autophagy and
cell death ↑

Inhibition of fission with Mdivi1 [160]

Epstein–Barr virus Gastric and breast cancer
cells

Fission ↑ Cell apoptosis and
migration ↑

DRP1 levels ↑ [161]

SARS coronavirus Pulmonary epithelial cells,
HEK cells, THP-1 cells

Fusion ↑ Innate immune signalling ↓
Viral persistence ↑

DRP1 levels ↓ [162]

Influenza A virus HEK cells, murine
macrophages

Fission ↑ Antiviral response ↓ Influenza A viral protein PB1-F2
localises to mitochondria

[163,164]

Hepatitis B virus Human hepatoma 7 cells Fission ↑ Mitophagy ↑
Apoptosis ↓
Viral persistence ↑

DRP1 S616 phosphorylation,
MFN2 ubiquitination and
degradation

[165]

Hepatitis C virus Human hepatoma 7 cells Fission ↑ Viral persistence ↑
Apoptosis↓

DRP1 S616 phosphorylation and
translocation to mitochondria

[166]
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Mitochondrial dynamics and neuroinflammation
As noted above, much of the literature on mitochondrial dynamics and inflammation has focused on neuroin-
flammation, particularly with respect to microglia. These tissue-resident macrophages of the central nervous
system regulate neuronal survival [85], tissue-repair [86], and immunity [87]. However, during infection or
injury, microglia may adopt a pro-inflammatory phenotype, releasing cytokines, ROS, and NO [88]. Sustained
and chronic release of these inflammatory mediators in the central nervous system is neurotoxic, and may
promote neuronal damage [89]. For example, activated microglia are associated with initiating
pro-inflammatory signalling to promote neuronal damage in several neurodegenerative diseases, including
Parkinson’s disease (PD) [90–92] and Alzheimer’s disease [93]. Mounting evidence implicates
pro-inflammatory microglia in neuroinflammation and neurodegenerative pathology.
Exactly how microglia drive neuroinflammation remains elusive, but several lines of evidence support a role

for an axis involving TLR4 and mitochondrial fission. Intraperitoneal injection of LPS initiated microglial

Figure 2. Modulation of mitochondrial dynamics by inflammatory stimuli and infectious agents.

Pathogens and inflammatory stimuli can regulate mitochondrial dynamics, driving either mitochondrial fusion or fission

depending on the pathogen/stimulus and cellular context. Specific examples of viruses, bacteria, and inflammatory stimuli that

drive either mitochondrial fusion or fission are shown. These can affect mitochondrial dynamics through a variety of

mechanisms, with modulation of DRP1 being common to many stimuli/pathogens (with the exception of IL-4, which skews

towards fusion via the mitochondrial outer membrane protein FAM73b). Pathogen-driven manipulation of mitochondrial

dynamics to either fusion or fission can favour pathogen persistence, replication, and/or survival, depending on the nature of

the pathogen and cellular context. Red arrows indicate inhibition, green arrows indicate activation, dotted green arrows indicate

positive effect on either fusion or fission. OCR, oxygen consumption rate; OXPHOS, oxidative phosphorylation; SRC, spare

respiratory capacity. Created with BioRender.com.
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activation, as well as dopaminergic neuron degeneration in mice [94,95]. This suggests that microglial
TLR4-mediated pro-inflammatory pathways can drive neurodegeneration. Several studies also showed that LPS
drives fission in microglia, with this linked to increased ROS, NO, and pro-inflammatory cytokines (IL-1β,
IL-6, TNF) [14,96,97]. Furthermore, inhibition of DRP1 function dampened inducible LPS-induced mRNA
expression of Il1b, Il6, and Tnf, as well as intracellular ROS production, in a mouse microglial cell line [98].
Metabolic reprogramming from oxidative phosphorylation to glycolysis is required for microglia to adopt a
pro-inflammatory phenotype [99], and as noted above, mitochondrial fission was required for this metabolic
switch in microglia [10]. These data thus suggest that TLR4-mediated mitochondrial fission may enhance
pro-inflammatory phenotypes in microglia. Interestingly, increased mitochondrial fission has also been
observed in pro-inflammatory astrocytes in vitro [15], suggesting a conserved role for mitochondrial fission
across multiple cell types during neuroinflammation.
Another possible mechanism of mitochondrial fission perpetuating neuroinflammation is via enhanced

microglial NLRP3 signalling. It is established that mitochondrial dysfunction primes and/or engages the
NLRP3 inflammasome. For example, mROS and mtDNA trigger assembly and activation of the cytosolic
NLRP3 inflammasome, as well as pro-inflammatory responses via IL-1β release and cell death [100–102]. In
mouse macrophages, skewing towards fusion suppressed the release of the inflammasome-dependent cytokine
IL-1β [12]. Furthermore, antagonising mitochondrial fission in PD models reduced brain tissue expression of
NLRP3 and NLRP3 signalling components, which were otherwise elevated in the brain tissue of rats with a
PD-like phenotype [103]. Similarly, intraperitoneal administration of the fission-inhibiting compound Mdivi1
in an acute kidney injury model in mice significantly down-regulated the expression of NLRP3 and
inflammasome-related proteins in kidney tissue [104]. This suggests that mitochondrial fission may contribute
to the priming of inflammasome responses during neuroinflammation, as well as other inflammatory condi-
tions. Moreover, the administration of mitochondrial fission inhibitors in vivo was neuroprotective in several
animal models of neurodegenerative disease. For example, intraperitoneal injection of Mdivi1 protected against
dopaminergic neuron damage in a rat model of PD [105]. Similarly, another mitochondrial fission inhibitor,
P110 [106], prevented the loss of dopaminergic neurons and improved motor ability in a PD mouse model
[107]. The specific mechanisms involved are not well understood, but collectively these data suggest that mito-
chondrial fission may contribute to neuroinflammation and progressive neurodegenerative disease.

Mitochondrial dynamics and phagocytosis
A few studies have documented key roles for mitochondrial dynamics in macrophage phagocytic responses
[108–110]. Wang et al. [108] demonstrated that initial apoptotic cell uptake triggers DRP1-dependent fission in
murine macrophages, with this facilitating continued clearance of the apoptotic cells. The importance of fission
in this efferocytosis response was validated in vivo using myeloid-specific Drp1-knockout mice. Consistent with
these findings, tumour cells resist phagocytosis by human macrophages by inhibiting mitochondrial fission in
these cells, and this pathway can be targeted for effective antibody therapy against several malignancies [109].
In contrast with the pro-phagocytic activity of fission, the fusion-mediating protein MFN2 was also required
for phagocytosis, as demonstrated using myeloid-specific Mfn2-knockout mice [110].

Mitochondrial dynamics and host defence
As evident in Table 2, a wide array of pathogens can modulate mitochondrial dynamics, with the functional
consequences of this being either detrimental or beneficial for the pathogen. This may reflect different roles for
mitochondrial dynamics in different cell types, different kinetics, and/or the specific pathogen being studied.
For example, Listeria monocytogenes skewed mitochondrial dynamics towards fission in HeLa cells transiently,
with mitochondria shifting back towards a more fused state over time [111]. Depleting MFN1 and MFN2 in
these cells prolonged fission and impaired Listeria survival, while depleting DRP1 skewed towards fusion and
favoured bacterial survival. Hence, it was postulated that the transient nature of mitochondrial fission in these
cells may reflect pathogen subversion to support intracellular survival. In contrast with this study in HeLa cells,
myeloid-specific Mfn2-knockout mice have fission-skewed macrophages and were more vulnerable to septic
shock, as well as L. monocytogenes and Mycobacterium tuberculosis infection [110]. Similarly, Legionella pneu-
mophila triggered mitochondrial fission and a shift towards aerobic glycolysis in human macrophages [112],
with pharmacological targeting of DRP1 decreasing intracellular survival of this bacterial pathogen in these
cells [78]. Such studies suggest that regulated mitochondrial dynamics may influence the host–pathogen
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dynamic and antimicrobial defence; however, there are major knowledge gaps regarding the underlying mech-
anistic details of this pathway and how it applies to different pathogens.

Conclusions and future directions
Although various inflammatory stimuli can modulate mitochondrial dynamics, a detailed molecular under-
standing of how different PRR signalling pathways exert these effects in macrophages is yet to emerge. Based
on the variety of regulated PTMs on DRP1 alone, it can be speculated that altered mitochondrial dynamics is
rather a universal response to many stimuli; however, the precise mechanisms involved may depend on the spe-
cific PAMP-PRR signalling pathway and/or cell type. Deconvoluting these mechanisms will be an interesting
area of future research. Furthermore, different mechanisms of DRP1 activation, for example through distinct
PTMs, may alter mitochondrial dynamics in different ways to elicit distinct functional outcomes. This may also
be achieved through regulated or cell type-specific expression of different DRP1 transcriptional variants, of
which there are many [113]. This gene regulation-mediated mechanism could also enable isoform-specific
PTMs and/or functions of DRP1 [114], including differential interactions with OMM adaptor proteins such as
MFF [115]. Of note, DRP1 can also shape and fragment other organelles, such as the ER and peroxisomes
[116,117]. Thus, careful consideration should be taken before attributing specific biological effects to mitochon-
drial dynamics, based on DRP1 manipulation alone.
Another interesting research direction for the future involves the potential control of macrophage functions

by intercellular transfer of mitochondria [118]. Tunnelling nanotubes for intercellular mitochondrial transfer
have been studied in different contexts, such as between cancer and immune cells [119], as well as between
mesenchymal stem cells and macrophages during acute respiratory distress syndrome [120]. Brestoff et al. [121]
also reported immunometabolic cross-talk between adipocytes and macrophages to regulate metabolic homeo-
stasis in obesity. A subsequent study showed that macrophages transfer mitochondria from white adipose tissue
to distant organs, such as the heart, via the circulation to facilitate metabolic adaptation during nutrient stress
[122]. An intriguing question in this regard is whether mitochondrial dynamics are affected during such inter-
cellular mitochondrial transfer, both in the recipient and donor cells. Whether there is interplay between mito-
chondrial dynamics and mitochondrial nanotunnels [123] and/or inter-mitochondrial junctions [124] to
regulate organelle behaviour and cell–cell communication will also be interesting areas of future investigation.
Finally, the continued assessment of myeloid-specific knockouts of Drp1, Mfn1, Mfn2, and/or other genes con-
trolling mitochondrial dynamics in different animal models of inflammatory and infectious diseases will be
informative for understanding the in vivo functions of mitochondrial dynamics in macrophages in health
and disease.

Perspectives
• Mitochondria have multifaceted roles in innate immunity. Many inflammatory stimuli and

pathogens regulate mitochondrial dynamics in macrophages.

• Regulated mitochondrial dynamics control metabolic and inflammatory responses in macro-
phages. In myeloid cells, mitochondrial fission drives inducible glycolysis, production of spe-
cific inflammatory mediators, neuroinflammation, and phagocytosis.

• Future investigations into mitochondrial dynamics in macrophages should focus on defining
the precise molecular mechanisms by which innate immune stimuli modulate mitochondrial
dynamics, the downstream mechanisms that link regulated mitochondrial dynamics to bio-
logical effects, and the contributions of mitochondrial fission and fusion to homeostatic and
disease processes in vivo.
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