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A B S T R A C T   

Nitrogen fertilization is a key agronomic lever for high crop productivity, but also an important source of N2O 
emission, a potent greenhouse gas. Process-based agroecosystem simulation models are popular tools for man
aging the timing and amount of fertilization, and help reduce N2O emissions. However, accurate simulation of 
N2O emissions at field scale is still a challenge due to the spatial and temporal variability of the soil conditions. In 
this study, we investigated the sources of structural uncertainty in predicting N2O emissions under a wide range 
of pedo-climatic conditions using a representative field data set. We implemented the same nitrification/deni
trification/N2O emission formalism in three different agroecosystem models and analyzed how the inter-model 
variability of variables involved in nitrification and denitrification processes, affected the simulated N2O emis
sions. We characterized the dispersion of the key variables (water-filled pore space, NO−

3 and NH+
4 concentration, 

and soil temperature) between models and we evaluated the effect of variable uncertainty on N2O emissions 
uncertainty using a sensitivity analysis. We also analyzed model errors over a wide range of soil-climate con
ditions to identify the most challenging conditions for simulation, which require further model improvement. 
Our results highlighted that the simulation of the timing and amplitude of the NO−

3 and NH+
4 peaks was highly 

variable between agroecosystem models, with an important impact on N2O emission. These peaks occurred 
mainly after fertilization or incorporation of crop residues, and the different representations of fertilization and 
mineralization between the models had a major effect on the simulation of N2O emissions. Our analysis also 
emphasized that wet acidic soils with high denitrification potential are more challenging for models to simulate.   

1. Introduction 

N2O is a long-lived greenhouse gas (GHG) that accumulates in the 
atmosphere and that depletes stratospheric ozone (Ravishankara et al., 
2009). Agriculture accounts for 52% of the anthropogenic emissions of 
N2O, which are dominated by nitrogen fertilizer application to crop
lands (Tian et al., 2020). Given the strong warming potential of N2O and 
the important contribution of agricultural soils in N2O emissions, there 
is an urgent need to develop strategies that improve agricultural prac
tices and reduce N2O emission (Signor and Cerri, 2013). 

From 2000 to 2018, N2O emission from synthetic fertilizers and crop 
residues incorporation have increased by 35% due to growing world
wide intensification of crop production and increase in chemical fertil
izers inputs (FAOSTAT, 2018). Estimation from global atmospheric 
inversion show an acceleration of N2O emission during the last decade, 
especially in East Asia and South America (Thompson et al., 2019). The 
increase in N2O emissions is expected to continue in the coming decades 
due to population growth and rising demand for agricultural production 
(Alexandratos and Bruinsma, 2012). 

Two biogeochemical processes control N2O emissions: nitrification 
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and denitrification. Nitrification is the oxidation of NH+
4 to NO−

3 , while 
denitrification is the reduction of NO−

3 to molecular nitrogen (N2). Both 
processes are facilitated by soil micro-organisms and are affected by soil 
conditions, such as temperature, moisture, oxygen content, pH, and 
amount of available organic carbon and nitrogen (Butterbach-Bahl et al., 
2013). A variable fraction of the nitrification and denitrification rates 
leaves the soil as N2O emissions. To optimize nitrogen fertilizer appli
cation and reduce N2O emission, we need to understand the interactions 
between soil conditions and N2O production and how the biogeo
chemical processes are impacted by pedo-climatic conditions (Signor 
and Cerri, 2013). 

Process-based agroecosystem models simulate the biogeochemical 
processes that affect the N fluxes in the soil (nitrification, denitrification, 
and mineralization), the N uptake by the crop and the loss of N to the 
atmosphere and to the groundwater under the influence of environ
mental factors and farmer’s management (fertilization, tillage, irriga
tion, and organic matter amendments; Nendel et al., 2014). These 
models have been widely used to simulate N dynamics in croplands and 
to assess environmental impacts such as leaching, volatilization, and 
denitrification (Cannavo et al., 2008). They are valuable tools for 
improving the timing and amount of fertilization and help reduce un
wanted N emission. However, accurate simulation of N2O emissions at 
field scale is still challenging due to the spatial and temporal variability 
of the soil conditions, which affect the microbial processes underlying 
N2O production (Chen et al., 2008; Fuchs et al., 2020; Berardi et al., 
2020). The simulation of N2O emissions can be very different from one 
model to another, especially the timing and magnitude of peak emis
sions (Fuchs et al., 2020; Gaillard et al., 2018). The limited availability 
of daily driving variable data is a major problem for model evaluation, as 
it is difficult to determine whether the error depends on a misrepre
sentation of the input data or on an error in the formalisms (Del Grosso 
et al., 2020). 

During the last 20 years, there has been an increasing effort towards 
modularity of agricultural and ecological models, to improve model 
comparison and reusability of modules (Jones et al., 2001; Reynolds and 
Acock, 1997; Rizzoli et al., 2008). Agroecosystem models have been 
integrated into modeling platforms, which allow different model com
ponents to be assembled. Efforts have also been made to facilitate model 
component re-use and exchange between modeling platforms despite 
the different platform formalisms (Midingoyi et al., 2021) with the idea 
that the increasing accessibility of reusable modules, allows for testing 
of alternative modeling hypotheses and ultimately for model improve
ment (Muller and Martre, 2019; Berg-Mohnicke and Nendel, 2022). 
Each model component represents a set of bio-physical processes 
through mathematical formalisms and is connected to the other com
ponents through common variables that are exchanged at the interface 
of model components. The accuracy of the output of a model component 
does not only depend on the appropriateness of the formalisms used to 
represent the biophysical processes, but also on the accuracy of other 
connected modules. It is important to understand how and why the 
output of a model component changes when that same component is 
connected to different agroecosystem models, but to our knowledge, no 
study has yet investigated this question. 

In this study, the N2O emission module originally implemented in 
STICS (Brisson et al., 2010) was integrated in two different agro
ecosystem models: MONICA (Nendel et al., 2011) and SiriusQuality 
(Martre et al., 2006). The three agroecosystem models were used to 
simulate 31 year/location/treatment/soil combinations, representing 
pedo-climatic conditions of contrasting locations across the world. The 
objective was to assess the variability in the predictions of N2O emission 
between agroecosystem models and identify the sources of these dif
ferences. In a first step, we characterized the uncertainty of the input 
variables (water-filled pore space [WFPS], NH+

4 and NO−
3 concentration, 

soil temperature) between models. Then we used a sensitivity analysis to 
evaluate how this variability affected the simulated N2O emission. 

Finally, we compared the accuracy of the models with respect to N2O 
emission under different pedo-climatic conditions, and identified con
ditions that may be more challenging to simulate, which will require 
further model improvement. 

2. Material and methods 

2.1. Experimental dataset and simulation 

The experimental data set we used in this study is composed of six 
previously published arable crop field experiments that provided high- 
quality data on N2O emission. The experimental sites are located in 
Ottawa, Canada (Jégo et al., 2012; Sansoulet et al., 2014), Grignon, 
France (Loubet et al., 2011), New Delhi, India (Bhatia et al., 2012), 
Kingaroy, Australia (De et al., 2014), Santa Maria, Brazil (Aita et al., 
2015, 2019), and Estrées-Mons, France (Coudrain et al., 2016; 
Domeignoz-Horta et al., 2015; Domeignoz-Horta et al., 2018) and cover 
a wide range of soil, weather and crop management conditions 
(Table 1). Data from the first five locations were previously used in a 
multi-model intercomparison analysis (Ehrhardt et al., 2018). 

The data set contains detailed information on crop management, 
weather conditions, soil properties, daily N2O emission, and measure
ments over the growing season of soil NH+

4 , NO−
3 and water content. It 

also contains in-season measurements of leaf area index, total above 
ground biomass and nitrogen and final grain yield and nitrogen. For 
Ottawa, Grignon, New Delhi, Kingaroy and Santa Maria, the data set 
contains one treatment per year. For Estrées-Mons (ACBB long term 
experiment), data were available for five treatments in 2013 and 2014 
and 6 treatments in 2017 and 2019. Each of these treatments is char
acterized by a combination of nitrogen fertilization, crop residue man
agement, tillage depth, and cover crop (Domeignoz-Horta et al., 2018). 
In Table 1 we have grouped the treatments according to nitrogen supply 
into low (L), intermediate (I) and high (H) N input treatment. 

2.2. Nitrification, denitrification and N2O emission module 

The N2O module computes the nitrification and denitrification 
fluxes, and the associated emission of N2O. Nitrification and denitrifi
cation are coupled through NO−

3 concentration, which is produced by 
nitrification and used as substrate for denitrification. The original 
equations of the module were presented in Bessou et al. (2010) and later 
improved and used in Peyrard et al. (2017) and Plaza-Bonilla et al. 
(2017). A detailed description is available in Beaudoin et al. (2023). 

Nitrification and N2O emission - The nitrification rate is proportional 
to the NH4

+ concentration and depends on pH, temperature, and soil 
water content (Fig. 1). The nitrification rate decreases with decreasing 
pH: it is optimum at pH > 7.2 and decreases to null at pH = 4. The effect 
of temperature is described by a Gaussian function, with an optimum at 
32.5 ◦C (Benoit et al., 2015). The rate of nitrification increases with soil 
water content up to field capacity. Beyond that, soil water limits soil 
aeration and decreases the nitrification rate (Kahlil et al., 2004). 

The N2O emission associated with nitrification is favored by anaer
obic conditions, which depend on the soil water content. In the module, 
the fraction of nitrification that goes to N2O emission tends to 0.16% at 
low soil water content and increases sharply for a WFPS of 0.8 to reach a 
maximum value of 2.52% when the soil is water saturated (Kahlil et al., 
2004). 

Denitrification and N2O emission - The potential denitrification rate is 
either calibrated or can be estimated from the soil organic carbon con
centration. The latter option was used in this study. Denitrification rate 
is obtained by multiplying the potential rate with weighting factors that 
account for the effect of NO−

3 concentration, soil temperature, and soil 
water content (Fig. 1). The effect of increasing NO−

3 concentration is to 
increase the denitrification rate following a Michaelis-Menten kinetics 
with a half saturation constant equal to 148 mg NO−

3 -N L − 1. The 
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Table 1 
Experiment name, location, and meteorological conditions during the growing season, crop management, and soil characteristics in the 0–30 cm soil layer for the field experiments simulated in this study (SB, spring barley; 
WW, winter wheat; SW, spring wheat).  

Treatment 
code 

Location, 
country 

Latitude 
[◦] 

Longitude 
[◦] 

Weather conditions Crop management Soil characteristic 
Average 
temperature 
[ ◦C] 

Cumulative 
precipitation 
[mm] 

Cumulative 
solar radiation 
[MJ/m2] 

Number of 
treatment 

Cultivar 
(species) 

Sowing date Total N 
fertilizer 
[kg N ha− 1] 
(number of 
application) 

Total 
irrigation 
[mm] 
(number of 
application) 

pH in 
water 
[-] 

Water 
filled pore 
space  
[-] 

Organic C 
[g 100 g 
− 1] 

CA.07 Ottawa, 
Canada 

45.41 − 75.69 18.5 344 2351 1 ACBrio 
(SW) 

2007–05–19 0 (0) 0 (0) 6.6 0.49 3.1 
CA.11 19.4 300 2284 2011–05–10 78 (1) 0.41 
GR.08 Grignon, 

France 
48.85 1.91 8.8 478 3117 1 Premio 

(WW) 
2008–10–17 83.5 (2) 0 (0) 7.75 0.61 1.5 

GR.11 9.6 518 3110 2011–10–18 96 (2) 0.74 
IN.06 New Delhi, 

Inde 
28.64 77.21 17.1 112 1867 1 PBW343 

(SW) 
2006–11–29 120 (3) 250 (5) 8 NA 0.35 

IN.07 17.1 33 2231 2007–12–01 
IN.08 18.6 16 2829 2008–11–25 
AU.11 Kingaroy, 

Australia 
− 26.53 151.83 15.7 176 2829 1 Hartog 

(WW) 
2011–07–06 80 (2) 136 (4) 5.6 0.51 1.3 

BR.13 Santa Maria, 
Brazil 

− 29.68 − 53.8 16.2 571 2237 1 Quartzo 
(WW) 

2013–06–08 0 (0) 0 (0) 5.4 0.89 1.9 

EM.13.H Estrées- 
Mons, France 

49.88 3 13.5 251 2290 5 Sebastian 
(SB) 

2013–03–26 100 (1) 0 (0) 8.2 0.68 1.05 
EM.13.L 40 (1) 
EM.15.H 9.5 416 3040 5 Cellule 

(WW) 
2014–10–30 170 (3) 0.79 

EM.15.L 60 (1) 
EM.18.H 9.8 534 2898 6 Absalon 

(WW) 
2017–10–18 200 (4) 0.61 

EM.18.L 80 (2) 
EM.18.I 120 (2) 
EM.19.H 14.7 147 2652 6 RGT 

Planet 
(SB) 

2019–03–25 160 (2) 0.43 
EM.19.L 55 (1)  
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weighting factor associated to soil temperature increases following a 
Gaussian function, with an optimum at 47 ◦C (Benoit et al., 2015). 
Denitrification rate is null when WFPS is smaller than 0.62, while it 
increases exponentially to reach a value of 1 when the soil is water 
saturated. 

The N2O emission associated with denitrification depends on pH and 
soil water content. Acid pH strongly inhibits N2O reduction to N2 
(Rochester, 2003). In the N2O module, the fraction of denitrification 
going to N2O emission decreases linearly between pH 5.6 and 9.2. At 
high soil water contents, which result in more anaerobic conditions, the 
reduction of N2O to N2 is favored (Vieten et al., 2008). In the N2O 
module, this effect is represented by a linear decrease of the fraction of 
denitrification going to N2O emission between WFPS 0.62 and 
saturation. 

2.3. Coupling of the N2O module with the MONICA, SiriusQuality and 
STICS agroecosystem models 

The agroecosystem models considered in this study (MONICA, Sir
iusQuality, and STICS) are process-based simulation models that repre
sent the most important processes affecting the soil-plant system and 
that simulate the crop and soil variables on a daily time step. The models 
estimate simultaneously agricultural and environmental variables (e.g. 
soil water, crop biomass, crop nitrogen, soil nitrogen) by taking into 
account the impact of weather, soil, and management practice 

2.3.1. MONICA 
The MONICA model (version 3.3.1; Nendel et al., 2011) simulates 

the soil water, N, and C fluxes and temperature for each 0.1-m thick soil 
layers as defined to a maximum soil depth of 2 m (Table 2). Soil carbon 
dynamics is described by three conceptional pools (soil organic matter, 
microbial biomass and freshly added organic matter), each with a rapid 

and a slow turn-over rate as borrowed from the DAISY model (Abra
hamsen and Hansen, 2000), and has been thoroughly tested by Aiteew 
et al. (under review). Besides mineralization, MONICA explicitly rep
resents volatilization (NH3 emissions, Søgaard et al., 2002) from 
manure, slurry and urea application, and N immobilization in the soil as 
a result of the microbial biomass dynamics. Different management 

Fig. 1. Representation of the model of nitrification rate (a), denitrification rate (b) N2O emission from nitrification (c) and N2O emission from denitrification (d) with 
mathematical equations and graphical representation of the effect of NH+

4 nitrate NO−
3 , pH, soil temperature, WFPS, and soil organic carbon (Soil OC). The colors of 

the boxes correspond to the fluxes identified in the conceptual diagram at the center. 

Table 2 
Soil module characteristics (fluxes, pools, processes and management options) of 
the MONICA, SiriusQuality and STICS agroecosystem models.   

Agroecosystem models  
MONICA SiriusQuality STICS 

Soil fluxes water, N, C water, N water, N, C 
Vertical grid of 

the soil model 
0.1 m 0.05 m (2 soil layer 

for soil 
temperature) 

0.01 m 

C and N pools  - organic matter  
- microbial 

biomass  
- added organic 

matter  

- organic N  
- added organic N  

- organic residues  
- microbial 

biomass  
- humus  
- mineral pools 

N processes  - mineralization  
- residue 

decomposition  
- volatilization  
- immobilization  
- leaching  
- nitrification  
- denitrification  

- mineralization  
- residue 

decomposition  
- leaching  
- nitrification  
- denitrification  

- mineralization  
- residue 

decomposition  
- volatilization  
- immobilization  
- leaching  
- nitrification  
- denitrification 

Management 
options  

- N fertilization  
- irrigation  
- residue 

incorporation  
- ploughing  

- N fertilization  
- irrigation  
- residue 

incorporation  

- N fertilization  
- irrigation  
- residue 

incorporation  
- soil tillage  

S. Dueri et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 340 (2023) 109619

5

options are included in the model, including residue incorporation, 
ploughing and automated fertilization and irrigation. A generic crop 
module simulates the growth and development of a range of agricultural 
crops, including barley (Rötter et al., 2012), wheat (Asseng et al., 2013), 
maize (Bassu et al., 2014) soybean (Nendel et al., 2023) and potato 
(Fleisher et al., 2017), in rotations (Kollas et al., 2015). 

2.3.2. SiriusQuality 
The SiriusQuality model (version 3.0; Martre et al., 2006) simulates 

the soil N and water fluxes, but does not explicitly represent C fluxes. 
Each soil layer has a thickness of 5 cm and the model computes the N and 
water content by layer until the maximum rooting depth, as defined by 
the model user. Soil temperature is calculated for the near-surface layer 
and deep soil (Jamieson et al., 1995). The organic matter turnover is 
represented by a soil mineralization rate that depends on the physical 
and chemical conditions of the soil, as described in Clivot et al. (2017). If 
organic residues are added to the soil, the model estimates organic 
carbon decomposition and derives mineralization rates from two pools 
representing the organic N and the added organic N (Stella, 2015; 
Manzoni et al., 2012). The model represents several management op
tions such as N fertilization, irrigation and residue management, but 
does not include the effect of tillage. In SiriusQuality nitrogen can be lost 
from the soil either by N2O emission, denitrification (N2) or leaching, 
but volatilization is not implemented, and the model does not consider N 
immobilization. The crop module currently simulates wheat and barley 
growth. 

2.3.3. STICS 
The STICS model (version 9.2; Brisson et al., 2010) simulates the 

water, C and N fluxes with a soil vertical grid of 1 cm (description of the 
soil is however done at the scale of larger soil layers). Soil temperature is 
also simulated with the same grid of 1 cm. Organic matter turnover is 
simulated based on four main pools: organic residues, microbial 
biomass, humus and mineral pools (CO2 and N). It includes different soil 
processes (mineralization, immobilization, nitrification, volatilization, 
denitrification, leaching) as well as source/sink effect of the crop 
(symbiotic N fixation, absorption of mineral N). The model can take into 
account a large diversity of crops and the main crop and soil manage
ment practices, including mineral and organic fertilization, irrigation, 
soil tillage and residues management. 

2.3.4. Model coupling and calibration 
The nitrification, denitrification and N2O emission module is driven 

by five input variables: NH+
4 and NO−

3 concentration, soil temperature, 
WFPS, and pH. These inputs are either constant variables (pH), external 
variables, which depend only on processes external to the module (soil 
temperature and WFPS), or internal variables (soil NO−

3 and NH+
4 con

centration) that are affected by internal processes and continually 
updated and exchanged with the main model (Fig. 2). 

In previous studies, this N2O module was coupled to the STICS model 
and used to simulate the N2O emissions in oceanic and Mediterranean 
climate conditions (Peyrard et al., 2017; Plaza-Bonilla et al., 2017). In 
this study, we coupled it with the models MONICA and SiriusQuality by 
means of the internal and external variables (Fig. 2). The nitrifica
tion/denitrification and N2O module was integrated directly into the 
source code of the models and was therefore implemented in C# (Sir
iusQuality) and C++ (MONICA), whereas the original version was in 
Fortran (STICS). The previous nitrification/denitrification and N2O 
module of MONICA was disabled for this study. In SiriusQuality, the 
existing denitrification formalism was replaced by the new module. 

Soil NO−
3 and NH+

4 concentrations were provided by the soil nitrogen 
component of each agroecosystem model and affected by the internal 
and external soil N fluxes, such as mineralization, fertilization, leaching, 
volatilization, and N uptake by roots for crop growth. Soil WFPS and soil 
temperature were provided by the soil water and soil temperature 
components, respectively. Since the models do not represent the 
migration of the gas in the soil subsurface, we assumed that the N2O 
produced in soil was immediately released into the atmosphere, and we 
neglected the effect of soil moisture on tortuosity and gas diffusion 
(Chamindu Deepagoda et al., 2019). 

The three agroecosystem modeling groups performed a minimal 
calibration of cultivar parameters using phenology and grain yield data 
from the different treatments listed in Table 1. Cultivar parameters were 
minimally adjusted to observed phenology using the trial-and-error 
method. If the same cultivar was present over several years or treat
ments, SiriusQuality used the Nelder Mead algorithm to minimize the 
RMSE of observed and simulated anthesis and maturity dates, as well as 
grain yield. Grain yield information was available for all treatments, 
while anthesis date was available for all treatments except for EM.19 
and maturity date was available only for the experiments carried out at 
Ottawa, Grignon, New Delhi, and Santa Maria. Given the limited amount 
of information and the number of cultivars to be calibrated, we used the 

Fig. 2. Schema of the coupling of the N2O module with the relevant model components of the agroecosystem models. Driving variables (internal and external) of the 
N2O module are represented in red, solid blue arrows represent N or water fluxes within the agroecosystem model, and dotted arrows represent N fluxes that enter or 
are lost from the crop-soil system. 
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entire phenology and grain yield data for calibration. 
There was no calibration of the N2O module in this study, to ensure 

that all models used the same default module parameterization and that 
inter-model variation in N2O emission were due to differences external 
to the module. For each of the 31 treatments, the models simulated the 
daily N2O emission, soil NO−

3 and NH+
4 concentrations, WFPS, soil 

temperature, leaf area index (LAI), total above ground crop biomass and 
crop nitrogen (Supplementary Figs. S1–S8). 

2.4. Uncertainty and sensitivity analysis 

With the exception of pH, which has a constant value during the 
simulation of a cropping season, the value of the input variables driving 
the N2O emission module change during the simulation. Their values at 
a given time step differ between agroecosystem models, due to the 
different representation of processes, different formalisms, parameters 
and hypotheses. The range of simulated values represents the structural 
model uncertainty and can be characterized by the daily coefficient of 
variation of variable i at treatment j and timestep t(Cj

Vi,t), which quan
tifies the daily dispersion of the variable around the ensemble mean. For 
a given treatment and variable, the daily CVt values were obtained from 
the standard deviation σt of the variable simulated by the three models, 
divided by the ensemble mean μt: 

CVt =
σt

μt
(1)  

σt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
3
(
xMO,t − μt

)2
+
(
xSQ,t − μt

)2
+
(
xST ,t − μt

)2
√

(2)  

μt =
1
3
(
xMO,t + xSQ,t + xST ,t

)
(3) 

Where xMO,t, xSQ,t, and xST,t are the values simulated at timestep t by 
MONICA, SiriusQuality and STICS, respectively. 

For each treatment j and input variable i, we estimated the uncer
tainty Uj

i using the median of the CVt : 

Uj
i = median(CVt) (4) 

The choice to use the median rather than the mean is motivated by 
the lower sensitivity of the median to outliers. Uncertainty was esti
mated on the 0–30 cm layer, by calculating the average over the 0–10 
cm, 10–20 cm and 20–30 cm layers. The depth of 30 cm corresponds to 
the default value of the maximum depth of nitrification in the module, 
while for denitrification the default value of the maximum depth 20 cm. 
The average uncertainty of an input variable was estimated by calcu
lating the mean Uj

i over all treatments j: 

Ui = mean
(
Uj

i
)

(5) 

The impact of the uncertainty of the input variables on N2O emission 
was evaluated by performing a sensitivity analysis (SA) of the N2O 
module with the Extended Fourier Amplitude Sensitivity Test (eFAST; 
Saltelli et al., 1999) implemented in the R-package Sensitivity (Iooss 
et al., 2022). This sensitivity analysis scheme is a robust, variance-based 
and computationally efficient approach for global sensitivity analysis, 
that can be applied for complex, non-linear models and represents the 
sensitivity for an individual factor and for total factor interactions 
(Saltelli et al., 2008). For each input (or driving variable) the original 
trajectory during a simulation was modified by multiplying the value by 
a factor, randomly chosen from a uniform distribution. We performed 
two types of SA. In the “fixed range” SA, the uniform distribution was 
constant between variables (± 20% of the nominal value). In the 
“uncertainty-driven” SA, the upper and lower bound of the distribution 
were set using the mean uncertainty of the variable (Eq (5)) over all 
treatments. This means that for the variables with larger uncertainties, a 
larger spectrum of trajectories was tested in the uncertainty-driven SA. 

The effect on the soil N pool (NO−
3 and NH+

4 ) and the feedback on crop 
growth were not considered. The pH was not included in the SA as a 
variable, because the value is fixed during the simulation and is not 
concerned by model uncertainty, but we included its effect by per
forming SA for acidic (pH < 6.5) and basic (pH > 7.5) soils, separately. 

2.5. Analysis of N2O model error 

Different approaches were used to analyze the sources of the model 
error in predicting N2O emissions at different scales (daily time step and 
over the growing season). We applied the Classification and Regression 
Tree modeling approach (CART modeling; Breiman et al., 1984) to 
describe the factors that affect the model error at daily scale. This al
gorithm allows to create decision tree for non-categorical data and 
constructs a binary tree based on the minimization of the Gini Impurity. 
The algorithm aims at producing rules that predict the value of an 
outcome variable from known values of explanatory variables. The al
gorithm helps to explore the structure of data sets and develops a binary 
decision tree. Each node of the decision tree is a rule that splits the data 
in two groups, with the aim of maximizing homogeneity within a group. 
The process is then applied to each sub-group recursively until the 
subgroup reaches a minimum size or until no improvement can be made. 
Then a cross validation is performed to prune the tree and identify the 
tree with the lowest cross-validated error to avoid overfitting. 

We generated regression trees through the Recursive Partitioning 
and Regression Trees approach using the R package Rpart.plot (Mil
borrow, 2021) with the objective of predicting the N2O emission error 
(the difference between daily simulated and measured N2O emission) 
based on the simulated input variables. The predictor variables were the 
NO−

3 and NH+
4 concentration, the soil temperature, the WFPS and the pH 

in the 0–30 cm soil layer. 
The random forest algorithm (RFA), based on the analysis of multiple 

randomly created decision trees (Breiman, 2001), was also applied to 
identify the most important variables (R package randomForest; Liaw 
and Wiener 2002). We used the increase in Mean Squared Error of 
predictions (%IncMSE) to represent the mean decrease in accuracy when 
the variable is left out. The higher the value of the%IncMSE, the higher 
the importance of the variable to the model. The%IncMSE was calcu
lated as: 

%IncMSE =

∑
MSE0,i − MSEJ,i

ntree
⋅

1
σMSE0,i − MSEJ,i

(6) 

Where MSE0,i is the mean squared error of the regression, MSEJ,i is 
the mean squared error of the regression when the variable J is 
permuted, i is the index of the tree, ntree is the total number of generated 
trees, and σMSE0,i − MSEJ,i is the standard deviation of the differences be
tween the permuted and not permuted MSE of regressions. 

Decision trees are very easy to interpret because they allow to 
visualize the rules (variables and values) of the splits. However, their 
result is less stable than that of the RFA and depends on the training set. 
RFA generates many trees, then averages all the trees, and therefore 
produces a more stable and accurate result than simple decision trees. 
However, RFA does not allow visualization of the final model, which 
limits interpretation. By combining the CART and RFA algorithms we 
obtain a robust result and information on the rules, which helps to better 
understand the conditions associated with a larger error. 

The model error (ME) was also analyzed over the growing season, 
and we compared the simulated cumulative N2O emission to the 
measured N2O emission from sowing to harvest. To better compare er
rors between experiments, we represented the model error as the ab
solute value of the relative error: 

ME =

⃒
⃒
⃒
∑harvest

sowingN2Oobs −
∑harvest

sowingN2Osim

⃒
⃒
⃒

∑harvest
sowingN2Oobs

(7) 
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where N2Oobs (kg N2O–N ha− 1) is the measured N2O emission, and 
N2Osim (kg N2O–N ha− 1) is the simulated N2O emission. 

In some experiments the time series of N2O measurement were not 
complete and the missing data were estimated using a spline 
interpolation. 

All analyses were performed using the R statistical software program 
version 4.0.5 (R Core Team, 2021). 

3. Results 

3.1. Model evaluation for final total above ground biomass and nitrogen, 
and grain yield and nitrogen 

Overall model performance was evaluated by comparing simulated 
and observed values of selected variables. The evaluation was done for 
each of the agroecosystem models and for the multi-model ensemble 
average (e.mean). 

3.1.1. Final total above ground biomass and nitrogen, and grain yield and 
nitrogen 

We compared simulated and observed values of final total above 
ground N, grain N, grain yield, and final total above ground biomass 
(Fig. 3). The best performance of e.mean was found for final total above 
ground N, followed by grain yield. SiriusQuality performed better than 
the e.mean for grain N and final total above ground mass. The worst 
model prediction was obtained by MONICA for grain N (RRMSE = 38%), 
but the overall performance of the models was satisfactory, with a 
RRMSE between 14% and 29%. 

3.1.2. Ammonium, nitrate, WFPS and soil temperature 
We compared the simulated and measured value of the four N2O 

module input variables in the first soil layer: ammonium, nitrate, WFPS 
and soil temperature (Fig. 4). The depth of the first soil layer is 30 cm for 
the CA and EM treatments, and 10 cm for all other treatments. Soil 
temperature showed the best accuracy, with RRMSE varying between 
9% (e.mean) and 18% (SiriusQuality). The second best simulated input 

Fig. 3. Comparison of simulated and measured variables for the three agroecosystem models (MONICA, SiriusQuality and STICS) and for the ensemble mean (e. 
mean). (a) Final total above ground nitrogen, (b) grain nitrogen, (c) grain yield, and (d) final total above ground biomass. RMSE and RRMSE values are given at the 
lower left corner of each panel. The colors of the symbols represent the different locations of the experiments (or locations/year combination for Estrées-Mons). 
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variable was WFPS, with RRMSE between 15% (e.mean) and 21% 
(SiriusQuality). The accuracy of nitrate and ammonium was poor. For 
nitrate the models showed RRMSE varying between 80% (STICS) and 

134% (MONICA), and for ammonium between 131% (SiriusQuality) and 
146% (MONICA). The simulation of ammonium at the Brazilian site was 
particularly poor for all models and showed large discrepancies between 

Fig. 4. Comparison of simulated and measured variables for the three agroecosystem models (MONICA, SiriusQuality and STICS) and for the ensemble mean (e.mean) 
in the first soil layer. (a) Ammonium, (b) nitrate, (c) WFPS, and (d) soil temperature. RMSE and RRMSE values are given at the lower left corner of each panel. The 
colors of the symbols represent the different locations of the experiments (or locations/year combination for Estrées-Mons). 

Fig. 5. Heat map of the uncertainty of simulated N2O emission and the four input variables of the N2O module, represented by the uncertainty estimator Uj
i for the 

agroecosystem models MONICA, SiriusQuality, and STICS for the field experiments considered in this study. Simulated water filled pore space (WFPS), NO−
3 content, 

NH+
4
+ content, and soil temperature were average over the 0 to 30 cm soil layers. The treatments are defined in Table 1. 
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simulated and measured values. Simulation accuracy of daily and cu
mulative N2O emissions was also low, particularly for the Canadian and 
Brazilian experiments. (Fig. S9). 

3.2. Uncertainty of the N2O module variables 

The uncertainty of the four N2O module input variables (WFPS, NO−
3 , 

NH+
4 , and soil temperature) and of the output variable (N2O emissions) 

was estimated for each treatment (Eq (4)). WFPS and soil temperature 
had the lowest uncertainty, while NO−

3 and NH+
4 had the highest (Fig. 5). 

The uncertainty of N2O emissions was also high, especially for the Ca
nadian and Brazilian experiments. The mean uncertainty (Eq (5)) was 
also estimated, and for WFPS and soil temperature we obtained values of 
0.10 and 0.11, respectively, while for NO−

3 and NH+
4 we estimated values 

of 0.91 and 0.67, respectively. 

3.3. Sensitivity analysis of the N2O module 

The uncertainty-driven SA, that used the average uncertainties of the 
input variables to set up the range of values to be tested, was compared 
to the fixed range SA, which does not take into account prior knowledge 
of the uncertainty of the input variables and assumes the same value for 
all tested variables (± 20% of the nominal value). The results showed 
large differences between the uncertainty-driven and the fixed range SA, 
and between acidic and basic soil. In the uncertainty-driven SA, N2O 
emission of basic soils were mainly impacted by NH+

4 concentration, 
while for acidic soils NO−

3 was the most sensitive input variable, fol
lowed by WFPS (Fig. 6). In the fixed range SA, the most sensitive 
parameter was soil temperature, followed by NH+

4 concentration and 
WFPS in basic soils, and WFPS, followed by soil temperature in acidic 
soils. The analysis highlighted that the large uncertainty characterizing 
the simulation of NH+

4 and NO−
3 translates into a high sensitivity of these 

inputs in the SA, while WFPS and temperature have a lower variability 
and therefore a lower sensitivity. 

3.4. Pedo-climatic conditions and N2O emission error 

Decision trees were developed using the CART algorithm, to predict 
N2O emission error (Eq (7)) based on modelled pedo-climatic conditions 
(WFPS, pH, NO−

3 , NH+
4 and soil temperature) for each agroecosystem 

model and for the e.mean (Fig. 7). At the same time, the RFA was used to 
rank the variables according to their importance to the model error. In 

SiriusQuality and e.mean the most important variable to determine 
model error according to RFA was pH and in SiriusQuality the highest 
error values were found in acidic soils and high NO−

3 concentrations. In 
the STICS model, the effect of soil pH was not dominant, but the most 
important variable to determine model error was the NO−

3 concentra
tion, followed very closely by WFPS, and the largest error occurred with 
high NO−

3 concentration and wet soils. The MONICA model gave a less 
clear-cut result, with two variables of similar importance for model 
error: NH+

4 and pH. Similar to SiriusQuality, the largest error occurred in 
acidic soils with high NO−

3 concentration. Although the graphs and 
rankings varied between models, we observed that pH and soil N con
centration were the most important variables to determine the model 
error. 

3.5. Relative error for seasonal cumulative N2O emission 

The relative error for seasonal cumulative N2O emission was calcu
lated for each combination of site/year/N treatment, from sowing to 
harvest (Fig. 8). The results highlighted three situations in which at least 
one agroecosystem model had low accuracy: at Santa Maria, Brazil 
(BR13), for the three models, at Ottawa, Canada, in 2011 (CA.11) for the 
STICS model, and in some treatments at Estrées-Mons, France, for which 
both MONICA and STICS showed large error, in particular during the 
winter wheat experiment 2014–2015 (EM.15.L). In the following sec
tion, we analyze in more detail the factors that caused high model error 
in these treatments 

3.5.1. Estrées-Mons, France (EM.15.L) 
In this treatment, the winter wheat cultivar Cellule was sown in a 

basic soil (pH 8.2). All three agroecosystem models agreed that an initial 
peak in N2O emissions occurred at sowing due to incorporation of crop 
residue, although mineralization of residues leads to different soil NH+

4 
increases between the models (Fig. 9). A second peak was measured 
after the N fertilizer application (day after sowing [DAS] 164), but the 
height and timing of the peak differed among the models. In Sir
iusQuality, the N2O peak occurred several days later than the date of 
application because the model has a condition of minimum soil moisture 
and amount of rainfall in the days before fertilization for the fertilizer to 
penetrate the soil. 

The simulated N2O emissions from nitrification and denitrification 
were in the same range. However, the denitrification rates diverged 
between the models. All three models have the same potential 

Fig. 6. Sensitivity analysis (SA) of the N2O module. (a) and (b) fixed range SA assuming that all variables had the same uncertainty for acidic (pH < 6.5) and basic 
(pH > 7.5) soils, respectively. (c) and (d) uncertainty-driven SA performed using the average multi-model ensemble uncertainty of each input variable for acidic and 
basic soils, respectively. 
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denitrification rate, but the weighting factors, which reduce the poten
tial denitrification as a function of WFPS, temperature and NO−

3 values, 
depend on the model. After DAS 150, SiriusQuality’s WFPS weighting 
factor is close to zero and strongly limits denitrification, whereas 
MONICA and STICS show peaks of denitrification rate linked to WFPS 
fluctuations (Fig. S10). This shows that water retention and water use 
differed between models, with a significant impact on denitrification 
and N2O emissions. In addition, SiriusQuality had a smaller error (lower 
overestimation) compared to the two other models also because the NO−

3 
and NH+

4 peak after fertilization was smaller. 

3.5.2. Santa Maria, Brazil (BR.13) 
In this experiment a spring wheat was sown in an acidic soil (pH 5.4). 

The experiment is characterized by a high cumulative precipitation 
during the growing season, the highest among the experimental sites 
where spring wheat was sown. 

In the simulations, the main source of N2O emissions was denitrifi
cation and all models significantly overestimated these emissions 
(Fig. 10). The experiment had no nitrogen fertilization, but the initial 
soil inorganic nitrogen was high (37 kg N ha− 1 for the 0–10 cm layer) 
and crop residues (corn) were left on the field. As a result, the models 
simulated an initial peak in NO−

3 and NH+
4 , and high initial denitrifica

tion. Again, the amplitude and the duration of the peak was fairly 

Fig. 7. Classification and regression tree (CART) of the daily difference between simulated and measured N2O emissions (model error) for the agroecosystem models 
MONICA, SiriusQuality and STICS, and the multi-model ensemble mean (e.mean). Split point of the decision tree represent constrains to make the prediction. Nodes 
show the predicted values and the percentage of measurements in the node. Darker nodes represent larger errors. Bar plots represent the output of the Random Forest 
analysis and show the mean decrease of accuracy, with higher values corresponding to higher importance of the variable in the model. 

Fig. 8. Relative error for seasonal cumulative N2O emissions from sowing to harvest for the field experiments consider in this study simulated with the agro
ecosystem growth models MONICA, SiriusQuality and STICS, and the multi-model ensemble mean (e.mean). For Estrées-Mons, treatments were grouped by the rate of 
N fertilizer applications (L: low, I: intermediate, H: high). The treatments are defined in Table 1. 
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variable between the three models. 
After DAS 70, MONICA simulated higher soil NO−

3 concentrations in 
the 0–10 cm soil layer than the other models and thus simulated a higher 
N2O emission due to denitrification. This is favored by a smaller 
decrease in WFPS, which allows for conditions suitable for denitrifica
tion. It is interesting to note that in the measurements, WFPS were often 
higher than the field capacity, indicating very wet conditions, which 
SiriusQuality and STICS were not able to simulate, as simulated excess 
water moved quickly through the soil profile. This is likely an important 
factor that is misrepresented in the models and introduces errors in the 
simulation of not only N2O emission but likely also of crop growth to 
waterlogging conditions. 

3.5.3. Ottawa,-Canada (CA.11) 
In the Canadian treatment, a spring wheat (ACBrio) was sown in a 

slightly acidic soil (pH 6.6). There was one fertilization event (with 
urea), just before sowing. The models simulated an initial peak of NH+

4 , 
followed by a later peak of NO−

3 . In this experiment, there was a large 
difference between the STICS simulations and those of MONICA and 
SiriusQuality, and STICS had the largest error, due to the overestimation 
of denitrification and N2O emission (Fig. 11). 

In this case, the difference between denitrification rates was too 
great to be attributed to weighting factors alone. In STICS, denitrifica
tion followed the same fluctuations as the WFPS weighting factor, the 
main limiting factor (Fig. S11). However, the denitrification rate esti
mated by multiplying the potential denitrification with the weighting 
factors for temperature, WFPS and NO−

3 simulated in the 0–10 cm and 
10–20 cm layers, was much lower. As the vertical grid of the STICS 
model was 1 cm, whereas in MONICA and SiriusQuality the variables 
were averaged over thicker layers (10 cm and 5 cm, respectively), we 
tested whether a variation in WFPS in the 0–20 cm soil layer could 
explain the large denitrification simulated by STICS. Since the STICS 
model does not allow to retrieve the WFPS value per 1 cm layer, we 
implemented the denitrification formalism in an R environment. Noise 
was applied to the WFPS values of the 0–10 cm and 10–20 cm layers 
simulated by STICS in order to get plausible WFPS values for each 1 cm 
layer. The denitrification rate was then estimated for each 1 cm layer 
and summed to obtain total denitrification (Fig. S12). This test allowed 
to produce the range of denitrification rate values simulated by STICS 
for this experiment, and showed that the finer vertical grid, combined 
with the strong nonlinear response of denitrification and N2O emission 
to WFPS, were a plausible cause of the large overestimation of 

Fig. 9. Simulated (lines) and measured (circles) variables versus days 
after sowing for the winter wheat cultivar Cellule grown in the field at 
Estrées-Mons, France during the 2015–2016 growing season with low 
N supply (treatment EM15.L). (a) Total above ground crop biomass. 
(b) Total above ground nitrogen. (c) Daily N2O emission from the top 
0–40 cm soil layer. (d) Water filled pore space in the 0–30 cm soil 
layer. (e) Daily N2O emission from nitrification from the top 0–40 cm 
soil layer. (f) Daily N2O emission from denitrification from the top 
0–20 cm soil layer. (g) Soil NH+

4 content in the top 0–30 cm soil layer. 
(h) Soil NO−

3 content in the top 0–30 cm soil layer. In (d), dotted and 
solid horizontal red lines show field capacity and permanent wilting 
point, respectively.   

S. Dueri et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 340 (2023) 109619

12

denitrification by STICS. 

4. Discussion 

The growing effort toward modularity in agricultural and ecological 
models is a driving force for improvement of these models because it 
allows easy implementation and exchange of modules and testing of 
assumptions and formalisms. However, when the same module is 
implemented in different models, the outcome depends not only on the 
appropriateness of the formalisms used to represent the biophysical 
processes, but also on the output of other connected modules that pro
vide the input variables for the module. Therefore, it is necessary to 
study the link between the module and the model in which it is inte
grated, and to assess how the uncertainty in driving variables affects the 
uncertainty of the model prediction. The novelty of this study lies in the 
effort to evaluate the performance of a module when it is coupled to 
different agroecosystem models, with the objective of elucidating the 
causes and conditions of greater or lesser model accuracy. 

We evaluated the variability of the simulated N2O emissions, and 
characterized the model performance, without calibration of the po
tential denitrification rate. Indeed our objective was not to evaluate the 
module, as this had already been done in previous studies (Peyrard et al., 

2017; Plaza-Bonilla et al., 2017). Instead, we were interested in the 
range of outputs that can be obtained by integrating an uncalibrated 
module (with default parametrisation) into several agroecosystem 
models. This allowed us to assess the predictive ability of the module 
without calibration as well as the variability in accuracy between 
agroecosystem models in different environments, and the reasons for 
this variability. There is a need to quantify N2O emissions on a large 
scale and therefore to apply models that are sufficiently robust and 
general to accurately predict N2O emissions in a wide range of 
pedo-climatic conditions. Currently, most of the countries estimate na
tional N2O emissions using IPCC Tier 1 approach, based on a global 
default emission factor (IPCC, 2006), and some countries have moved to 
country-specific emission factors (Tier 2). However, additional efforts 
are needed to implement model-based Tier 3 method, and agro
ecosystem models provide a structured way to better account for com
plex interactions between soil properties, weather, and crop 
management practices that affect N2O emission (Brilli et al., 2017; 
Fuchs et al., 2020; Khalil et al., 2016). 

Characterization of the simulation uncertainty identified the greatest 
variability in NO−

3 and NH+
4 concentration, while WFPS and soil tem

perature showed fairly consistent values among the different agro
ecosystem models. In addition, the model evaluation showed that soil 

Fig. 10. Simulated (lines) and measured (dots) variables versus days 
after sowing for the spring wheat cultivar Quartzo grown in the field at 
Santa Maria, Brazil, during the 2013 growing season. (a) Total above 
ground crop biomass. (b) Total above ground nitrogen. (c) Daily N2O 
emission from the top 0–40 cm soil layer. (d) Water filled pore space in 
the 0–30 cm soil layer. (e) Daily N2O emission from nitrification from 
the top 0–40 cm soil layer. (f) Daily N2O emission from denitrification 
from the top 0–20 cm soil layer. (g) Soil NH+

4 content in the top 0–30 
cm soil layer. (h) Soil NO−

3 content in the top 0–30 cm soil layer. In (d), 
dotted and solid horizontal red lines show field capacity and perma
nent wilting point, respectively.   
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temperature and WFPS were simulated more accurately than NO−
3 and 

NH+
4 . Previous studies had already highlighted that the simulation of soil 

inorganic nitrogen, NH+
4 and NO−

3 was generally less accurate than the 
simulation of soil water and temperature (Coucheney et al., 2015; Smith 
et al., 2019). The processes involved in the nitrogen cycle are complex 
and depend on biotic and abiotic conditions, which are spatially variable 
even on a fine scale (Liang et al., 2023; Yin et al., 2020). Consequently, 
high spatial variability is often observed, particularly for NH+

4 and NO−
3 . 

Model uncertainty and larger measurement errors lead to lower model 
performance indicators (Coucheney et al., 2015). Furthermore, recent 
studies have shown that in (sub)tropical agroecosystems, the activity 
and relative importance of microbial communities involved in nitrifi
cation are different from those in temperate soils (Zhang et al., 2023; 
Fan et al., 2021). The ratio of nitrate to ammonium is also lower in 
tropical soils than in temperate soils, but current agroecosystem models 
are not yet able to simulate these differences. 

The uncertainty of N2O emissions was also high, especially for the 
Canadian and Brazilian experiments, which showed the largest model 
error for cumulative and daily N2O emission. According to our results, 
the variables with the highest uncertainties were also the less accurate. 
Our characterization of uncertainty of input variables was used to 

characterize the sensitivity of the N2O module, and our results showed 
that the variables with the greatest impact on the simulation of N2O 
emission were NH+

4 and NO−
3 concentration. It also showed that the 

sensitivities were strongly dependent on soil pH. 
Previous research has found that good model performance in rep

resenting cumulative N2O emissions at the annual scale does not always 
coincide with good representation of daily emissions (Fuchs et al., 2020) 
and that it is interesting and complementary to study both. We therefore 
examined the model error at the daily scale by calculating the difference 
between measured and simulated daily N2O emission, and at the 
“growing season” scale, by comparing cumulative N2O emission from 
sowing to harvest. The Random Forest and CART algorithm showed that 
pH was among the main factors of daily model error for SiriusQuality, 
MONICA and e.mean, while for STICS the main factor was NO−

3 . The 
highest model error was found when simulating acidic soils with high 
NO−

3 concentration in SiriusQuality, MONICA and e.mean, and when 
simulating high NO−

3 concentration and wet soils in STICS. These con
ditions, which are challenging to simulate accurately, are favorable to 
denitrification. However, the analysis of model error is based on simu
lated input variables, which limits the inference that can be drawn from 
the results. We do not evaluate how real conditions affect model error, 

Fig. 11. Simulated (lines) and measured (dots) variables versus days 
after sowing for spring wheat ACBrio grown at Ottawa, Canada, during 
the 2011 growing season. (a) Total above ground crop biomass. (b) 
Total above ground nitrogen. (c) Daily N2O emission from the top 
0–40 cm soil layer. (d) Water filled pore space in the 0–30 cm soil 
layer. (e) Daily N2O emission from nitrification from the top 0–40 cm 
soil layer. (f) Daily N2O emission from denitrification from the top 
0–20 cm soil layer. (g) Soil NH+

4 content in the top 0–30 cm soil layer. 
(h) Soil NO−

3 content in the top 0–30 cm soil layer. In (d), dotted and 
solid horizontal red lines show field capacity and permanent wilting 
point, respectively.   
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but only how simulated input variables affect model error. If a model has 
a systematic bias in the representation of an input variable and un
derestimates a variable, and if the model is sensitive to this variable, the 
regression trees may fail to detect the factor, because the variable is 
poorly simulated. 

To characterize the performance of the models over the growing 
season we examined the evolution of several variables from sowing to 
harvest. We analyzed the external factors that affect the value of the 
variable, such as crop management and weather, and we analyzed the 
relationship between the model error and the shift in the peaks of the 
driving variables. The analysis showed that all models simulated NO−

3 
and NH+

4 peaks after fertilization and crop residue incorporation, but the 
timing and magnitude of the simulated peaks could vary considerably 
between models, with a major effect on N2O emission. After a nitrogen 
fertilizer application, we observed a lag between simulated peaks of 
several days, for example due to soil moisture or rainfall conditions that 
are required in SiriusQuality for the fertilizer to penetrate the soil sur
face. Similarly, the three agroecosystem models represent the incorpo
ration and mineralization of crop residues with different formalisms and 
parameters, resulting in N peaks with different magnitude and shape. 
Another factor that could have a significant impact on the model results 
is the vertical grid used to simulate the soil layers in the models. The 
STICS model that had the finest vertical soil grid was also the model that 
most overestimated denitrification in the second year of the Canadian 
experiment. Since nitrification and denitrification are affected by non- 
linear processes, small differences in the representation of soil condi
tions or soil layers have substantial implications for the simulation of 
N2O emissions by the module. Finally, there was a general trend of 
overestimating N2O emissions from denitrification in all three models, 
which could be corrected by a calibration of the denitrification 
potential. 

Another important achievement of our study is the evaluation of N2O 
emission module in a variety of contrasting soil-climate environments. 
Our analysis has emphasized that wet acidic soils with high denitrifi
cation potential were more challenging for models to simulate. Since soil 
pH is a key factor for estimating regional N2O emission (Wang et al., 
2018) this limitation has important consequences on model robustness 
and currently limits the use of process-based models to estimate N2O 
emissions at the regional scale. Agroecosystem models tend to be less 
successful at sites to which they have not been previously calibrated 
(Brilli et al., 2017) and wet acidic soils are unusual conditions for them. 
Around 75% of denitrification studies were located in Europe and North 
America and the underrepresentation of tropical and sub-tropical agri
cultural soils is a major limitation for model validation (Almarazetal 
et al., 2020; Albanito et al., 2017). To improve our models, we need to 
expand the spatial coverage of N2O emission modeling studies and to 
include more data on tropical regions and on acidic soils, as these are 
more sensitive to changes in N fertilization than alkaline soils (Wang 
et al., 2018) and exhibit very different nitrogen dynamics in general, as 
compared to soils in temperate environments, due to their iron- and 
aluminum-dominated mineralogy (Nendel et al., 2019). 

Recent studies have suggested that the combination of process-based 
and machine learning (ML) models could improve the prediction of N2O 
emissions (Berardi et al., 2020; Saha et al., 2021). However, to be 
effective, ML models must be trained on large datasets representative of 
the range of conditions over which the model will be used, covering 
different soil-climate environments and management options. There
fore, this approach has to face similar issues regarding data availability. 
In addition, the unbalanced structure of the data, characterized by large 
but sporadic N2O peaks, is challenging for ML models, as learning the 
critical variables of rare events is a real issue for ML models. 

5. Conclusion 

In conclusion, this study has highlighted several factors that increase 

uncertainty in predicting N2O emissions, and may limit the application 
of models in certain soil-climate environments. Some of these factors are 
external to the N2O module and depend on the representation of man
agement and soil processes, and soil layers in agroecosystem models. For 
example, different formalisms for representing residue incorporation 
and mineralization, soil nitrogen penetration after fertilization, and soil 
water retention and percolation have an important impact on the vari
ability of simulated NO−

3 , NH+
4 , and WFPS. Other factors are internal and 

depend on the representation of nitrification, denitrification and N2O 
emissions (e.g. the potential denitrification rate) in particular in acidic 
environments. We believe that greater availability of data from these 
environments could improve the predictive quality of the models. 
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