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A B S T R A C T   

The ability of ‘digital agriculture’ to support on-farm decision making is predicated on the real-time combination 
of observations and prior knowledge into an integrated digital environment. The mathematical discipline that 
seeks to provide this integration is known as model data assimilation (DA), with demonstrated benefits including 
improved predictive reliability, and the capacity to identify unexpected changes in field conditions and potential 
measurement errors. Despite routine adoption in other fields, the delayed adoption of DA in agriculture is due to 
the need to express end-of-season outcomes such as yield, update forecasts of these outcomes throughout the 
growing season as data become available, and enhance forecast reliability. To overcome these challenges, three 
guiding principles are introduced, providing a means to operationalize crop model DA for robust on-farm de-
cision support. We apply the guiding principles using a South Australian viticulture case study. Our case study 
involves application of an iterative form of a widely used DA algorithm (ensemble Kalman filter) to dynamically 
update both static parameters and states associated with a grapevine simulation model. Daily weather data as 
well as fortnightly ground-based leaf area index (LAI) data are used for assimilation. It is shown how crop model 
DA can lead to not only significant improvements in forecasts of LAI but also to forecasts of end-of-season yield. 
The guiding principles also enable observations of greatest value to be identified throughout the season. This 
study highlights the role that formal crop model DA can play in agricultural decision support through enhancing 
situational awareness in real time.   

1. Introduction 

The ability of ‘digital agriculture’ to support on-farm decision mak-
ing (sometimes referred to as ‘decision agriculture’; Leonard et al., 
2017) is predicated on the real-time combination of observations and 
prior knowledge into a unified digital environment. Optimal ‘fusion’ of 
observations and prior knowledge is the aim of the mathematical 
discipline of model data assimilation (DA). While DA has been funda-
mental to advances in fields such as numerical weather prediction 
(Navon, 2009), its application to support decisions in agriculture re-
mains rare. This delayed adoption reflects unique challenges facing 

practitioners in applying DA for on-farm decision support. As a result, 
much of the potential of DA in the agricultural context is yet to be 
realized. 

Process-based models are widely used for decision support in agri-
culture (Wallach et al., 2006). Crop models are particularly well suited 
to agricultural decision support due to their ability to simulate key 
end-of-season outcomes and their sensitivity to both management de-
cisions such as irrigation rates, and exogenous factors that are outside of 
the grower’s control such as climate/weather (Knowling et al., 2021). 
The ability of crop models to effectively support decision making is 
dependant on the reliability of simulated outputs that pertain to 
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decision-relevant performance metrics (herein referred to as ‘quantities 
of interest’ or QoI such as crop yield). 

Crop models by themselves are limited in their ability to reliably 
inform on-farm decisions (Wallach et al., 2006; Wallach, 2011). This is 
in part due to the high levels of complexity of crop growth and devel-
opment processes, and the heterogeneity of applications. The reliability 
of simulated outputs can be enhanced by ‘conditioning’ a model based 
on observation data. This involves updating uncertain model input pa-
rameters and/or states through reducing the discrepancy between 
observation data and their simulated counterparts. Formal conditioning 
is often achieved via DA by updating model parameters and/or states in 
a dynamic sense as observations become available. This allows simu-
lated outputs to continuously reflect observed conditions. 

The combination of crop models and DA have shown significant 
promise (e.g., Pauwels et al., 2007; Xiao et al., 2009; Mansouri et al., 
2014; Tewes et al., 2020a, b). For example, many studies show how crop 
model DA can improve forecasts of state variables such as leaf area index 
(LAI) and soil moisture (e.g., Linker and Ioslovich, 2017; Lei et al., 
2020). However, there remain unique challenges facing practitioners in 
applying crop model DA to support on-farm decision making. Challenges 
include the expression of end-of-season QoI (Knowling et al., 2021) and 
how insights gained through DA map to these QoI in real time 
throughout the season. There also remain more general challenges sur-
rounding forecast reliability (e.g., Ines et al., 2013; Hu et al., 2017). 
Guidance to overcome these challenges (a detailed description given in 
Section 2.2) is currently limited for applying crop model DA to on-farm 
decision support. 

The objectives of this study are as to: (1) develop guiding principles 
for effective crop model DA in the context of on-farm decision support 
and (2) demonstrate the guiding principles on a real-world viticulture 
case study. Briefly, the guiding principles address the need to express 
end-of-season QoI and how these QoI change throughout the season as 
more data are collected, as well as to enhance forecast reliability. Viti-
culture represents an ideal agriculture application area because of the 
complexity of biophysical processes involved in grapevine growth and 
development (Laurent et al., 2021), highlighting the need to combine 
both biophysical knowledge derived from crop models and field obser-
vations to provide integrated situational awareness and predictive 
capacity. 

2. Crop model data assimilation and its challenges and 
opportunities for on-farm decision support 

2.1. Overview of model data assimilation 

Formal model DA involves three main components: a process-based 
model (Section 2.1.1), observation data (Section 2.1.2) and the DA 
procedure (Section 2.1.3). Here we provide a brief overview of DA and 
its components, with a focus on its application in conjunction with crop 
models towards end-of-season QoI estimation throughout the growing 
season. For more details, the reader is referred to the reviews of Jin et al. 
(2018) and Huang et al. (2019). 

2.1.1. Process-based models 
Process-based models represent a mathematical description of our 

understanding of the relationships between key quantities that control 
system behaviour. In the context of crop models, this commonly includes 
relationships across the soil-plant-atmosphere continuum associated 
with soil water dynamics, radiation use efficiency, crop phenology, and 
so forth (Wallach et al., 2006). These relationships have often been 
developed from decades of scientific development but have not neces-
sarily been adapted to specific applications; in this way, a process-based 
model (herein referred to as ‘model’) serves to provide ‘prior knowl-
edge’, independent of those that can be derived from observation data 
being collected. 

For deployment in DA, a model must be capable of propagating 

forward system states (that can be observed), subject to initial system 
states, forcing variables and static parameter estimates. Mathematically: 

ht+1 = g(ht, p, qt) (1)  

where g represents the action of a model in simulating the evolution of a 
dynamic system within an ‘assimilation cycle’ from time t to t + 1, ht and 
ht+1 are system states (e.g., LAI, soil moisture) at time t and t + 1, 
respectively, p are static parameters (i.e., time-invariant on the scale of a 
season, e.g., thermal time thresholds, soil permeability), and qt are 
forcing variables operating within the period t to t + 1, such as climate/ 
weather variables (e.g., temperature, rainfall) and decision levers (e.g., 
date and severity of canopy trimming, irrigation rate). Note that the time 
index t does not necessarily represent an individual unit of time; it can 
represent an arbitrary number of time units, e.g., days corresponding to 
irregular sampling events. 

It should be noted that model inputs—p, qt and ht—are uncertain. 
Model input (‘prior’) uncertainty requires explicit specification. Uncer-
tainty in model inputs will result in uncertainty in model out-
puts—ht+1—to the extent that model outputs are sensitive to model 
inputs. A model is therefore also responsible for propagating uncertainty 
forward in time. Uncertainty quantification is a key aspect of DA (Sec-
tion 2.1.3). 

The suitability of process-based models, and in particular, crop 
models to agricultural decision support has been discussed previously 
(Wallach et al., 2006; Knowling et al., 2021). Crop models typically run 
on a daily basis. They require as inputs daily forcing variables, static 
parameters and decision levers (examples above). Crop model outputs 
include daily states (examples above) and fluxes (e.g., carbon assimila-
tion, infiltration), as well as summary variables (e.g., yield). 

2.1.2. Observation data 
The role of observation data within DA is to capture key character-

istics and dynamics of the system under investigation. Observation data 
therefore provide a basis for ‘ground-truthing’ the model and keeping 
the model ‘current’ (i.e., in line with current real observed conditions) 
through the process of DA. Observation data provide information related 
to system behaviour that can be used to condition uncertain model in-
puts towards reducing uncertainty in QoI such as end-of-season yield. 

Some level of physical correspondence between observations and 
model simulated counterparts is required for observation data to be used 
for DA. However, for example, while LAI observations can be used to 
update LAI model states, it is important to consider that there will 
inevitably exist a difference between how LAI is represented by obser-
vations and the model (e.g., different spatial scale, treatment of non- 
canopy matter per area). Such correspondence may also be established 
or improved by observation pre-processing and/or model post- 
processing. These considerations are critical given that computation of 
the discrepancy between observations and model simulated counter-
parts (termed ‘innovation’ in DA parlance) is a key aspect of DA (Section 
2.1.3). 

Observation data are also subject to uncertainty, e.g., due to mea-
surement noise. This uncertainty requires explicit specification within 
formal DA. Observation uncertainty is sometimes inflated to account for 
a lack of correspondence between observations and model simulated 
counterparts in an effort to account for effects of model misspecification 
on the DA process (Wallach, 2011). 

Examples of observational data that are widely used for DA in agri-
culture include canopy size (e.g., LAI) and soil moisture. These data can 
be derived from both proximal sensing (e.g., De Bei et al., 2016; Yu et al., 
2021) and remote sensing (e.g., Ballesteros et al., 2015; Bégué et al., 
2010). Other less conventional observation data types include sap flow 
rates and stem radial variability (e.g., Corell et al., 2014; Scholasch, 
2018). 
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2.1.3. Data assimilation 
The role of the DA procedure in general terms is to bring together 

insights from the model and the data. This is achieved by updating 
model states and/or parameters in a way that optimally combines the 
model (e.g., simulated states before conditioning) with observations. 

DA is often formulated in terms of Bayesian updating. This involves 
estimating in a sequential sense an ensemble of model states and/or 
static parameters over discrete time intervals to reduce model misfit and 
drive the ensemble towards a posterior condition (note that static pa-
rameters, while time-invariant in simulation time, can be updated 
sequentially, in real time as new data are assimilated). Bayesian 
updating involves two main steps: forecast and analysis. The forecast 
step involves propagating states and their uncertainty forward in time, 
giving rise to a ‘prior’ ensemble of states during the current assimilation 
cycle. The analysis step then involves solving an inverse problem to 
condition states and/or parameters, thereby reducing uncertainty and 
giving rise to a ‘posterior’ ensemble of states for the current assimilation 
cycle. This posterior state ensemble then becomes the prior state 
ensemble for the next assimilation cycle. 

Suppose we have a parameter-state vector as xt+1 = [ps; ht+1; ht ]. A 
general Bayesian formulation of the estimation problem takes the form: 

p(xt+1|dt+1) =
p(dt+1|xt+1)p(xt+1)

p(dt+1)
(2)  

where p(xt+1|dt+1) is the posterior probability density function (PDF) of 
xt+1 given a set of observations dt+1; p(dt+1|xt+1) is the likelihood PDF 
that describes the deviation of model simulation results from observa-
tions; and p(xt+1) is the prior distribution of xt+1, and p(dt+1) is the PDF 
of field observations (also called the ‘evidence’ term). 

There are different ways in which DA problems can be formulated. 
For example, they can involve the estimation of states, estimation of 
parameters or joint estimation of states and parameters. Moreover, 
states can be estimated either at the end of a cycle (i.e., final states) or at 
the beginning of a cycle (i.e., initial states). While the approach of 
estimating final states is not constrained by the physics embedded in the 
model, it is nevertheless necessary when it is computationally infeasible 
to propagate the entire ensemble forward in time. It is therefore com-
mon in fields like numerical weather prediction (Navon, 2009). The 
latter approach of estimating initial states involves, at the completion of 
the analysis process, propagating the posterior ensemble of initial states 
(and perhaps static parameters) forward in time; the resulting simulated 
state ensemble is then used as the prior initial state estimates for the next 
DA cycle. In this way, the assimilation process maintains coherence with 
the model physics, yet at the computational expense of propagating the 
ensemble forward through the model. The additional computational 
expense of this approach is unlikely to serve as a limit when using crop 
models due to their run times. The reader is referred to Alzariee et al. 
(2021) for an overview of several popular cases in the context of envi-
ronmental modelling. 

Several algorithms enable the DA estimation problem to be solved 
using a Bayesian formulation. Popular examples include the Ensemble 
Kalman Filter (EnKF; Evensen, 1994; 2003), the Particle Filter (Gordon 
et al., 1993) and 4D-Var (Lorenc et al., 2000), all of which have shown 
promise in agriculture due to their ability to capture model non-linearity 
and relative computational efficiency (e.g., Pauwels et al., 2007; Xiao 
et al., 2009; Mansouri et al., 2014). 

DA can also be achieved in a ‘direct’ fashion. Direct DA involves 
replacing prior or ‘background’ realizations of model states or forcing 
variables (e.g., rainfall, irrigation rate) with observation data plus 
measurement error (Evensen, 2003). 

2.2. Challenges and opportunities 

As discussed in the Introduction, although the benefits of DA are 
well-known and the methods have been applied in a broad range of 

fields, several unique challenges face practitioners in applying crop 
model DA to support on-farm decisions. Below we discuss in detail three 
significant challenges, as well as opportunities that currently exist to 
overcome these challenges. 

2.2.1. Expression of decision-relevant quantities 
A prerequisite for model-based decision support in general terms is 

the expression of QoI that drive decision-making. Despite this, the 
expression of decision-relevant QoI in crop modelling studies, where QoI 
are often end-of-season outcomes such as yield, remains a challenge 
(Knowling et al., 2021). This is evidenced by many previous crop model 
DA studies forecast state variables only. For example, Linker and 
Ioslovich (2017) showed that assimilation of LAI data into AquaCrop 
(Steduto et al., 2009) using an extended Kalman filter (Brown and 
Hwang, 1997) led to a considerable improvement in predictive reli-
ability of LAI later in the season for potato in Denmark. 

Without expressing and forecasting QoI, the outcomes of DA are 
likely to be of limited value to decision makers (e.g., growers, advisors). 
For example, it is likely that growers or their advisors will be more 
interested in what improved LAI forecasts mean in terms of yield, har-
vest timing and/or various quality measures, rather than in terms of LAI 
itself. This reflects the limited transferability of insights gained through 
DA from observed state variables to unobserved variables including QoI. 
The fact that assimilation of observations of a particular state variable 
may not lead to improved forecasts of other variables has been 
acknowledged (e.g., Pauwels et al., 2007; Linker and Ioslovich, 2017). 
The extent to which insights gained from DA are transferable between 
observed and unobserved variables is a function of their similarity in 
terms of spatial scale, temporal characteristics, etc. 

The expression of decision-relevant QoI has remained a challenge 
due to the widespread adoption of crop models (or other process-based 
models that do not simulate physical processes across the soil-plant- 
atmosphere continuum) that are not capable of simulating end-of- 
season QoI. For example, only a subset of crop models are capable of 
simulating end-of-season QoI such as yield for perennial crops such as 
grapevine (Moriondo et al., 2015; Knowling et al., 2021). While several 
DA studies do in fact use crop models that can simulate end-of-season 
QoI, this capability is not always utilized (e.g., Linker and Ioslovich, 
2017; Lei et al., 2020), perhaps due to the unrealized potential of DA for 
decision support more generally. 

To overcome this challenge, a model that is capable of simulating 
end-of-season QoI must be adopted. The availability of many crop 
models that can simulate end-of-season QoI suggests that there exists a 
significant opportunity to address this challenge. This is notwith-
standing the adoption of such models by practitioners (e.g., advisors) 
has been limited due to practical factors such as usability and avail-
ability of supporting documentation (Rossi et al., 2014). While these 
factors do not serve as an immediate barrier to crop model DA, greater 
adoption of such models would benefit the uptake of crop model DA. 

2.2.2. Real-time mapping to decision-relevant quantities 
Building on the need to express decision-relevant QoI, effective 

model-based decision support also requires the mapping of insights 
gained through DA to QoI on a regular basis throughout the growing 
season. Such mapping facilitates enhanced situational awareness 
through continual evaluation of QoI throughout the season. Mapping of 
insights to QoI in such a way, however, represents a challenge. This is 
evidenced by the fact that, of the relatively few crop model DA studies 
that do forecast QoI, they map insights to QoI only via a single ‘after the 
fact’ snapshot (i.e., post-season, after assimilating all observations 
within the season). For example, Chen and Cournede (2014) showed 
that the variance of winter wheat yield was considerably reduced after 
assimilating leaf biomass estimates into STICS (Brisson et al., 2008) 
using a convolution particle filter (Kitagawa, 1996). 

Without continually mapping insights to QoI, the outcomes of DA are 
likely to be of limited value to decision makers. Frequent, decision- 
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relevant insights on the other hand, are expected to enhance situational 
awareness, which empowers growers and their advisors to make better 
decisions. In addition, mapping insights to QoI can provide a basis for 
comparing the informativeness of different observation data types, ob-
servations made at different times, etc. For example, the variance sur-
rounding decision-relevant QoI has been used widely as a metric for 
evaluating the ‘worth’ of observation data in areas such as hydrology (e. 
g., Dausman et al., 2009; Partington et al., 2020). Such analyses are 
expected to create value for a grower or advisor through guiding the 
design of data collection practices. 

Fig. 1 shows schematically how expressing decision-relevant QoI, 
and mapping insights gained through DA to these QoI, broadcasts across 
real and model time. How continual mapping of insights to QoI contrasts 
with a traditional DA approach is also shown in Fig. 1. 

Mapping insights to end-of-season QoI is particularly challenging 
due to the additional complexity required as part of the interface be-
tween a crop model and a DA algorithm (orange arrows; Fig. 1). This 
likely explains why previous studies that use models capable of 
expressing QoI do not map insights to QoI. Previous studies often ‘stat-
ically link’ DA algorithms within crop models, meaning that the DA 
algorithm is embedded within a model’s time-stepping routine (e.g., 
Ines et al., 2013; Zhuo et al., 2020). Such an approach precludes the 
flexibility necessary to map insights to end-of-season QoI throughout the 
season. 

It follows that this challenge can be addressed by adopting a non- 
intrusive (i.e., model-independent) DA algorithm. Non-intrusiveness in 
this context means that the algorithm can interface with a model of 
arbitrary complexity, and where model runs and pre- and post- 
processing are undertaken by the DA algorithm itself through configu-
ration files that communicate with model input and output files (Doh-
erty, 2015). Only recently has a non-intrusive tool for real-world-scale 
DA been developed (Alzraiee et al., 2021). This publicly available and 
open-source tool therefore provides a significant opportunity to address 

this challenge. 
Mapping insights to end-of-season QoI also requires that a model be 

run to the end-of-season, regardless of current stage in the growing 
season. This incurs a cost in terms of computational time. However, due 
to the short run times (in the order of 1 s) typically associated with crop 
models, this is not expected to represent a barrier to mapping insights to 
QoI. 

It is worth noting that the need to map insights to QoI is somewhat 
unique to crop model DA. This is because the QoI being forecast in this 
context are time-integrated variables, in contrast to state variables, 
which often represent QoI when predicting a dynamic system into the 
future. Crop model DA is therefore characteristically different to other 
typical DA application areas, where frequently collected observation 
data are similar in nature to QoI, such as the situation in numerical 
weather prediction (Navon, 2009). 

2.2.3. Enhancing reliability 
Model-based decision support is also underpinned by predictive 

reliability. Achieving and enhancing reliability, which involves reducing 
forecast bias and overconfidence (i.e., uncertainty underestimation) 
(Friedman, 1997; Knowling et al., 2019), still remains a challenge in 
many predictive modelling contexts including agriculture. This is evi-
denced by previous crop model DA studies that report forecast bias 
and/or overconfidence (e.g., Ines et al., 2013; Hu et al., 2017). 

To the extent that a grower’s or advisor’s decisions are informed by 
forecasts of QoI that lack reliability, such decisions are likely to be 
compromised, and therefore lead to undesirable outcomes. For example, 
a model may indicate that the probability of an undesirable crop yield is 
sufficiently low from a decision maker’s perspective. However, where 
yield forecasts are biased and/or overconfident, and where the ‘true’ 
probability of an undesirable crop yield is higher, then decisions 
informed by these forecasts are naïve to precisely the outcomes that the 
decision maker is trying to avoid. 

Fig. 1. Schematic representing how a standardapproach to DA differs from what is proposed for crop model DA to provide on-farm decision support. Purple arrows 
depict the expression of decision-relevant QoI (Section 2.2.1). Orange arrows (combined with purple arrows) depict real-time mapping to QoI throughout the season 
(top-to-bottom) (Section 2.2.2). The model superscripts (M0, M1, …) represent the sequential updating (in real time, t) of static model parameters. The dashed boxes 
show the progression of a model state variable h (in model time, t) for two real-time points within the season (ht and ht+n). 
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While enhancing reliability is challenging in general terms, several 
means to enhance reliability exist. A promising means to enhance reli-
ability is increased parameterization dimensionality (e.g., the number of 
model input variables that are used to express uncertainty). By using 
increased dimensionality, there exist more receptacles for the informa-
tion contained in observation data, therefore reducing the potential for 
states and parameters to take on compensatory roles as part of the 
inversion process, which can be a key driver of bias and overconfidence 
(Doherty and Christensen, 2011; Knowling et al., 2019). 

However, using increased dimensionality poses challenges due to the 
additional complexity and flexibility required as part of the DA algo-
rithm as well as the crop model-DA algorithm interface. This likely ex-
plains why the majority of crop model DA studies estimate only state 
variables (e.g., Nearing et al., 2012; Huang et al., 2019). These studies 
therefore ‘fix’ uncertain model parameters, sometimes at values ob-
tained from a separate model calibration exercise. Such an approach 
may result in inappropriate state/parameter compensation. The 
importance of estimating states and parameters simultaneously 
(referred to herein as ‘joint parameter-state estimation’) has been widely 
recognized (Clark and Vrugt, 2006; Zhang et al., 2017; Markovich et al., 
2022). Fig. 2 shows schematically the information flow within the DA 
process when performing joint parameter-state estimation as opposed to 
state-only estimation. Hu et al. (2017) showed the superior performance 
of joint parameter-state estimation compared to state-only estimation in 
the context of crop model DA. 

The need to perform joint parameter-state estimation and use 
increased parameterization more generally indicates the requirement 
for a DA software tool that can scale to high dimensions in parameter 
and state space. The recently developed open-source DA tool developed 
by Alzraiee et al. (2021) offers a unique opportunity to enable DA in 
high dimensions in a non-intrusive way. The demonstrated scalability of 
the tool is expected to be sufficient to facilitate crop model DA for 
on-farm decision support. 

2.3. Guiding principles 

The challenges and opportunities identified (corresponding to the 
three preceding sub-sections) can be used to establish guiding principles 
for achieving effective crop model DA for on-farm decision support. We 
consider three guiding principles, corresponding to Sections 2.2.1 to 
2.2.3, respectively, as follows (Fig. 3):  

1. Employ a model that can express QoI;  
2. Map insights from DA to QoI using a flexible and non-intrusive DA 

tool; and  
3. Perform joint estimation of model parameters and states in an 

attempt to enhance reliability. 

We follow these guiding principles in our case study (Section 3), 
serving to operationalize these principles. The guiding principles are 
intended to pave a way to address commonly encountered limitations at 
the intersection of crop modelling, DA and decision support. They are 
not intended to be exhaustive and deal with all facets of crop model DA. 
We refer readers to Jin et al. (2018) and Huang et al. (2019) for detailed 
reviews of crop model DA. 

3. Case study application 

Here we present a case study application of crop model DA that 
follows the guiding principles arrived at in Section 2. Our case study 
concerns a real-world vineyard in South Australia. The following sub-
sections describe the key elements of the case study; namely the vine-
yard study site, the process-based model representing the study site, the 
observation data available for assimilation, and the DA procedure 
adopted. 

3.1. Study site 

The study site considered is a single 0.64-hectare vineyard block, 
part of a vineyard located in Loxton (Riverland region, South Australia). 
The Riverland region experiences a Mediterranean climate. The 
2020–2021 growing season is considered herein. Table 1 summarizes 
key vineyard attributes. 

3.2. Process-based model 

We adopt VineLOGIC (Walker et al., 2005, 2020a, b, c), a crop model 
designed specifically to simulate grapevine growth and development. 
VineLOGIC was selected for its relatively advanced representation of 
biophysical processes and relationships across the soil-plant-atmosphere 
continuum, especially those associated with berry development, as well 
as its ability to simulate the impact of decision levers related to water 
and canopy management (Knowling et al., 2021). VineLOGIC simulates, 

Fig. 2. Schematic representation of the DA process, including the forecast and analysis steps. “M” refers to the forward model and “BU” refers to the Bayesian 
updating procedure. The flow of information within the crop model DA process is depicted (arrows). The contrast between the typical approach (state-only esti-
mation) and the proposed approach (joint parameter-state estimation) is shown via dashed arrows. Note we add superscript indices for clarity where appropriate. For 
example, “ht

t+1” represents the prior estimate of the state variable h at time t + 1 given forcing data up to time t (i.e., forecast without any conditioning), whereas 
“ht+1” means the best estimate of the state variable h at time t + 1 (i.e., which will arise from all information available up to time t + 1). 
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at a point scale and on a daily basis, the main biophysical processes and 
relationships governing soil water balance, phenological transition 
controls, light interception, biomass accumulation (carbon assimila-
tion), and biomass partitioning between different organs (leaf, shoot, 
fruit and root) as a function of phenological stage. The reader is referred 
to Walker et al. (2005, 2020a, b, c) for a detailed description of Vine-
LOGIC and its supporting datasets. 

3.2.1. Forcing variables 
Forcing variables (q in Eq. [1]) requiring specification in VineLOGIC 

include exogenous climate/weather variables as well as management 
decision levers. Climate/weather variables are specified on a daily basis, 
including minimum and maximum temperature, solar radiation and 
rainfall. VineLOGIC requires climate/weather data not only for the 
growing season period (2020–2021), but also the preceding growing 

season to simulate factors affecting fruitfulness that are determined at 
early stages of the preceding season (Guilpart et al., 2014). Data used to 
populate climate/weather time series are described in Section 3.3.1. 

Management practices represented in VineLOGIC for which forcing 
variables require specification, include irrigation application and can-
opy intervention. Given that irrigation data are not available over the 
period of investigation (Section 3.3.2), we simulate daily irrigation rates 
as a function of simulated soil moisture deficit and decision levers 
including percentage of extractable soil water used to initiate irrigation, 
percentage of soil water deficit to refill, minimum number of days be-
tween applications and maximum daily irrigation rate (Edraki et al., 
2003), some of which are treated as uncertain (Table 2). Canopy man-
agement (e.g., trimming, tipping) is simulated through direct alteration 
of canopy size via the LAI state variable. Given that the severity of 
canopy reduction per intervention is unknown (Section 3.3.2), the 
amount by which LAI is reduced is also treated as an uncertain decision 
variable (Table 2). 

3.2.2. Static parameters 
Static parameters (p in Eq. [1]) requiring specification in VineLOGIC 

include:  

• cultivar variables such as thermal time thresholds, potential fertility 
and genetic coefficients, and for grafted plants, rootstock indices, e. 
g., vigour index that influences biomass production and sensitivity to 
stress factors;  

• soil hydrology variables such as moisture content at the start of the 
season, vertical saturated hydraulic conductivity, depth to water 
table; and 

Fig. 3. Schematic representation of how the three guiding principles combine to enable effective crop model DA for improved on-farm decision making.  

Table 1 
Key attributes of the case study vineyard in the Riverland region (South 
Australia).  

Vineyard attribute  

Wine grape variety Chardonnay 
Rootstock Ramsey 
Trellis system Vertically separated double cordon permanent arm 
Trellis dimensions (height) Cordon 1: 1230 mm; Cordon 2: 1700 mm 
Pruning method Mechanical, followed by spur pruning 
Retained buds per vine 230 
Soil type Sandy loam 
Row and vine spacing 3 m (row); 2.4 m (vines) 
Irrigation method Drippers  
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• vineyard attributes such as row and inter-vine spacing, trellis ge-
ometry, post-winter pruning bud number. 

Table 2 lists the key inputs—both static parameters and forcing 
variables—as well as their values and ranges assumed for the case study. 
Values and bounds were specified in accordance with site specific in-
formation and viticultural expert knowledge. 

3.2.3. Simulated outputs 
Although VineLOGIC simulates many state and flux variables (h in 

Eq. [1]) associated with energy, water and carbon balances, here we 
focus specifically on the LAI state variable. 

LAI is represented in VineLOGIC as the total leaf area per vine (m2) 
divided by the total ground area per vine (in this case, 7.32 m2). In the 
model, the daily increment in leaf area at the vine level is determined 
from primary and secondary leaf growth considering the phyllochron of 
the main stem, the number of developing laterals and the leaf area 

expansion, which is assumed to be similar for the two types of axes 
(mains and laterals) (Godwin et al., 2002; Poni and Giachino, 2000). The 
individual leaf area growth rate and the number of laterals are nega-
tively impacted by abiotic stresses such as water deficit (e.g., Lebon 
et al., 2004; 2006; Edwards and Clingeleffer, 2013), temperature and 
salinity (e.g., Dunlevy et al., 2022). The number of laterals is also 
regulated by shoot density (Reynolds et al., 1994; Sommer and Good-
win, 2000). The overall vine leaf area increment is also regulated when 
there is an insufficient pool of carbon at the plant level to meet growth 
demand (Williams and Matthews, 1990; Pallas et al., 2008). 

Mathematically, LAI is given by: 

LAIt+1 = LAIt + ΔLAIt+1 (3)  

where ΔLAIt+1 is the change in LAI from time t to t + 1, as given by: 

ΔLAIt+1 = (ΔLAS ×NS +(ΔLAS ×(NL − 1)×NS)) × S × A (4) 

Table 2 
Static parameters and forcing variables that are treated as uncertain. Uncertainty associated with climate/weather forcing variables are expressed using scenarios 
(Section 3.4.1). Parameters and forcing variables not treated as uncertain include those that are directly observable such as trellis dimensions, row and inter-vine 
spacing, etc. (Table 1).  

Parameter Description (units) Prior mean 
value 

Range Supporting reference 

Cultivar     
GCoefBerryDW1 Fruit demand coefficient pre-sugar loading period 1.75 × 10− 4 1.4 × 10− 4—2.1 ×

10− 4 
Walker et al. (2020b) 

GcoefBerryDW2 Fruit demand coefficient post-sugar loading period 1.2 × 10− 3 8.0 × 10− 4—1.6 ×
10− 3 

Walker et al. (2020b) 

GcoefCritBrix Brix to trigger stage 4 of berry development (◦Brix) 20.5 17.5—23 Pellegrino et al. (2008); Rogiers et al. 
(2017) 

GcoefSugarDw Fruit demand coefficient post-sugar loading of berry development 0.7 0.6—0.8 Pellegrino et al. (2008); Rogiers et al. 
(2017) 

P1VV Thermal time to end vernalization (dormancy) (◦C days) 5 4—6 Walker et al. (2020b) 
P2BB Thermal time from vernalization (dormancy) to bud burst (◦C days) 265 258—273 Walker et al. (2020b) 
P3FF Thermal time from bud burst to flowering (◦C days) 170 163—178 Walker et al. (2020b) 
P4HH Thermal time from fruit set to harvest (◦C days) 1500 1490—1510 Walker et al. (2020b) 
P5LF Thermal time from harvest to leaf fall (◦C days) 800 793—808 Walker et al. (2020b) 
G1BN Genetic coefficient used to determine number of shoots 1.0 0.9—1.1 Walker et al. (2020b) 
PHINT Used to determine thermal time fraction for leaf growth (◦C days) 50 42—58 Pallas et al. (2008); Walker et al. (2020b) 
Rootstock     
RstockVigIndex Rootstock vigour scale factor 9.0 7.8—10.1 Walker et al. (2020b) 
RstockAernSens Rootstock aeration sensitivity 9.0 7.8—10.1 Walker et al. (2020b) 
Soil and hydrology  
Ksmx Surface saturated hydraulic conductivity (cm/s) 1.0 0.5—5.0 Edraki et al. (2003) 
Salb Albedo of bare soil (-) 0.13 0.10—0.15 Van Wijk and Scholte Ubing (1963) 
SLLL Soil water lower limit (cm3/cm3) 0.14* 0.13—0.16* Hubble and Crocker (1941); Maschmedt 

et al. (2002) 
SDUL Soil water drained upper limit (cm3/cm3) 0.33* 0.29—0.36* Hubble and Crocker (1941); Maschmedt 

et al. (2002) 
SSAT Soil water saturation (cm3/cm3) 0.37* 0.33—0.41* Hubble and Crocker (1941); Maschmedt 

et al. (2002) 
SRGF Soil hospitality factor (i.e., factor representing suitability for root 

growth and development) (-) 
0.41* 0.37—0.45* Skene (1951); Maschmedt et al. (2002) 

SSKS Macroscopic hydraulic conductivity (cm/s) 5.37* 4.84—5.91* Edraki et al. (2003) 
SBDM Soil bulk density (g/cm3) 1.51* 1.36—1.67* Skene (1951); Maschmedt et al. (2002) 
InitialSoilWater Initial soil water condition (cm3/cm3) 0.2* 0.18—0.22* Field estimate 
TruDepWt Depth to water table (m) 2.0 1.8—2.2 Field estimate 
Vineyard     
BerryBunch Berry count per bunch 67 61—74 Walker et al. (2020b) 
BudNoVine Bud count per vine post-winter pruning 230 170—290 Field estimate 
BunchNoVine Bunch count per vine 210 165—265 Field estimate 
TrunkCHO Trunk carbohydrate mass per dry matter (g/kg) 90 79—101 Clingeleffer and Pellegrino (2006) 
TrunkDW Trunk dry mass (kg) 9.0 7.9—10.1 Clingeleffer and Pellegrino (2006) 
ParFrac Potential dry matter production scale factor 0.5 0.47—0.53 Smith and Silva (1969) 
PropAccessResv Proportion of carbohydrate reserves available per day 0.1 0.075—0.125 Godwin et al. (2002) 
FruitSinkCoeff Scale factor for berry development cost (e.g., respiration) 1.25 1.19—1.31 Vivin et al. (2003) 
Decision levers  
IrrDayStageCap Maximum daily irrigation application rate (mm) 6.0 5.0—7.0  
TrimRedLAI The amount by which to reduce LAI per canopy intervention 1.0 0.75—1.25  
TrimTrigLAI Threshold LAI to trigger trimming 3.0 2.75—3.25  

* Represents soil profile depth-averaged values. 
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where ΔLAS is the leaf area increment per main shoot (cm2/shoot), Ns 
and NL are the numbers of main shoots per vine and laterals per main 
shoot, respectively, S is a carbon limiting scale factor, and A is an area 
conversion factor (cm2/vine to m2/m2). The leaf area increment per 
shoot (ΔLAS) is determined from (i) the number of main leaves, which is 
calculated as a function of the phyllochron and the cumulated thermal 
time post-bud burst, and (ii) the individual leaf area, which relies on a 
potential leaf area and leaf expansion reducing factors including tem-
perature, water deficit and salinity. The number of shoots (NS) is a 
function of the number of buds per vine and the percentage of budburst. 
The number of laterals per shoot (NL) is a function (i) of the phyllochron 
of the main stem (lateral production after a specific main stem devel-
opment rate), (ii) of the density of shoots (progressive reduction of 
lateral production as the density of shoot number increases), and (iii) of 
abiotic regulating factors including water deficit and salinity. The car-
bon limiting scale factor (S) is equal to 1.0 if the available carbohydrate 
pool (CA) exceeds total demand of vegetative sinks (DV), and otherwise 
equal to CA/DV . The reader is referred to Ritchie and Godwin (2000) for 
more details. 

We also evaluate the end-of-season yield Y, which is given by: 

Y =

∫H

FS

Pi DWi Fdt (5)  

where DWi is the change in total crop dry mass (including fruit, shoot 
[leaf plus stem] and root) for day i, Pi is the proportion of dry mass 
partitioned to fruit for day i, F is a dry-to-fresh mass conversion factor (=
4; Garcia de Cortazar-Atauri et al., 2009), FS is the day index at which 
fruit set is initiated, and H is the day index at which harvest is initiated. 

3.3. Observation data 

The case study involves a typical observation data stream (LAI) and a 
typical QoI (yield). We focus on canopy data because these have been 
effective in informing vineyard evolution and stress conditions, due to 
its role in determining water relations and gas exchange, and its influ-
ence on photosynthetic primary production (Williams and Ayars, 2005; 
Hall et al., 2011; Bellvert et al., 2014). For these reasons, it is expected 
that case study findings will be of relevance to the agriculture 
community. 

3.3.1. Climate/weather data 
Daily weather data are obtained from a nearby weather station 

(located approximately 100 m from the vineyard) (Loxton Research 
Centre Station 024,024; Bureau of Meteorology). Data spanning the 
current (2020–2021) and preceding growing season (2019–2020) are 
used for direct assimilation (Section 3.4.1). Data spanning the preceding 
10-year period (2009–2018) are also used for the purposes of charac-
terizing plausible future climate/weather conditions (Section 3.4.1). 

3.3.2. Management practices 
Available data pertaining to vineyard management practices include 

only the approximate date of canopy intervention. Canopy trimming 
was carried out on December 2, 2020. The extent of canopy trimming 
per intervention is somewhat uncertain since canopy data collection was 
not undertaken before and after these interventions, and as such, we 
treat the canopy reduction as uncertain (Section 3.2.1). 

3.3.3. LAI data 
LAI data were obtained at between weekly and fortnightly time in-

tervals (giving rise to a total of 33 observation times) using the non- 
destructive VitiCanopy system (De Bei et al., 2016). This involved 
photographing one section of canopy per panel or approximately every 
6 m (each image represents up to 1.81 m of linear cordon), with images 
then being processed through the VitiCanopy system to determine a 

plant area index (PAI) value for each image, which was then averaged to 
represent the vineyard scale. Photographs were taken along vine rows 
between stems (trunks) to avoid interference, using a smartphone 
camera tilted at 30◦ to capture the whole canopy with the sky as back-
ground rather than the row behind it (Fig. 4). Processed images reflect 
PAI as the entire plant area is captured including the cordon or per-
manent wood, which becomes occluded by leaves, at which time the 
value represents LAI. For example, early PAI measures include the per-
manent wood, which for this site has a mean PAI of 0.3. This value is 
therefore subtracted from PAI values prior to permanent wood 
becoming occluded by leaves to give values indicative of LAI. 
Ground-based image canopy data have been shown to be particularly 
effective for mapping grapevine canopies across a vineyard (Arno et al., 
2013; De Bei et al., 2019; Ouyang et al., 2020). 

3.3.4. Field estimate of yield 
While the harvest yield for the vineyard patch under investigation 

was not directly measured, an estimate of final yield per vine is made via 
destructive sampling of fruit from 10 test grapevine panels, accounting 
for approximately 18 m of linear cordon in total. Fruit sampling was 
undertaken on February 20, 2021, immediately prior to the commercial 
harvest date. As per standard industry practice, this is multiplied by the 
number of linear metres of cordon per ha and expressed as tonnes per ha. 

An average yield estimate of 36 tonnes/ha was obtained from the test 
panels, with a range of 18 to 41 tonnes/ha amongst individual panels. To 
express the variance in average yield estimate, the sample standard 
deviation was calculated to be 2.2 tonnes/ha (standard deviation of 
population [= 7.0 tonnes/ha] divided by the square root of the number 
of samples [= 3.2]). 

3.4. Data assimilation 

We adopt PESTPP-DA (Alzariee et al., 2021). PESTPP-DA enables 
iterative sequential DA in a non-intrusive (i.e., model-independent) and 
scalable-to-high-dimensions fashion. PESTPP-DA is flexible in its ability 
to enable both sequential and batch DA, as well as arbitrary combina-
tions thereof by mixing the EnKF, the Ensemble Kalman Smoother 
(EnKS) and the Ensemble Smoother (ES). 

We use the EnKF (Evensen, 1994; 2003). The EnKF is an ensemble 
Monte Carlo variant of the Kalman filter. The motivation for ensemble 
formulations is to tolerate to some extent departure from key assump-
tions made in the standard Kalman filter—a linear forward model and 
multi-variate Gaussian distributions. Ensemble formulations also alle-
viate the prohibitive computational expense that would otherwise be 
encountered in high dimensional problems. Previous studies have suc-
cessfully applied the EnKF for crop model DA (e.g., de Wit et al., 2007; 
Zhao et al., 2013; Zhuo et al., 2019). 

Here we use the Multiple Data Assimilation (MDA) solution scheme 
of Emerick and Reynolds (2012). An ensemble comprising 20 members 
is used. This is a conservatively large ensemble size given the dimen-
sionality of the solution space (Moore and Doherty, 2005; Knowling 
et al., 2019) is expected to be low (Section 3.4). 

The ‘hotstart’ functionality in PESTPP-DA (White et al., 2020) is 
adopted. This enables DA in an operational manner, whereby assimila-
tion cycles are initiated as new observation data become available. 

3.4.1. Direct updating of climate/weather data 
Daily weather data corresponding to the 2019–2020 and 2020–2021 

growing seasons are directly updated in the model (Section 3.2.1). This 
involves, for each day, replacing the ‘background’ climate/weather 
data, representing prior climate/weather uncertainty, with observed 
data from Loxton Research Centre weather station. We assume zero 
variance about these climate/weather observations. Climate/weather 
data used as ‘background’ conditions represent samples of historical 
records collected at the same weather station spanning the period 
2009–2019. 
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3.4.2. Assimilation of LAI data through Bayesian updating 
We jointly estimate initial states and static parameters (third guiding 

principle) by sequentially assimilating observed LAI data (Section 3.2) 
through Bayesian updating. The standard deviation of uncertainty sur-
rounding each LAI observation used for DA is assumed to be 0.1 m2/m2 

to account for the effects of factors such as wind. 
The DA problem is formulated in such a way that initial states for 

each assimilation cycle are estimated. That is, we do not estimate final 
states for each assimilation cycle to be used as starting conditions for the 
subsequent cycle; instead, following estimation of initial states and pa-
rameters for each cycle, the final states are obtained through forward 
model simulation, helping to maintain physical and conservation re-
lations in the process model. The low computational expense of Vine-
LOGIC that makes possible efficient sequential estimation of initial 
states for a large number of cycles, while maintaining coherence with 
the physics embedded in the model (Section 3.2), also allows the op-
portunity for the entire simulation period to be undertaken for each 
cycle. This enables quantification of the change in forecasts of end-of- 
season QoI (first guiding principle) as a function of time as new obser-
vations become available (second guiding principle). 

All static parameters except those pertaining to directly observable 
vineyard attributes (e.g., row and vine spacing, trellising) are subject to 
estimation (Table 2). The initial parameter value is assumed to represent 
the mean of the prior parameter probability distribution. The upper and 
lower parameter value limits are assumed to represent 95% confidence 
limits. 

4. Results 

4.1. DA outcomes in terms of LAI 

The outcome of DA is first evaluated in terms of the observed state 
variable LAI. We specifically evaluate how the LAI forecasts are condi-
tioned as the season progresses. 

The ensemble LAI trajectory displays substantial conditioning as 
more observation data are assimilated (Fig. 5). First consider the situ-
ation before the occurrence of bud burst in real time (Figure 5; top 
panel). Forecasted LAI trajectories display a familiar temporal pattern, 
with distinct periods of canopy growth, stabilization and senescence, 
despite considerable uncertainty that surrounds LAI trajectories prior to 
conditioning on observations. Uncertainty in LAI trajectories during 
canopy growth appears largely due to that surrounding simulated 
phenology (e.g., bud burst uncertainty spans 6 weeks). However, LAI 
uncertainty is dampened to some extent by the effect of canopy inter-
vention (simulated in the model when LAI reaches a threshold; Section 

3.2.1), which can be seen in terms of instantaneous reductions in LAI. 
Through assimilation of an increasing number of canopy observa-

tions (Fig. 5; top to bottom), as well as weather and canopy management 
data, the variance in LAI forecasts is substantially reduced. The reduc-
tion is apparent not only in the short-term, but also throughout the 
remainder of the growing season. Importantly, the reduction in variance 
occurs while maintaining familiar canopy growth characteristics. 
Despite the ensemble LAI trajectories encompassing most LAI observa-
tions, due in large part to the flexibility offered by parameter-state 
estimation (Section 4.3), the model was unable to reproduce some of 
the ‘surprising’ LAI observations—those that display a stark change in 
LAI that perhaps reflect unknown changes to forcing variables such as 
irrigation rates, which are not captured in the model. 

4.2. DA outcomes in terms of yield 

While assimilation of LAI observations generally led to substantially 
improved LAI forecasts as expected (Section 4.1), the question remains: 
“how are forecasts of other unobserved variables, particularly decision- 
relevant quantities, impacted by DA?” Here we evaluate the forecast of 
end-of-season yield and how it evolves throughout the growing season 
as an increasing amount of data are assimilated. This subsection illus-
trates the first and second guiding principles—expression of and map-
ping to decision-relevant QoI (Section 2.3). 

The yield ensemble displays considerable variability throughout the 
season (Fig. 6). As expected, the variance of the yield forecast shows a 
decreasing trend with time as more observations are assimilated, with 
the ensemble standard deviation reducing from approximately 8 tonnes/ 
ha shortly after bud burst to 2 tonnes/ha during January, approximately 
two months before harvest. The yield forecast ensemble converges 
within the range of destructive sampling field estimates of yield. The 
yield forecast ensemble range is largely consistent with the field esti-
mate not only at the time of harvest but also throughout most of the 
season. However, the variance in yield late in the season still may be 
considered conservative, which could be addressed through refinement 
of prior uncertainty specifications (noting in particular that this study is 
the first operational decision support application of VineLOGIC), or 
imposing penalties on yield in accordance with expert and/or grower 
knowledge into the assimilation procedure. 

4.3. Joint state-parameter estimation 

This subsection illustrates the third guiding principle (Section 2.3). 
Here we show the outcomes of DA when undertaking state-only esti-
mation in terms of both LAI and end-of-season yield forecasts, drawing 

Fig. 4. Sample of images taken by VitiCanopy during growth stage (Coombe, 1995) E-L 4 (bud burst), E-L 26 (flowering complete) and E-L 37 (pre-harvest), and the 
PAI values interpreted on their bases. 
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comparisons to the use of joint state-parameter estimation. 
Estimation of only state variables is shown to produce significantly 

smaller variances in LAI (Fig. 7) and in particular end-of-season yield 
(Fig. 8) compared to the estimation of states and parameters simulta-
neously (Figs. 5 and 6). The smaller variance associated with LAI tra-
jectories hampers the ability of the forecast ensemble to capture 
observed LAI behaviour, especially at later stages in the season. For 
example, there appears to be tension between the ability of the model to 
fit LAI observations while also respecting that only one trimming event 
occurred. Forecasts of end-of-season yield exhibit overconfidence, 
limiting the extent to which yield forecasts can be conditioned as ob-
servations become available. The reduced variance in LAI and yield via 
state-only estimation is attributable to neglecting the uncertainty asso-
ciated with static parameters that would otherwise be conditioned 
through the growing season, and may be compounded by relatively low 
state dimensionality leading to corruption of the DA analysis. 

5. Discussion 

5.1. Demonstrated benefits of guiding principles 

5.1.1. Expression of decision-relevant quantities 
The expression of end-of-season QoI is shown to facilitate the 

communication of DA outcomes in terms that are relevant to a grower or 
advisor and their decision-making process. For example, in our case 
study, the assimilation of LAI data as well as climate/weather and 
canopy intervention data led to a considerable conditioning of the yield 

forecast made at the beginning of veraison or berry ripening (mid- 
January) (Fig. 6), representing a particularly important point in time 
regarding on-farm irrigation decision making (Clingeleffer, 2001, 2010; 
Pagay and Collins, 2017). 

Insights gained from DA are expected to be of greater value to 
growers or advisors when expressed in terms of forecasts of end-of- 
season QoI compared to forecasts of observable state variables such as 
LAI and soil moisture. While improved forecasts of state variables 
(Fig. 5) may be of interest in that they are familiar and tangible (e.g., 
canopy size and density can be ‘seen’ in the field), a grower or advisor 
still faces the challenge to understand what these insights mean in terms 
of farm outcomes. For example, for a grower to be informed of the status 
of their crop and its likely yield on the basis of LAI forecasts only, a 
sound understanding of the complex relationship between LAI and yield 
is required (Ballesteros et al., 2015). Notably, despite the greater ex-
pected ‘value’ of forecasts of QoI, these forecasts may be less condi-
tioned through DA (Section 5.2.1). 

The need to adopt crop models that can simulate end-of-season 
quantities such as yield and their sensitivity to stress factors is not ex-
pected to represent a significant barrier to effective crop model DA for 
decision support. This opportunity reflects that currently available crop 
models can simulate various end-of-season quantities and their sensi-
tivities (Palosuoa et al., 2011; Knowling et al., 2021). However, crop 
model adoption in the future is likely to be limited by long-standing and 
complex socio-technical factors rather than model capability per se 
(McCown, 2002). It is therefore suggested that particular attention 
should be focused on better supporting real-world implementation of 

Fig. 5. Ensemble LAI time series at different stages throughout the growing season (depicted by red line). Observed LAI values are depicted by black circles. Canopy 
intervention events (i.e., trimming) are labelled. 
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crop models for decision support through, for example, the development 
of software packages that facilitate the interfacing of crop models and 
non-intrusive DA algorithms. 

5.1.2. Real-time mapping to decision-relevant quantities 
Mapping DA outcomes to end-of-season QoI is shown to enable 

continuously up-to-date insights, building upon what has been learned 
from previous observations, that are relevant to a grower’s decision- 
making process. For example, in our study, the sequential assimilation 
of LAI data as well as weather and canopy management data as the 
season progresses led to gradual conditioning of the yield forecasts, both 
in terms of the ensemble mean and the ensemble variance (Fig. 6). 

The mapping of insights gained through DA to QoI is expected to 
enhance situational awareness, ultimately empowering growers or their 
advisors to make better-informed decisions. Enhanced situational 
awareness may arise from insights regarding how their crop is currently 
tracking in terms of its likely yield compared to the same time in pre-
vious years, for example. Evans et al. (2017) explored how situational 
awareness translates to informed decision making (Section 5.2.3). For 
example, in the context of viticulture, enhanced situational awareness 
may allow for on-farm decisions regarding irrigation strategies to be 
improved, especially at times such as the beginning of veraison, when 
berry growth is particularly sensitive to water stress (e.g., Petrie et al., 
2004; Greven et al., 2009; Intrigliolo et al., 2016). 

Continuous evaluation of DA outcomes in terms of QoI also provides 
an opportunity to quantitatively compare the effectiveness of different 
observation data for particular decision contexts in real time, repre-
senting a decision-relevant measure of the value of data. Insights from 
such analyses can be used to guide future data acquisition campaigns. 
The reader is referred to Section 5.2.2 for more details. 

The need for a DA software tool that is non-intrusive (i.e., can 
interface flexibly with any model, without the need for ‘statically link-
ing’) to continuously map insights to end-of-season QoI is not expected 
to serve as a significant barrier to effective crop model DA. This reflects 
the availability of the recently developed software tool PESTPP-DA 
(Alzariee et al., 2021). PESTPP-DA—and indeed all the software tools 
within the PEST++ suite (White et al., 2020)—has potential to facilitate 
model-based agricultural decision support beyond that demonstrated 
herein, particularly given its non-intrusiveness, public availability and 
open-source development environment. It is therefore anticipated that 
PEST++ can play an important role in accelerating adoption of 
model-based decision support analyses in agriculture, especially given 
recent and ongoing software developments to lower the barrier to entry 
(e.g., White et al., 2021). 

5.1.3. Enhancing reliability 
Joint parameter-state estimation is shown to provide a means to 

enhance reliability. For example, the forecast of end-of-season yield is 

Fig. 6. End-of-season yield ensemble (purple) and mean (blue) and standard deviation (orange) as a function of time. The range of field estimates of yield via 
destructive sampling is depicted by the red box. 
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more robust when jointly estimating states and parameters as opposed to 
state-only estimation (Figs. 6 versus 8). 

We note that the more ‘subtle’ conditioning of forecasts of decision- 
relevant QoI afforded by joint parameter-state estimation, due to the 
more diffuse flow of information from observations to model states and 
parameters, may initially be interpreted as counter-productive from a 
decision-making perspective. However, increased variance may be 
required to avoid overconfidence, especially in the presence of bias 
(Cooley and Christensen, 2006; Knowling et al., 2019), and may serve to 
reduce the likelihood of an undesirable outcome (e.g., low yield) in 
response to a particular course of management action that was informed 
by forecasts of QoI. 

The higher level of flexibility (or ‘degrees of freedom’) afforded by 
joint parameter-state estimation can also serve to accommodate model- 
data conflict to some extent (Evans and Moshonov, 2006). For example, 
significant adjustments in LAI states were necessary in addition to 
sequential parameter estimation to capture factors that are not repre-
sented in the model (e.g., unknown changes in irrigation practice). Such 
an ability to accommodate model structural errors is reduced when 
estimating states or parameters only (Fig. 7), or when undertaking DA in 
a batch sense (e.g., via the ensemble smoother; Chen and Oliver, 2013). 
The ability to accommodate model error in the context of batch and 
sequential DA is currently under investigation (Markovich et al., 2022). 

The need for a DA software tool that can scale to high (parameter and 
state) dimensions to support joint parameter-state estimation, is not 
expected to represent a significant barrier to effective crop model DA. 
This is due to the recent development of PESTPP-DA (Alzraiee et al., 
2021). PESTPP-DA has been demonstrated to enable flexibility in DA 

problem formulation (e.g., batch and sequential, state and/or parameter 
estimation, different update algorithms) as well as scaling to high di-
mensions. It is anticipated that PESTPP-DA can support the range of 
requirements that are likely to be encountered in crop model DA. 

5.2. Recommendations for future work 

5.2.1. Observation data and QoI specificity 
The extent to which DA enables improved forecasts is problem- 

specific, depending on factors related to the observation data (e.g., 
number and diversity of observations, data quality), the QoI, and the 
degree of ‘alignment’ between them (Moore and Doherty, 2005; 
Knowling et al., 2020). Such alignment occurs where QoI forecasts and 
state variables corresponding to observations exhibit similar sensitivity 
signals with respect to model inputs. For example, in our study, forecasts 
of yield appear to experience less conditioning compared to LAI fore-
casts (Figs. 5 and 6). This reflects that the information encapsulated 
within the LAI observations is, unsurprisingly, more aligned to forecasts 
of LAI compared to those of yield, and that yield forecasts are sensitive to 
factors that are not informed by LAI observations. While it is well-known 
that assimilating observations pertaining to a particular state variable is 
expected to condition forecasts of that state variable into the future, the 
extent to which this is true for forecasts of other state variables and QoI 
is a more interesting and important question to pose (e.g., Linker and 
Ioslovich, 2017). 

Despite that our case study focuses on the assimilation of canopy data 
from ground-based images (De Bei et al., 2016)—which are particularly 
effective in mapping grapevine canopies across vineyards (Arno et al., 

Fig. 7. Ensemble LAI time series when using state-only estimation at different stages throughout the growing season (depicted by red line). Observed LAI values are 
depicted by black circles. Canopy intervention events (i.e., trimming) are labelled. 
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2013; De Bei et al., 2019; Ouyang et al., 2020)—the process of DA as 
well as the guiding principles introduced herein, lend themselves to be 
extended to assimilate different observation data streams and support 
different QoI. It is suggested that future studies leverage the generaliz-
ability of both DA and the guiding principles to support different agri-
cultural decision-making contexts. Application of crop model DA in 
different settings will also help elucidate generalizable patterns 
regarding which observation data are most informative for different QoI 
(Section 5.2.2). 

5.2.2. Data acquisition guidance 
The guiding principles introduced provide an opportunity to eval-

uate the ‘value’ of different observation data in a way that is relevant to 
a decision maker. Quantifying the value of observation data in terms of 
their ability to condition forecasts of QoI is gaining popularity in disci-
plines such as hydrology (e.g., Dausman et al., 2009; Partington et al., 
2020). While the value of a particular data stream will be 
problem-specific (Section 5.2.1), case studies that empirically evaluate 
the generalizability of a data stream’s value amongst different decision 
contexts may be particularly useful. Moreover, future studies could 
compare the relative value of different observation ‘types’ including less 
traditional data streams such as sap flow rates (e.g., Sus et al., 2014) and 
phenological observations (e.g., Viskari et al., 2015). Future studies 
could also evaluate the value of observation timing (e.g., during which 
growth stage) as well as frequency (e.g., daily, fortnightly). Insights 

from such analyses could offer guidance regarding “which data to 
collect?” and “when to collect them?” in a way that considers both the 
uniqueness and decision-relevance of the information contained within 
observations. 

5.2.3. Enhanced situational awareness and decision support 
This study serves as a step towards bridging the gap between data 

and decisions in agriculture. This gap is currently growing due to the 
greater focus on observation data acquisition compared to translating 
observation data into information to support decisions, through data 
processing, modelling etc. (Leonard et al., 2017). The real-time fusion of 
observation data and prior knowledge embedded in models by practi-
tioners (e.g., advisors) allows for enhanced on-farm situational aware-
ness via a unified, up-to-date depiction of crop status and development. 
Situational awareness has been achieved through formal DA across a 
wide range of fields from epidemiology (Li et al., 2020) to space weather 
(Mehta and Linares, 2018). 

Despite enhanced situational awareness, how this creates value for 
growers and their advisors is complex (Evans et al., 2017) and will vary 
significantly from individual to individual (Rossi et al., 2014). It is ex-
pected that combining situational awareness afforded by DA with a 
sound understanding of the impact of operational farm decisions such as 
irrigation amount and timing, will enable improved on-farm decisions. A 
promising opportunity to further extend the decision support capacity of 
crop model DA is to leverage the ‘cause-and-effect’ relationships that are 

Fig. 8. End-of-season yield ensemble (purple) and mean (blue) and standard deviation (orange) when using state-only estimation as a function of time. The range of 
field estimates of yield via destructive sampling is depicted by the red box. 
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embedded within crop models (Knowling et al., 2023) by simulating 
different management scenarios within the DA workflow. These re-
lationships may benefit through derivation from participatory model-
ling approaches (Naulleau et al., 2022). 

6. Conclusions 

This paper introduces three guiding principles aimed at operation-
alizing crop model DA for robust on-farm decision support. By applying 
these principles to a viticulture case study, the potential for crop model 
data assimilation (DA) to enhance forecasts of decision-relevant quan-
tities is demonstrated. Assimilation of leaf-area index (LAI) data as well 
as climate/weather and canopy intervention data led to a significant 
improvement in yield forecasts, with the mean and variance of the 
forecast ensemble converging towards independent field-based esti-
mates approximately two months before harvest. By mapping DA out-
comes to end-of-season quantities in real-time, insights could be gained 
about when various observations are most informative in terms that are 
relevant to a decision maker. The case study also highlights the potential 
of joint parameter-state estimation as a means to avoid forecast 
overconfidence. 

This study serves as an important step towards bridging the gap 
between data and decisions in agriculture. It demonstrates a vital 
capability to integrate, in real-time, diverse observation data and pre-
dictive models, enabling situational awareness, i.e., a unified depiction 
of what is happening and what is likely to happen on the farm. This is a 
prerequisite for digital agriculture to succeed in supporting decisions 
towards improved farm outcomes. 
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