Methionine oxidation of Carbohydrate-Active enZymes during white-rot wood

decay

Lise Molinelli^{1,2}, Elodie Drula^{1,3}, Jean-Charles Gaillard⁴, David Navarro¹, Jean Armengaud⁴, Jean-Guy

Berrin¹, Thierry Tron², Lionel Tarrago^{1,*}

SUPPLEMENTARY INFORMATION

List of supplementary data

Figure S1. Secretome preparation and protein oxidation.	Page 2			
Figure S2. Partial sequence alignment of GH16_2 (A), PL35 (B), protease (C) and GH152				
(D) with identified oxidized residues.				
Figure S3. 3D model of GH7 (A) and GH18 (B) highlighting oxidized residues.	Page 4			
Table S1. Number of secreted proteins identified.	Page 5			
Related to Figure 1				
Table S2. Met content in secreted and non-secreted proteins of <i>P. cinnabarinus</i> , fungi,	Page 6			
metazoans, and plants.				
Related to Figure 2				
Table S3. Levels of Met oxidation in secretomes obtained at day 3, 5 and 7.	Page 6			
Related to Figure 3				
Table S4. Levels of Pro oxidation in secretomes obtained at day 3, 5 and 7.	Page 7			
Related to Figure 3				
Table S5. Number of predicted secreted catalases in fungi.	Page 7			

List of additional datasets

Dataset 1. List of identified secreted proteins and their spectral counts.
Related to Figure 1, Figure 2 and Table S1.
Dataset 2. List of predicted secreted and non-secreted proteins of *P. cinnabarinus* and experimentally validated secreted and non-secreted proteins from fungi, metazoans and plants.
Related to Figure 2 and Table S2.
Dataset 3. Percentage of the different forms of Met for the identified proteins.
Related to Figure 2, Figure 3 and Table S3.
Dataset 4. Percentage of the different forms of Pro for the identified proteins.
Related to Figure 2, Figure 5 and Table S4.
Dataset 5. Conservation of secreted proteins and their oxidized residues in a representative set of fungal species.
Related to Table 1.

Step 1. Pycnoporus cinnabarinus culture on aspen wood

Step 2. Preparation of secreted proteins by sequential IEC Step 3. Oxidation with H₂¹⁸O₂ and proteomic

Figure S1. Secretome preparation and protein oxidation. The preparation of *P. cinnabarinus* secretomes and the oxidation of the secreted proteins were performed in 3 steps: *Step 1. P. cinnabarinus* was cultivated in the presence of *Populus tremuloides* sawdust (particle size < 2 mm) (15 g.L⁻¹). Cultures were initiated in 18 flasks and 6 were used to prepare the secretomes of time point (day 3, 5 or 7). For each time point, the supernatants of 2 flasks were pooled to obtain one of the 3 replicates. *Step 2.* The supernatants were centrifuged, filtered and the pH adjusted to 7 with NaOH. The supernatant was then loaded onto an anion exchange column (DEAE). The solution containing the proteins not bound to the column during loading nor washing was loaded onto a cation exchange column (CM). The proteins retained on each column were eluted with NaCl (1M), pooled, desalted in 50 mM sodium acetate (pH 5.2) and concentrated by ultrafiltration (3 kDa cut-off). *Step 3*. The proteins (70 µg) were incubated with 1 mM hydroxylamine (NH₂OH) to inhibit H₂O₂-consumming activity, desalted, and incubated with of H₂¹⁸O₂ (100 mM, 1 h). After desalting, 10 µg were used for in-gel trypsin digestion and peptide identification by LC-MS/MS.

Figure S2. Partial sequence alignment of GH16_2 (A), PL35 (B), protease (C) and GH152 (D) with identified oxidized residues. Met and Pro found oxidized are on *blue* and *orange* background, respectively. *Dark* and *light grey* backgrounds represent strictly conserved and similar amino acids, respectively. Position and percentage of oxidation of the residues are indicated above or under the sequence. For Met, the percentage presented correspond to sum of Met¹⁶O and Met¹⁶O₂ found at day 3, except indicated with 'D7', corresponding to Met found oxidized forms, either ¹⁶O or ¹⁸O at day 3, excepted indicated with 'D5', corresponding to Pro oxidation found at day 5. Underlined sequences represent the peptides detected by LC-MS/MS. Accession numbers are on the left of the sequences. All data are presented in **Datasets 3 and 4**.

Figure S3. 3D model of GH18 highlighting oxidized residues. 3D model of the GH18 A0A060SC99 was downloaded from Alphafold database (<u>https://alphafold.ebi.ac.uk/entry/A0A060SC99</u>). The Met 342 found oxidized and the catalytic Glu 174 are represented as *red* and *green* sticks, respectively.

Туре	Dav 3	Dav 5	Dav 7	Total count	
Total proteins	212 + 7	231 + 7	225 + 25	308	
Protease	21 + 1	25 + 2	23 + 6	30	
Other	20 + 3	21 + 2	20 ± 0 20 + 2	35	
Unknown	72 + 3	81 + 3	78 + 8	118	
CAZymes	99 + 3	105 ± 4	104 ± 10	125	
Eamilies	JJ ± J	105 - 4	104 ± 10	125	Taraet substrate
	1 + 0	1 + 1	4 + 0	5	Lignin: Iron
^^1, ^^1_2	+±0 1+0	7 ± 1	7 ± 0	5	Lignin
AA2 2	3+0	2 ± 1	3+0	1	
AA5_2	3 ± 0	3 ± 0	3 ± 0	4	Glyonal
AAS_1 AAS	1+1	1+0	0+1	-1	Iron
AA9	1 ± 1	1 ± 0 0 + 1	1+2	1	Cellulose
CBM1+ CBM13+ CBM50ª	3+0	3+0	3+0	3	Cellulose / Hemicellulose / Fungal cell wall
CE1	1 + 0	1+0	1+0	1	Hemicellulose
CE4	1+0	1+0	1+0	1	Hemicellulose
CE4	1 ± 0 0 + 1	1+0	1+1	1	Dectin
CE15	0 ± 1	1+0	1+0	1	Hemicellulose
CE15	2+0	2+0	2 + 1	2	Hemicellulose
GH3	2±0 1+0	2±0 1+0	1+0	1	Hemicellulose
GH2 GH2	2+1	3+0	3+0	3	Cellulose
	0 ± 1	0+2	0+1	11	Cellulose
GH5_3, GH5_7, GH5_9	2 + 0	2 + 0	3 ± 0	2	Cellulose
GH7	3±0 1+1	3±0 1+1	3 ± 0 0 + 1	1	Cellulose
6H10	1 ± 1 1 + 1	2 + 1	0 ± 1	5	Homicolluloso
GH10	4 <u>1</u> 1	3 <u>1</u> 1	4 ± 1	2	Colluloso
GH12 1. GH12 22	2±0	1 ± 1 2 ± 1	1 1 1	2	Starch
GH15_1, GH15_32	2 ± 0	1+0	2 ± 1	2	Starch
	0 ± 1	0+0	1 ± 0	1	Homicolluloso / Unknown
GH10_1; GH10_2	2+0	9±0 2+0	2+0	3	Homicolluloso
GH17	2±0	2±0	2±0 0±1	2	Fungal call wall
6010	0 <u>1</u> 0	0 <u>1</u> U	4 + 0	5	Puliga Celi wali
6H28	4 1 1	4 1 1	4±0	2	Chroppetoing
GH30_3 CH21	2+0	2±0	2 ± 0	3	Glycoproteins
6131	2 ± 0	2 ± 0	2±0	2	Disaccharidas
6132	1+0	1+0	1±0	1	Homicolluloso
6H33	1+0	1+0	1+0	1	Disaccharides
	1 ± 1	2+0	2 ± 0	2	Homicolluloso
GH45_0, GH45_24	1 + 0	2 ± 0	2±0	2	Colluloso
6145	1+0	1+0	1±0	1	Homicolluloso
61147	1+0	1+0	1+0	1	Hemicellulose
GH55	2 + 0	2 + 0	2+0	2	Hemicellulose
61135	2±0 1+0	2±0 1+0	2±0	1	Fungal cell wall
6172	1+0	1+0	1+0	1	Cellulose
GH76	1±0 2+1	2+1	2 + 1	2	Glycoproteins
6H79	0 + 1	2 + 0	2 ± 1	2	Glycoproteins
GH88	0 ± 1	2±0 1+0	2±0	Z	Dectin
GH02	1+1	1+0	1+1	2	Glycoproteins
GH95	1+0	1+0	1+0	1	Hemicellulose
GH125	0+0	1+0	1+0	1	Fungal cell wall
GH125	2 + 0	2+0	1+1	2	Fungal cell wall
GH120	2 ± 0	2±0 1+1	1 ± 1 2 + 1	2	Cellulose
GH131	2±0 0+1	1+0	2 ± 1	1	Eungal cell wall
GH155 CH153	3+0	3+0	3+0	3	
	1+0	1+0	1+0	1	Potentially Animals Algan
PL0_4	1 + 0	1 + 0	1 + 0	1	Potentially Animals/Algae
PL14	1 + 0	1+0	1 + 0	2	Chondroitin
PL33	1 + 0	1 + 0	1 + 0	<u>۲</u>	Dotentially Pactorial envelope
PL4Z	ΤΞΟ	ΤĪŪ	ΤĪŪ	Ţ	Potentially bacterial envelope

Table S1. Number of identified secreted proteins. The list of individual proteins and their abundance is provided in the **Dataset 1**.

^a *CBM* correspond to proteins for which only a CBM domain has been assigned. It should be noted that other CAZymes possess a CBM associated with a catalytic domain.

		Total nb.	Total	Met percentage				
Dataset	Description	of nb. c organisms prot	nb. of prot.	Average	<i>P</i> -value (t.test)	Min	Max	Med.
2A	P. cinnabarinus predicted secreted proteins	1	666	1.55 ± 0.82	2.30x10 ⁻⁴⁹	0.24	5.88	1.43
2B	P. cinnabarinus predicted non secreted proteins	1	9649	2.07 ± 0.96		0.18	23.16	1.97
2C	Fungal secreted proteins	121	5542	1.52 ± 0.74	0 ^a	0.11	7.41	1.44
2D	Fungal non secreted proteins	400	15506	2.17 ± 0.99		0.18	16.67	2.04
2E	Metazoan secreted proteins	1884	22164	2.68 ± 1.40	1.53x10 ⁻¹³²	0.03	21.85	2.44
2F	Metazoan non secreted proteins	738	30832	2.41 ± 1.07		0.07	18.03	2.27
2G	Plant secreted proteins	69	2960	2.59 ± 1.55	0.125	0.15	16.46	2.28
2H	Plant non secreted proteins	1172	21013	2.55 ± 1.14		0.22	17.16	2.38

Table S2. Met content in secreted and non-secreted proteins of *P. cinnabarinus*, fungi, metazoans, and plants. The list of individual proteins is provided in the Dataset 2.

^a The *P*-value being very close to 0, the calculation software cannot display the precise value.

Table S3. Levels of Met oxidation in the secretomes obtained at day 3, 5 and 7. The levels of non-
oxidized and oxidized Met were calculated using all detected spectra (Dataset 3B).

	Day 3	Day 5	Day 7
Number of identified proteins with detected Met	75 ± 4	87 ± 3	86 ± 11
Total spectral counts of detected Met	749 ± 14	859 ± 73	913 ± 118
Spectral count			
Not modified Met	136 ± 25	535 ± 34	542 ± 67
Met ¹⁶ O	122 ± 11	307 ± 40	351 ± 53
Met ¹⁶ O ₂	15 ± 3	8 ± 3	12 ± 2
Met ¹⁸ O	459 ± 25	8 ± 2	5 ± 4
Met ¹⁸ O ₂	17 ± 3	1 ± 1	2 ± 1
Percentage			
Not modified Met	18.1 ± 3.0	62.3 ± 1.3	59.4 ± 0.4
Met ¹⁶ O	16.3 ± 1.5	35.6 ± 1.6	38.4 ± 0.9
Met ¹⁶ O ₂	2.0 ± 0.3	1.0 ± 0.3	1.4 ± 0.1
Met ¹⁸ O	61.3 ± 3.9	0.9 ± 0.2	0.6 ± 0.5
Met ¹⁸ O ₂	2.3 ± 0.4	0.2 ± 0.1	0.3 ± 0.1

SC, spectral counts; Met¹⁶O, methionine sulfoxide with ¹⁶O; Met¹⁶O₂, methionine sulfone with ¹⁶O; Met¹⁸O, methionine sulfoxide with ¹⁸O; Met¹⁸O₂, methionine sulfone with ¹⁸O.

	1 1	,	
	Day 3	Day 5	Day 7
Number of identified proteins with detected Pro	130 ± 3	147 ± 3	143 ± 15
Total spectral counts of Pro	3099 ± 145	3150 ± 197	2899 ± 196
Spectral count			
Not modified Pro	2866 ± 146	3017 ± 193	2794 ± 195
Glutamic 5-semialdehyde-16O (SC)	75 ± 9	61 ± 3	57 ± 3
Pyroglutamic acid- ¹⁶ O (SC)	47 ± 7	50 ± 3	35 ± 7
Sum- ¹⁶ O (SC)	122 ± 5	112 ± 1	92 ± 10
Glutamic 5-semialdehyde- ¹⁸ O (SC)	104 ± 8	16 ± 4	11 ± 4
Pyroglutamic acid- ¹⁸ O (SC)	7 ± 4	5 ± 2	3 ± 1
Sum- ¹⁸ O (SC)	111 ± 6	20 ± 5	14 ± 4
Percentage			
Not modified Pro	92.4 ± 0.4	95.8 ± 0.2	96.4 ± 0.4
Glutamic 5-semialdehyde- ¹⁶ O (%)	2.4 ± 0.3	2.0 ± 0.2	2.0 ± 0.1
Pyroglutamic acid- ¹⁶ O (%)	1.5 ± 0.2	1.6 ± 0.1	1.2 ± 0.2
Sum- ¹⁶ O (%)	3.9 ± 0.1	3.6 ± 0.2	3.2 ± 0.3
Glutamic 5-semialdehyde-18O (%)	3.4 ± 0.3	0.5 ± 0.1	0.4 ± 0.1
Pyroglutamic acid- ¹⁸ O (%)	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1
Sum- ¹⁸ O (%)	3.6 ± 0.3	0.6 ± 0.1	0.5 ± 0.2

Table S4. Levels of Pro oxidation in the secretomes obtained at day 3, 5 and 7. The levels of nonoxidized and oxidized Pro were calculated using all detected spectra (Dataset 4B).

Table S5. Number of predicted secreted catalases in fungi. The protein sequence of *P. cinnabarinus* secreted catalase (A0A060STN2) was used to search for homologs by BLASTP against all fungal genomes. Among the 9492 hits, 1630 were predicted to be secreted.

Phyla	Nb. Genome	Nb. Secreted Catalase	Secreted catalase per genome
Ascomycota	1069	1182	1.11
Basidiomycota	256	374	1.46
White rot	85	101	1.19
Ectomycorrhizal	59	73	1.24
Other saprotroph	40	69	1.73
Phytopathogen	34	85	2.50
Brown rot	24	29	1.21
Other	14	17	1.21
Mucoromycota	48	70	1.46
Chytridiomycota	3	3	1.00
Zoopagomycota	1	1	1.00
Cryptomycota	0	0	0.00
Total	1377	1630	1.20 ± 0.24