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A B S T R A C T   

Grasslands represent key functional ecosystems due to their global contribution to macronutrients cycling and 
their role as reservoirs of microbial diversity. The strategic importance of these habitats rests on their involve-
ment in carbon and nitrogen fluxes from the atmosphere to the soil, while at the same time offering extensive 
sites for livestock rearing. In this study the management type, differentiated in pasture or meadow, was inves-
tigated as a variable for its possible effects on overall bacterial diversity and specific genes related to functional 
guilds. Its contribution was compared to that of other variables such as region, soil pH, and soil organic carbon, 
to rank their respective hierarchies in shaping microbial community structure. A latitudinal gradient across the 
European continent was studied, with three sampling groups located in Norway, France, and Northern Italy. The 
applied methods involved 16S DNA metabarcoding for taxonomic classification and determination of the relative 
abundance of the bacterial component, and quantitative PCR for the genetic determinants of bacterial and 
archaeal nitrification, intermediate or terminal denitrification, and nitrogen fixation. Results indicated that soil 
pH exerted the dominant role, affecting high taxonomy ranks and functions, along with organic carbon and 
region, with whom it partly covaried. In contrast, management type had no significant influence on microbial 
community structure and quantitative counts of functional genes. This suggests an ecological equivalence be-
tween the impacts of pasture and meadow practices, which are both perturbations that share the aspect of 
vegetation withdrawal by browsing or cutting, respectively.   

1. Introduction 

Grassland ecosystems cover over 37 % of the planet’s terrestrial areas 
(Zhong et al., 2015; Bai and Cotrufo, 2022) and represent 70 % of global 
agricultural land (Mencel et al., 2022), with 34 % of Europe’s agricul-
tural area being comprised of grasslands (Schils et al., 2022). Grasslands 
contribute to approximately 34 % of terrestrial organic carbon stock, 
storing carbon as root biomass and soil organic carbon (SOC) (Bai and 
Cotrufo, 2022). They play a fundamental role in conserving biodiversity 
and landscape diversity, offering multiple ecosystem services such as 
carbon storage, erosion control, and water management (Burczyk et al., 

2018; Schils et al., 2022). Moreover, grasslands are vital for livestock 
systems as they provide feed for ruminants and other herbivores, serving 
as meadows for hay/silage production or as pastures for animal grazing 
(Bunce et al., 2004; Mencel et al., 2022). Due to their significance as 
ecosystems and their role in low-intensity agriculture, grasslands are 
considered High Nature Value (HNV) farmland in Europe (Lomba et al., 
2014). Despite their importance, grasslands remain poorly understood 
regarding their soil microbial communities and the potential impacts of 
different human uses, such as pastures or meadows, on these commu-
nities. Various grassland management practices can transform these 
ecosystems into either sinks or sources of greenhouse gases, such as 
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methane (CH4) or nitrous oxide (N2O), with implications for climate 
change related to processes directly mediated by the microbial com-
munity (Chadwick et al., 2018; Chang et al., 2021). Soil microbial 
communities are the primary drivers of biogeochemical cycles 
(Crowther et al. 2019), including those of nitrogen and carbon, through 
enzyme-catalyzed reactions within metabolic pathways (Cavicchioli 
et al., 2019; Dong et al., 2020; Louca et al., 2018; Mencel et al., 2022; 
Rocca et al., 2015; Zhou et al., 2012). Diversity and functional redun-
dancy within microbial communities are essential for sustaining 
ecological functions and resilience in biogeochemical processes (Louca 
et al., 2018; Maron et al., 2018). Therefore, microbial communities can 
be considered as functional groups in which species richness is less 
relevant than specific phenotypic traits for specific reactions, which 
define the functional richness of ecosystem processes (Bahram et al. 
2018; Louca et al. 2018; Moonen and Bàrberi, 2008). In grassland eco-
systems, the composition of microbial communities is influenced by 
pedological conditions, such as pH (Tripathi et al., 2018; Yang et al., 
2022a,b) and organic carbon content (Smith et al. 2021), and local 
disturbances, such as animal grazing (Wang et al., 2022), mowing 
(Mencel et al., 2022), and fertilization (Goulding and de Varennes, 
2016; Liu et al., 2014), which alter soil conditions. Among pedological 
factors, pH (Fierer, 2017; Bahram et al., 2018), moisture (Li et al. 2017), 
soil organic carbon (Tripathi et al., 2018; Yang et al., 2022a,b), and 
nitrogen (N) content (Kuypers et al., 2018) are considered the most 
important drivers of microbial community structure. pH can directly 
affect microbial enzyme activity (Luan et al. 2023; Yang et al., 2022a,b) 
and indirectly affect microbial community structure by altering other 
significant factors, such as plant cover (Lammel et al. 2018). Soil 
moisture determines the saturation level, causing more anaerobic con-
ditions, which can limit the activity of soil microbial activities (Li et al. 
2017). Organic Carbon and Nitrogen are essential nutrients for micro-
organisms, so variation in their content can change microbial diversity 
and activity (Bahram et al., 2018; Fierer, 2017). Meanwhile, in terms of 
local disturbance, different intensities of animal grazing can directly and 
indirectly affect soil conditions through trampling-induced asphyxia 
(Mencel et al., 2022; Wang et al., 2022; Yin et al., 2020), selective 
removal of vegetation (Mencel et al., 2022; Wang et al., 2022), and 
deposition of urine and feces (Du et al., 2019; Wang et al., 2022). Animal 
trampling can induce soil compaction, altering oxygen concentrations 
and soil water potential, thereby directly affecting microbial composi-
tion (Chroňáková et al., 2009; Mencel et al., 2022; Wang et al., 2022; Yin 
et al., 2020). Vegetation browsing by animal grazing can change its 
composition as regards primary production, litter, and root exudates, 
which are part of the C inputs to the soil, and these changes have direct 
effects on microbial communities (Mencel et al., 2022; Mueller et al., 
2017; Qu et al., 2016; Wang et al., 2022). Additionally, the deposition of 
animal excreta directly increases the content and availability of nutri-
ents, such as carbon and nitrogen, in the soil (Kohler et al., 2005; Wang 
et al., 2022). However, the microbial communities of grasslands have 
shown diverse responses to grazing: one study found variations in mi-
crobial β-diversity (community composition) but no changes in α-di-
versity (species richness within a community) (Qin et al., 2021), another 
study observed a significant decrease in microbial diversity with an in-
crease in grazing intensity (Yang et al., 2023). Moreover, mowing and 
fertilization practices can induce changes in soil microbial communities 
in grasslands used as meadows (Cui et al. 2020; Wang et al. 2021). 
Mowing can partially simulate plant consumption that would occur 
during grazing, inducing the stimulation of root exudation and shifts in 
N and C cycles (Mencel et al., 2022). Liming or fertilization using animal 
dung or chemical compounds can also alter nutrient content and avail-
ability, thus affecting soil conditions such as pH (Goulding and de 
Varennes, 2016; Liu et al., 2014; Schroder et al., 2011). Variations of 
nutrient profile and pH can change the relative abundances of bacterial 
phyla, such as Proteobacteria, Firmicutes, and Bacteroidetes changing 
soil microbial communities (Stoian et al. 2022). As a result, similarities 
between local disturbances exerted by animals or humans, along with 

common pedoclimatic conditions due to spatial proximity, can lead to 
similar microbial communities in grasslands used as pastures or 
meadows. However, certain fractions of microbial communities may 
resist local disturbances with respect to their taxonomic and functional 
profiles. Several studies have investigated the effects of management 
type and pedological factors on soil microbial communities within 
limited geographic areas (Degrune et al. 2019; Su et al. 2023). Thus, the 
relative importance of geographic patterns, different management types, 
and pedological factors in driving grassland soil microbial communities, 
both in terms of structure and functions, remains poorly understood. 
Starting from these considerations, we compared the microbial com-
munities of multiple grasslands managed by several different farms, 
dominated by either pasture or meadow use, and fertilized with animal 
dung. The comparison was conducted across three European countries 
(France, Italy, and Norway) in terms of taxonomic and functional pro-
files and pools of specific genes, combining two molecular methods, 16S 
rDNA metabarcoding and qPCR analysis, to gain a comprehensive view 
of the associated microbial communities. 16S rDNA metabarcoding is a 
sequencing-based method that provides information about the taxo-
nomic composition and diversity of microbial communities (Beckers 
et al. 2016), while qPCR is a quantitative technique used to measure the 
abundance of specific microbial taxa or genes (Smith and Osborn 2009). 
The aim of these analyses was to verify: 1) a presence of similar mi-
crobial communities in pastures and meadows across different latitudes 
in terms of both taxonomic and functional profiles, in relation to the 
common aspect of being fertilized with animal dung. We wished to 
verify whether this fertilization could contribute to a homogenization of 
soil microbial assemblages between pastures and meadows upon the 
delivery of dung-carried microbiota, which have a certain degree of 
conserved taxa in man-managed herbivores’ guts; 2) the hierarchical 
rank and relevance of soil chemical drivers (pH and organic carbon) in 
comparison to the management type in determining microbial com-
munity structure and its functional traits in grasslands. Specifically, we 
expected pH and organic carbon to have a more significant effect on 
microbial communities due to their direct effects on physiology and 
metabolism, thus indirectly leading to effects of the management type 
through variations in pedological features. 

The innovative aspects of the present approach in comparison to 
existing studies are: (a) the focus on a direct comparison between pas-
tures and meadows, and (b) targeting a set of reporter genes spanning 
across the whole nitrogen cycle from N2 fixation to N2 reemission as bio- 
indicators of the ecosystem services integrity. 

Understanding the structure and main environmental drivers of soil 
microbial communities in agricultural context can help to interpret 
ongoing phenomena to foster the preservation and enhancement of the 
ecosystem services of pastures and meadows. This knowledge lays the 
groundwork to identify indicators to assess the extent of sustainable 
equilibria in pastures and meadows. The ensuing results provide insights 
for management improvement, offering a clearer view of the hitherto 
overlooked importance of microbial communities in maintaining and 
enhancing ecosystem services in the grassland environment. 

2. Materials and methods 

2.1. Site location 

This study was part of the European Project “Highlands.3” and 
involved 16 farms in three European mountain areas with a historical 
presence of agricultural systems (Fig. 1): the Massif Central in France 
(FR – 6 farms), the Alpago-Cansiglio in Italy (IT – 5 farms), and the 
Vestvågøy area in Norway (NR – 5 farms). For each farm, representative 
permanent pastures and meadows were sampled for a total of 34 areas 
(FR: 6 meadows and 6 pastures; IT: 5 meadows and 5 pastures; NR: 5 
meadows and 7 pastures). Pastures coincided with areas used only for 
livestock grazing, while most meadows were managed with one or two 
cuts, to produce hay and/or silage during summer, and grazed for short 

S. Raniolo et al.                                                                                                                                                                                                                                 



Ecological Indicators 155 (2023) 111063

3

periods in autumn. All selected pastures and meadows were fertilized by 
animal dung without inorganic fertilizers, except for three meadow 
areas in Norway where farmers used both fertilizer types. For each area, 
12 topsoil samples (the top 15 cm of soil) were taken randomly and then 
used to form a representative bulk per area, whose a part was used for 
the chemical analyses and another for the molecular ones. Soil samples 
were air-dried before being pooled and subsequently analysed. 

The three highland regions presented different extensions and 
pedoclimatic conditions according to the FAO soil map (https://www. 
fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-so 
il-map-of-the-world/en/) and the Köppen climate classification (Rubel 
and Kottek, 2010). The largest area, with the consequent highest num-
ber of farms, was the north of the Massif Central, located in the centre of 
France. This region is characterised by a temperate climate and features 
andosols. The Italian region is in the eastern Alps and presents an alpine 
climate and eutric cambisols. Instead, the Norwegian region is in the 
Lofoten archipelago, above the Arctic Circle, and is characterised by a 
subartic climate, mitigated by the presence of the ocean (Uleber et al., 
2014), and orthic podzols. Sampling took place during July 2021, at 
which time the three regions (countries) featured different temperatures 
and rainfall levels (France: mean temperature = 16.0 ± 1.1 ◦C, mean 
rainfall = 2.2 ± 0.5 mm; Italy: mean temperature = 17.8 ± 0.7 ◦C, mean 

rainfall = 2.5 ± 0.1 mm; Norway: mean temperature = 11.3 ± 0.2 ◦C, 
mean rainfall = 1.7 ± 0.07 mm - Muñoz Sabater, 2019). 

2.2. Chemical and molecular analyses 

Soil chemical analyses included quantification of pH by soil sus-
pension in water (ISO 10390) and organic C assessment by high- 
temperature dry combustion (ISO 10694). 

Total soil DNA was extracted from an amount of 0.25 g of dried soil 
using the Qiagen DNeasy PowerSoil kit (Qiagen, Germany) as described 
by the manufacturer’s protocol. The DNA extracted was quantified with 
a Qubit 3.0 fluorometer (Thermo Fisher Scientific, US-CA) using the 
Qubit™ DNA HS Assay Kit (Thermo Fisher Scientific, US-CA) and stored 
at − 20 ◦C. 

The extracted DNA was sequenced upon 16S rDNA metabarcoding 
on an Illumina MiSeq sequencer in the paired-end 2x300 bp format by 
BMR Genomics s.r.l., Padova, Italy, targeting the V4 region using the 
following universal primers: Modified 515f: GTGY-
CAGCMGCCGCGGTAA, (Parada et al., 2015), and Modified 806r: 
GGACTACNVGGGTWTCTAAT (Apprill et al., 2015). 

RealTime qPCR was performed using a QuantStudio 5 system 
(Thermo Fisher Scientific, US-CA). The volume of the qPCR reaction was 

Fig. 1. Area locations: Sampling points in France (Massif Central) are marked in blue, in Italy (Alpago-Cansiglio) in green, and in Norway (Vestvågøy) in red. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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equal to 5 µL, 1 µL of template DNA, and 4 µL of reaction mix, composed 
of 1.2 µL PCR-grade water, 0.15 µL each of the F and R primers (Table 1) 
and 2.5 µL Power SYBR Green PCR Master Mix containing Taq poly-
merase (Thermo Fisher Scientific, US-CA). The thermal cycle conditions 
were set to a pre-denaturation stage at 95◦ C for 10 min, followed by 40 
cycles with a denaturation step at 95◦ C for 15 sec, an annealing step at 
57◦ C for 60 sec and an extension at 72◦ C for 60 sec. For each ampli-
fication, a negative control of ultra-pure PCR-grade water was analyzed 
in triplicates. The Ct threshold cycles were transformed into gene copies 
using the equation of Dong et al. (2020). The undetermined Ct (cycle 
threshold) was set 40 to equal 0 genes’ copies by the transformation. 

The bioinformatics processing of the sequencing data was based on 
QIIME (Caporaso et al., 2010) using the similarity threshold of 97 % to 
cluster the single ASV (Amplicon Sequence Variant - Callahan et al., 
2017). The ASV profiles were analysed using FAPROTAX 1.2.4 (Louca 
et al., 2016) to extract functional profiles, which correspond to lists of 
ecological functions performed by the taxa identified. The DNA se-
quences have been deposited in the GenBank repository SRA Archive, 
under the project code PRJEB56444, https://www.ebi.ac.uk/ena/brow 
ser/view/PRJEB56444. 

2.3. Statistical analysis 

Statistical analyses were performed in R 4.2.0 (R Core Team, 2016). 
We preliminarily verified that pH and C org were not correlated (N =

34; r = -0.21; p-value > 0.05). Then, to detect possible nested features of 
the data, we analysed pH and C org as a function of the main effects and 
the two-way interaction of region (France – FR, Italy – IT, Norway – NR) 
and management type (meadow – M or pasture – P) through a permu-
tation ANOVA using the ‘aovp’ function of the “lmperm” library 
‘lmperm’ (Bates et al., 2015). The results indicated a highly significant 
effect of the region on pH (p < 0.001; Supplementary Table S1). 
Therefore, in the subsequent analyses, we included C org and pH as 
explanatory variables in the same models without considering their 2- 
way interaction due to the absence of all possible combinations (pH 
class “1” – C org class “1”: NA; pH class “3” – C org class “3”: NA). For 
these analyses, we categorized pH and C org values into four classes 
based on quartiles: (pH class: 4.5<”1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” 
≤6.2; 6.2<”4” ≤7.6 – C org class: 3 % <“1”≤4.7 %; 4.7 %<”2” ≤7.5 %; 
7.5 %<”3” ≤10.1 %; 10.1 %<”4” ≤35.9 %). 

2.4. Diversity indices of microbial communities 

We calculated the Shannon and Simpson alpha diversity indices 
(Jost, 2007) and the Pielou evenness index (Pielou, 1966) for the mi-
crobial communities of each sample at the ASV and phylum levels using 
the ‘vegan’ library (Dixon, 2003). To detect the effects of regional, 
management type and soil characteristics on the diversity, we analysed 
the indices using ANOVA with permutation test (5000 permutations) 
with the ‘aovp’ function of the library ‘lmperm’ (Bates et al., 2015) with 
two models. The first model included the main effects of the region (FR, 

IT, NR) and management type (M or P) and their 2-way interaction. The 
second model included the main effects of pH and C org class. Finally, 
we calculate Kendall’s rank correlations of the percentage of ASVs 
assigned by FAPROTAX (“perc. ASVs assigned”) and the number of 
functions detected (“n.functions”) with pH, C org, alpha diversity 
indices, and Pielou indices at the ASV and phylum levels, and the 
numbers of both ASVs and phyla. 

2.5. Taxonomic and functional profiles of microbial communities 

Firstly, we used Venn diagrams (Shade and Handelsman, 2012) to 
identify the suites of ASVs, phyla, and functions shared by the microbial 
communities defined by region, management type, pH, and C org. Venn 
diagrams were constructed with the ‘venn.diagram’ function of the 
‘VennDiagram’ package (Chen and Boutros, 2011). Then, we calculated 
the dissimilarity matrices, based on the Bray-Curtis distance, of the 
taxonomic and functional profiles to allow multivariate approaches 
(Anderson and Walsh, 2013) to the analysis of taxonomic compositions 
and ecological functions within and between microbial communities. 
We analysed dissimilarity matrices with ANOSIM (Analysis of Similarity 
– Clarke, 1993) with the ‘anosim’ function of the ‘vegan’ library (Dixon, 
2003), PERMANOVA (Permutational Multivariate Analysis of Variance 
– Anderson, 2001) with the ‘adonis2′ function of the “vegan” library, and 
the Mantel test (Mantel, 1967) with the ‘mantel’ function of the “vegan” 
library. In all the analyses, we used 9999 permutations. 

In the ANOSIM, we tested in separate models whether the similarity 
(expressed as rank distances) between the levels of each factor (region, 
three levels: FR, IT, NR; management type, two levels: M and P; pH class, 
four class: 4.5–5.4; 5.4–5.8; 5.8–6.2; 6.2–7.6; C org class, four classes: 3 
%–4.7 %; 4.7 %–7.5 %; 7.5 %–10.1 %; 10.1 %–35.9 %) was greater than 
within the levels. The ANOSIM provides for each factor an R statistic 
constrained between − 1 and +1, where a value close to 0 indicates a 
strong similarity between levels, while the positive/negative limit in-
dicates a strong dissimilarity. For the factors whose levels differed 
significantly, we used NMDS (Nonmetric Multidimensional Scaling) to 
plot a 2D representation of the similarities (Kenkel and Orlóci, 1986; 
Kruskal, 1964). The ‘goodness of fit’ of each NMDS was verified by 
extracting the ‘stress value’, which should be below 0.2 (Dexter et al., 
2018). We then identified the ASV, phyla, and functions associated with 
each factor level with an indicator species analysis using the ‘multipatt’ 
function of the ‘indicspecies’ library (De Cáceres and Legendre, 2009). 
This analysis allows us to measure the association of each factor’s level 
with each phylum, ASV, and function through an Indicator Value (stat) 
constrained from 0 to 1, where higher values correspond to stronger 
associations (Dufrêne and Legendre, 1997). 

In the PERMANOVA, we tested whether the variability, expressed as 
a spatial distance, differed between factors. We used two models, one 
testing the main effects of region, management type and their 2-way 
interaction, and the other testing the main effects of pH and C org. We 
used the ‘betadisper’ function of the “vegan” library to test the homo-
geneity of factor dispersion, in terms of beta diversity (Anderson et al., 

Table 1 
List of primers used for qPCR with associated functions and references.  

Primer Function Sequence Amplicon length References 

16S F – GGGTTGCGCTCGTTGC 60 bp Johnson et al. (2016) 
16S R – ATGGYTGTCGTCAGCTCGTG 
Archaeal amoA - AOA F Ammonia oxidation STAATGGTCTGGCTTAGACG 635 bp Francis et al. (2005) 
Archaeal amoA - AOA R Ammonia oxidation GCGGCCATCCATCTGTATGT 
Bacterial amoA - AOB F Ammonia oxidation GGGGTTTCTACTGGTGGT 500 bp Rotthauwe et al. (1997) 
Bacterial amoA - AOB R Ammonia oxidation CCCCTCKGSAAAGCCTTCTTC 
nifH F Nitrogen-fixation AAAGGYGGWATCGGYAARTCCACCAC 432 bp Rösch et al. (2002) 
nifH R Nitrogen-fixation TTGTTSGCSGCRTACATSGCCATCAT 
nosZ F Nitrous Oxide reduction CGYTGTTCMTCGACAGCCAG 706 bp Rösch et al. (2002) 
nosZ R Nitrous Oxide reduction CATGTGCAGNGCRTGGCAGAA 
nirK F Nitrite reduction ATYGGCGGVCAYGGCGA 160 bp Henry et al. (2004) 
nirK R Nitrite reduction RGCCTCGATCAGRTTRTGGTT  
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2006). When the dispersion was significantly heterogeneous for a factor, 
we analysed the distances of the samples from the centroid of their factor 
using a one-way ANOVA to assess the dispersion within factors. 

For the Mantel test (Mantel, 1967), we calculated the dissimilarity 
matrices on Euclidean distances for pH and C org and assessed the 
Spearman correlations with taxonomic and functional dissimilarities. 

2.6. Functional profiles of genes 

To compare the potentials of specific functions of microbial com-
munities, we analysed the abundances of qPCR gene copies (log-trans-
formed) first with Kendall’s correlations between genes and then with 
an ANOVA based on permutation tests, using the ‘lmp’ function from the 
‘lmPerm’ library (Wheeler and Torchiano, 2010). We used two models, 
one including the main effects of the region (FR, IT, NR), management 
type (M or P), and their 2-way interaction, and the other including the 
main effects of pH and C org class. Moreover, to assess possible niche 
differences between archaeal and bacterial amoA genes (AOA and AOB, 
respectively), we calculated the ratio between AOB and the total 
ammonia-oxidation guild (AOA + AOB). The ratio was analysed with a 
generalised additive model based on beta distribution and log link 
function, using the function ‘gam’ of the package ‘mgcv’ (Wood, 2017). 
We used the two same models as described above. 

3. Results 

3.1. Dominant taxa and functions 

The 16S metabarcoding analysis generated 8,059,837 paired-end 
reads, with an average of 98,291 ± 21,214 reads per sample. A total 
of 2,846 different ASVs were identified, with 0.6 % remaining unas-
signed. On average, each sample contained 134 ± 33 ASVs, with 4 ± 1 
% being unassigned. The identified ASVs were classified into 830 taxa. 
Most of the annotated sequences were classified at the phylum (94.9 %), 
class (93.9 %), order (92.7 %), family (90.1 %), and genus (81.7 %) 
levels. The most abundant phyla were Firmicutes (31.5 ± 12.6 %), 
Proteobacteria (20.6 ± 5.8 %), and Actinobacteriota (13.9 ± 6.6 %) 
(Fig. 3 A). Function prediction tool FAPROTAX assigned an average of 
24 ± 5 % ASVs per sample, inferring 42 functions in total, with an 
average of 13 ± 4 functions per sample. The most abundant functions 
were chemoheterotrophy (28.4 ± 7.6 %), aerobic chemoheterotrophy 
(24.5 ± 5.8 %), aerobic ammonia oxidation (10.3 ± 8.5 %), and Nitri-
fication (10.3 ± 8.5 % - Fig. 3 B). 

3.2. Alpha-Diversity and evenness indices 

The ANOVA on the permutation test of the alpha-diversity and 
evenness indices revealed a significant effect of the region only at the 
ASV level, with no significant effect of management type at both ASV 
and phylum levels (Supplementary Material Table S2). Regarding 

Fig. 2. Panel A: plot of Kendall rank correlations between the percentage of ASVs assigned by FAPROTAX (perc.ASVs assigned) or the number of functions (n. 
functions), with pH, C org, index of alpha-diversity and evenness at phylum and ASV rank level, number of phyla and ASVs. Panel B: barplot of R statistics from 
ANOSIM based on ASV, Phylum and Function Bray-Curtsi dissimilarity matrix, as a function of “region”, “management type”, “pH class” and “C org class”. Panel C: R2 

statistics from two PERMANOVA models (first model: region*management type - first row; second model: pH class + C org class – second row) based on ASV, Phylum 
and Function Bray-Curtis dissimilarity matrix. Significant effects are reported in table S3 and S6 and are represented by: * (p < 0.05), ** (p < 0.01), and *** (p 
< 0.001). 
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Fig. 3. Venn diagrams of phyla, ASVs and function distinguished by region (row A – “FR” France, “IT” Italy and “NR” Norway), pH class (row B), C org class (row C) 
and management type (row D – “M” meadow and “P” pasture). The pH class and the C org class present four levels in the quartiles. 
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Fig. 4. Barplot chart of the taxonomy results for single samples at phylum rank level (panel A) and functions identified by FAPROTAX (panel B), distinguished by pH 
class and ordered by management type, region and organic C class. Each sample is labelled reporting the management type (M or P), region (FR, IT, NR), and the C 
org class (1, 2, 3, 4) followed by the sample number. The phyla characterized by relative abundance below 1 % were pooled as a single group. The pH class and the C 
org class present 4 levels in the quartiles (C org class: 3 %<“1″≤4.7 %; 4.7 %<”2”≤7.5 %; 7.5 %<”3” ≤10.1 %; 10.1 %<”4”≤35.9 %). The phyla and functions for pH 
class were reported. 
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pedological conditions, significant differences were observed with 
respect to pH and C org classes at the phylum level (Supplementary 
Material Table S2). Alpha diversity indices of phyla were significantly 
and positively correlated with the pH class (Shannon of phylum: p-value 
< 0.01; Simpson of phylum: p-value < 0.05) and significantly and 
negatively correlated with the C org class (Shannon of phylum: p-value 
< 0.05; Simpson of phylum: p-value < 0.05 - Supplementary Material 
Table S2). The Pielou index, indicating evenness, was significantly 
affected by the region at the ASV level (p < 0.05 - Supplementary Ma-
terial Table S2) and by the pH class at both phylum and ASV levels 
(phylum: p-value < 0.05; ASV: p-value < 0.01- Supplementary Material 
Table S2). 

The analysis of correlations with the percentage of ASVs assigned to a 
known function by FAPROTAX or with the n. of functions revealed 
significant and positive relations for alpha-diversity indices at the 
phylum rank level (Shannon Phyla - perc.ASV assigned: τ = 0.34, p- 

value < 0.01; Simpson Phyla – perc.ASVs assigned: τ = 0.36, p-value <
0.01; Shannon Phyla – n.functions: τ = 0.31, p-value < 0.05; Simpson 
Phyla – n.functions: τ = 0.32, p-value < 0.05; Fig. 2 A). The percentage 
of ASVs assigned by FAPROTAX was significantly and positively corre-
lated with pH (τ = 0.18 – p-value < 0.01; Fig. 2 A) and Pielou index at 
the phylum level (τ = 0.16 – p-value < 0.05; Fig. 2 A), while the number 
of functions was significantly and positively correlated with the number 
of phyla (τ = 0.22 – p-value < 0.05; Fig. 2 A), Shannon index at the ASV 
rank level (τ = 0.26 – p-value < 0.05; Fig. 2 A), and the number of ASVs 
(τ = 0.3 – p-value < 0.01; Fig. 2 A). 

3.3. Taxonomic profiles 

The Venn diagrams of taxonomic profiles (Fig. 3) revealed different 
patterns between the phylum and ASV levels concerning management 
type, region, pH class, and C org class. The phylum level presented more 

Fig. 5. NMDS (Non-metric Multidimensional Scaling) of taxonomic profiles at different rank levels and functions (panel A-G), and the most associated phyla and 
functions (panel H) with respect to the region. The stress value (goodness of ordination) is reported for each rank level. 
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abundant shared cores for all factors considered than the ASV level, 
which was characterized by more abundant cores for single-factor levels. 
The ANOSIM (Fig. 2 B; Supplementary Materials Table S3) highlighted 
significant differences in the microbial taxonomy profiles at both the 
ASV and phylum levels, with greater dissimilarity for the former than 
the latter. The region significantly explained the differences between the 
samples at both the ASV and phylum levels (ASV region: p-value < 0.001 
– R = 0.27; phylum region: p-value < 0.001 – R = 0.19), while the 
management type did not have significant effects at all considered 
(Supplementary Materials Table S3). Regarding soil characteristics, pH 
significantly affected both ASV and phylum levels (ASV pH: p-value <
0.001 – R = 0.24; phylum pH: p-value < 0.001 – R = 0.22), while 
organic C significantly affected only at the ASV level (ASV organic C: p- 
value < 0.05- R = 0.075). The stress value of NMDS based on two di-
mensions was rather constant from phylum to ASV level, passing from 
0.11 to 0.13 (Fig. 5, Supplementary Materials Fig. S2). The PERMA-
NOVA analysis of the ASV profiles confirmed the ANOSIM results (Fig. 2 
C), showing a significant effect of the region (p-value < 0.01) and the 
absence of an effect of the management type. Despite these differences, 
there were no effects of the interaction (Supplementary Materials 
Table S6). Regarding soil characteristics, PERMANOVA confirmed a 
stronger effect of the pH class (p-value < 0.01) than the effect of the C 
org class (p-value < 0.05) to explain the variance of the ASV profiles. In 
particular, pairwise comparisons of PERMANOVA at the ASV level 
revealed the strongest differences between FR and NR (p-value < 0.001), 
pH classes 1 and 4 (p-value < 0.001), pH classes 3 and 4 (p-value <
0.001), and organic C class 1 and 4 (p-value < 0.001 - Supplementary 
Materials Table S6). The dispersion analysis revealed heterogeneous 
communities as a function of the region (p-value < 0.01), showing sig-
nificant differences in beta diversity. France presented significant dif-
ferences in the distances from the centroid compared to Italy and 
Norway (Supplementary Materials Fig. S4 and Table S7). The PERMA-
NOVA analysis of the phyla profiles also confirmed in part the results of 
the ANOSIM, showing a strong significant effect of the region (p-value <
0.01) and pH class (p-value < 0.001) but without an effect of manage-
ment type, the 2-way interaction, and C org class (Supplementary Ma-
terials Table S3). The dispersion analysis confirmed the presence of 
heterogeneous communities according to the region (p-value < 0.01). As 
for the ASV, France presented significant differences in terms of distance 
from the centroids compared to Italy and Norway (Supplementary Ma-
terials Fig. S4 and Table S7). The Mantel test confirmed the significant 
effect of pH on the levels of ASV and phylum with positive linear trends 
(ASV: p-value < 0.001 – r = 0.53; phylum: p-value < 0.001 – r = 0.45) 
but not for the C org, which presented positive but weak trends (ASV: r 
= 0.039; phylum: r = 0.054 - Fig. 2 B; Supplementary Materials Fig. S6 
and Table S8). 

The Indicator Species Analysis of differentially featured taxa 
revealed significant different associations in terms of ASV and phylum 
abundances among the three countries (Fig. 3 and Fig. 4). In particular, 
France showed significant associations for 29 ASVs, Italy for 25 and 
Norway for 14, while in terms of phyla, France presented 1 significant 
association, Italy and Norway both presented 4 significant associations. 
Regarding the management type, these taxonomic differences involved 
only 13 different ASVs, 10 of which were enhanced in the pasture cases 
and 3 in the meadow, while in terms of phyla, there was only 1 case for 
the meadow (Supplementary Materials Table S4 and Table S5). The 
Indicator Species Analysis of differentially featured taxa in relation to 
the variables also confirmed that pH explained more dissimilarities be-
tween taxonomic levels and their abundances (53 ASVs, 5 phyla) than 
organic C (24 ASVs, 2 phyla), where the class 4 of pH presented the most 
dissimilar taxonomic profiles with the greatest number of associations 
(Supplementary Materials Table S4 and S5). At the ASV level, pH class 1 
presented 8 associated ASVs, class 2 had 5 ASVs, class 3 13 and class 4 27 
(Supplementary Materials Table S4 and S5), while at phylum level, there 
were significant phyla only at class 4 with 5 associated phyla (Fig. 3). 
Organic Carbon significantly affected the ASVs occurrences and 

abundances, particularly in class 1 with 12 significant ASVs and in class 
4 with 11 (Supplementary Materials Table S4 and S5). 

3.4. Functional profiles 

The Venn diagram of function profiles (Fig. 3) reflected the patterns 
found at the phylum level, with a high number of units shared between 
levels of management type, region, pH class, and C org class. The 
functional profiles reflected the significant differences found at the 
phylum level through the ANOSIM, PERMANOVA, and Mantel test 
(Fig. 2 B, 2C, 4 and 5; Supplementary Materials Figures S2, S4, and 
Tables S3, S6, S8). The most significant factor for the functional profile 
was the pH class (ANOSIM p-value < 0.001 – R = 0.37; PERMANOVA p- 
value < 0.001; Mantel test p-value < 0.001 – r = 0.43 - Fig. 2 B), fol-
lowed by the region (ANOSIM p-value < 0.001 – R = 0.23; PERMA-
NOVA p-value < 0.01). The interaction between region and 
management type was not significant in terms of variance (PERMA-
NOVA p-value > 0.05). No effects of management type and C org were 
detected for the functional profiles (Supplementary Materials Table S6). 
A pairwise comparison of PERMANOVA revealed the strongest differ-
ences between FR and IT, and NR and IT (p-value < 0.05), and between 
pH class 4 and 1, 2 and 3 (p-value < 0.01). The dispersion test detected a 
homogeneous distribution of samples around the centroids for all fac-
tors. The NMDS of function profiles presented a good fit according to the 
stress value equal to 0.08 (Fig. 5). 

The Indicator Species Analysis of differentially featured functions in 
relation to the variables also confirmed that region and pH explained the 
greatest dissimilarities between functional profiles and their abundances 
(region: 6 associated functions; pH class: 7 associated functions), while 
no associations were detected in functions of the C org class (0 associ-
ated functions - Supplementary Materials Table S4 and S5). In terms of 
the region, IT presented 3 associated functions, NR 2, and FR 1, while in 
terms of pH classes, classes 1 and 2 presented 2 associated functions, and 
class 4 presented 3 associated functions (Supplementary Materials 
Table S4 and S5). As a function of management type, only 3 functions 
were significantly associated with meadow, while 0 with pasture (Sup-
plementary Materials Table S4 and S5). 

3.5. Gene indicators 

Real-time PCR-quantified gene copies for nitrogen-cycling reactions 
showed different correlations and patterns (Fig. 6 A; Supplementary 
Materials Fig. S5 and Tables S9): nosZ, nifH, AOA amoA, and AOB amoA 
showed significant and positive correlations between them (nosZ-nifH: τ 
= 0.30 – p-value < 0.01, nosZ-AOA amoA a: τ = 0.5 – p-value < 0.001, 
nosZ-AOB amoA: τ = 0.25 – p-value < 0.001, AOB amoA-nifH: τ = 0.16 – 
p-value < 0.01), while AOA amoA and AOB amoA were significantly 
correlated only between them (AOA amoA-AOB amoA: τ = 0.17 – p- 
value < 0.05). 

ANOVA of gene copies revealed a significant effect of the region for 
almost all genes (nosZ: p-value < 0.05, nirK: p-value < 0.05, nifH < 0.05, 
AOA amoA: p-value = 0.05), except for 16S and AOB amoA (Fig. 6 B; 
Supplementary Materials Fig. S5 and Table S9). No significant effects of 
management type and the 2-way interaction were detected (Fig. 6 B; 
Supplementary Materials Fig. S5 and Table S9). The ANOVA showed a 
generally stronger effect of the C org class than the pH class on gene 
copies, except for nirK, which was more shaped by pH (Fig. 6 B; Sup-
plementary Material Fig. S5 and Table S9). The two pedological vari-
ables significantly affected the nosZ (pH class: p-value < 0.05; C org 
class: p-value < 0.05) and AOA (pH class: p-value ~ 0.05; C org class: p- 
value < 0.05), while nirK was only affected by pH (p-value < 0.01- Fig. 6 
B; Supplementary Material Fig. S5 and Table S9). In general, the pH class 
and the C org class presented opposite trends, where for the former the 
trend tended to be positive while for the latter it tended to be negative 
(Supplementary Materials Fig. S5). No effects of both pH and C org class 
on 16S were found (Fig. 6 B; Supplementary Material Fig. S5 and 
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Table S9). 
The ratio between AOB amoA and the sum of AOA amoA and AOB 

amoA did not present a significant effect for both region and manage-
ment type, and their interaction (Fig. 6 C - Supplementary Table S10). 
Also, in terms of pH and C org classes, there were no significant effects 
on the ratio. However, the two factors presented two opposite trends, 
where the former presented a negative trend and the latter a positive one 
(Fig. 6 C – Supplementary Materials Table S10). The effect of organic 
carbon was stronger than pH (F-ratio C org class: 1.4; F-ratio pH class: 
1.1 - Supplementary Materials Table S10). 

4. Discussion 

4.1. Taxonomic diversity 

The investigated permanent grasslands presented appreciably 
different microbial communities in terms of taxonomic profiles. The 
communities shared a common core of phyla (Fig. 3), consisting mainly 
of Firmicutes, Proteobacteria, and Actinobacteriota (Fig. 3), which are 
typically among the most abundant in both soil and water environments 
(Bahram et al., 2018). The taxonomic differences increased as we 
descended from phylum to ASV rank (Fig. 4, Supplementary Materials 
Fig. S2). At the ASV rank, the number of common cases was drastically 
reduced (Fig. 3), indicating a common phyletic starting point and sub-
sequent time-related dispersion. Considering the metrics used to assess 
microbial identity and phylogeny, such as the 16S ribosomal RNA gene 
(Woese, 1987), the estimated rate of change suggests that phyla started 
branching around 1–2 billion years ago (Clark et al., 1999), while spe-
cies originated on average over 100 million years ago. In practical terms, 
considering the timing of tectonic motions and land emersion that 
determined the current position of European regions, and the relatively 

short duration of soil formation (centuries to thousands of years), the 
contribution of in situ bacterial speciation can be regarded as practically 
irrelevant in this type of survey. Therefore, when interpreting the data, 
differences in composition should be seen as partly resulting from 
deterministic forces, such as local environmental selection, and partly 
from stochastic forces, like dispersal drifts. The existence of a common 
core composed of the most abundant phyla indicates a shared origin 
among microbial communities, which subsequently diversified due to 
environmental conditions. Despite the common core, the diversity of 
phyla showed a significant tendency to be grouped by the ’region’ 
variable. However, ’region’ should not be interpreted solely in terms of 
straight geography; it also encompasses concurrent differences in 
pedoclimatic conditions, such as pH and organic C, in addition to lati-
tude. At the phylum level, the beta diversity of microbial communities 
seems to have been influenced by the region factor in its variability 
(Supplementary Material Fig. S3 and Table S7), while the alpha diversity 
of phyla appears to be primarily regulated by pH and organic C (Sup-
plementary Material Table S4). These factors also affected evenness, 
confirming the role of local pedoclimatic conditions. Interestingly, even 
at the ASV level, the beta diversity of microbial communities was driven 
by the region, showing higher variability within Norway and Italy 
compared to France (Supplementary Material Fig. S3 and Material 
Table S7), while the alpha diversity of ASVs appeared to be relatively 
constant and only the evenness was governed by pH (Supplementary 
Material Table S4). This difference between phylum and ASV diversity 
shows how environmental conditions change their influence on the 
microbial communities at different levels. The difference among com-
munities was driven by region at both phylum and ASV level but the 
absence of significant effect of pH and C org on beta diversity suggests 
the dispersion is driven by different environmental factors which were 
not explored in this study. Interestingly, the internal geographical 

Fig. 5. Panel A: Kendall rank correlations among log-transformed gene abundances (16S, nifH, AOA amoA, AOB amoA, nirK and nosZ). Panel B: Mean of Squares of 
log-transformed gene abundances (16S, nifH, AOA amoA, AOB amoA, nirK and nosZ) from the two ANOVA models based on permutation test (first model: 
region*management type – left side; second model: pH class + C org class – right side) expressed as percentage. Panel C: least square means of ratio AOB amoA/(AOA 
amoA + AOB amoA log-transformed gene abundances) as a function of pH class and C org class. Significant effects were estimated using the GAM model based on the 
beta distribution with log link function. Significant effects are reported in Tables S9–S10 and are represented with: * (p < 0.05), **. 
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distance appeared to marginally account for differences among micro-
bial communities, as evidenced by France exhibiting the least dispersion 
in both phylum and ASV levels despite greater sample distances. The 
lowest dispersion of France is possibly attributable to a higher overall 
homogenization of environmental conditions in the study area. 
Geographical distances seem to explain community dissimilarities, 
which are shaped by local conditions, as previous studies have already 
confirmed (Fierer et al. 2006; Louca et al. 2016; Thompson et al. 2017). 
When inspecting the differences between microbial communities con-
cerning the uniqueness or differential abundance of the highest ranks, i. 
e., phyla, such differences are mainly attributed to the rarest phyla and 
those with the lowest abundance of sequence reads. The effect of pH and 
C org on phylum alpha diversity and evenness can reveal physiological 
adaptations, such as the variation of membrane protein activity (Luan 
et al. 2023; Müller and Engel, 1999), which can induce changing in 
relative abundance, according to Bartram et al. (2014). In particular, the 
pH has a positive effect on the alpha diversity, confirming the tendency 
of microbial communities to reach the maximum diversity at neutral 
condition, which tends to reduce the impact on microbial metabolism 
with positive effect on survival, growth rate and diversity (Bahram et al. 
2018; Fierer et al. 2006; Thompson et al. 2017). 

4.2. Functional diversity 

The functional profiles presented patterns similar to the taxonomy- 
related ones at the phylum level concerning region, management type, 
and pH (Fig. 3). There was also a common and persistent core for the 
functions (Fig. 3), which is not unusual since a large fraction of meta-
bolic genes encoding functions appeared early in Earth’s history and 
propagated into multiple clades (David and Alm, 2011; Falkowski et al., 
2008). This common functional core may be affected not only by the 
adaptive loss of functions due to environmental conditions (Morris et al., 
2012) but also by horizontal gene transfer (David and Alm, 2011; Fal-
kowski et al., 2008). Horizontal gene transfer is independent of the 16S- 
based phylogeny on which bacterial taxonomy and metabarcoding as-
signments are based, suggesting that bacteria may possess actual func-
tional traits that are not detectable through current ribosomal database- 
dependent annotation methods, which account for the sharing of traits 
among ASVs. In our case, the common functional core consists of che-
moheterotrophy and aerobic chemoheterotrophy, representing two 
general metabolisms in microbial communities. The abundance of che-
moheterotrophy and aerobic chemoheterotrophy can be attributed to 
the high quantity of organic C in grasslands, revealing the microbial 
communities’ preference for obtaining energy through oxidation rather 
than carbon fixation, which might lead to the emission of greenhouse 
gases such as CO2 (Yu et al., 2021; Zhang et al., 2018). Thus, permanent 
grasslands used by humans as pastures or meadows seem to present a 
high potential for carbon cycling, potentially leading to CO2 emissions. 
Interestingly, chemoheterotrophy was significantly associated with the 
meadow (Supplementary Material Table S7), suggesting a possible 
contribution of fertilization or cutting in supporting C cycling, despite 
the absence of general significant effects of management type and 
organic C amount. The autotrophic activity of nitrification was nega-
tively correlated with the heterotrophic activities of chemoheterotrophy 
(τ = -0.49 – p-value < 0.001), in either aerobic or anaerobic conditions. 
This indicates that the presence of organic substrates, not needed by the 
autotrophic activity of nitrification, has a higher hierarchical effect than 
the presence of oxygen, which is required only by one of the hetero-
trophic nitrification and chemoheterotrophy. The uneven oxygen re-
quirements, with respect to respiration and ammonia oxidation, 
contribute to explaining this difference. The neutral pH class was asso-
ciated with a significantly higher presence of nitrification and ammonia 
oxidation, whose larger bars’ width is also appreciable in the graph, 
while the more acid pH class was associated with cellulolysis, animal 
parasites, and symbionts (Fig. 4). The inferred higher levels of these 
ammonium metabolism-related traits are confirmed by the 

representation of the source data at the taxonomy level (Fig. 4), as these 
functions can be performed by Crenarchaeota and Myxococcota (Lang-
wig et al., 2022; Weidler et al., 2008), and we can observe the evidence 
of their higher occurrence at the corresponding pH class, particularly for 
Crenarcheota, at the expense of the Firmicutes share. Thus, our results 
confirm the nitrification is favored by neutral pH, according to the 
preference of nitrifying bacteria to neutral to slightly alkaline conditions 
thanks to more abundant NH3 substrate (Ayiti and Babalola 2022; 
DeForest and Otuya 2020). 

4.3. Gene indicators 

Gene pools analyzed by quantitative PCR confirmed functional and 
phylum-level effects but with an added resolution level, in that only a 
part of the N cycle genes, in particular nifH (nitrogen fixation), nirK and 
nosZ (intermediate and terminal denitrification steps, respectively) were 
significantly affected by the region factor. Of these three genes, only nirK 
and nosZ were significantly affected by the pH along with the AOA amoA 
(archaeal nitrification). nirK was more abundant in France, while nifH 
and nosZ were more abundant in Italy, which presented the highest pH. 
Thus, denitrification, represented by nirK and nosZ, appears to be fav-
oured by neutral soils rather than acidic ones, according with the results 
of the analysis of functional profiles. The two denitrification genes seem 
to be enhanced by different soil pH conditions, since nirK was more 
abundant with pH between 5.8 and 6.4 while nosZ with pH between 6.4 
and 7.6, suggesting a possible environmental allocation of the two 
denitrification stages. Nitrification, represented by AOA and AOB, 
showed a similar preference despite the absence of a significant regional 
effect. AOA showed greater variability than AOB, which were more 
constant as a function of region, pH, and organic Carbon. This may be 
due to the different niches between archaea (AOA) and bacteria (AOB), 
where the former prefers environments more limited by nutrients than 
the latter, as the analysis of the ratio between AOB and (AOA + AOB) 
confirmed in agreement with the positive trend of organic C (Baolan 
et al., 2014; Sun et al., 2019). Moreover, the negative trend of pH on the 
AOB proportion seems to indicate that AOA are more adapted to neutral 
soil. AOA are part of Crenarchaeota, which were however reported as 
present in acid pH condition according to the preference of archaea 
nitrifiers when comparing neutral vs acidic soil (Lehtovirta et al., 2009; 
Prosser and Nicol, 2012). Our results show a different scenario with a 
consistent presence of Crenarchaeota and AOA under neutral pH con-
ditions, revealing the possible presence of this phylum in a wide variety 
of pH conditions (Fig. 4). Thus, the niche diversification between AOA 
and AOB would not be universal, and AOA has indeed been found at 
both low and neutral pH (Sun et al., 2019). The common trend of AOA 
and nosZ in relation to pH may reveal a likely interdependency between 
the two genes, also highlighted by the moderate and positive relation 
between nosZ and AOA (Fig. 6 A). The high potential of ammonia 
oxidation may support high rates of nitrification and then complete 
denitrification. nifH is instead an indicator for nitrogen fixation, either 
free-living or symbiotic (Shaffer et al., 2000) and it showed an inter-
esting behaviour as it was significantly affected by region but not by pH 
and C org. The absence of a significant effect of pH, which was signifi-
cantly related to the region (Supplementary Material Fig. S1 panel A), 
suggests different environmental conditions able to modify its abun-
dance as possibly vegetation and fertilisation, irrespective of the hier-
archically dominant ones. nifH was influenced by plant cover during 
field restoration (Wang et al., 2017) as a possible consequence of in-
teractions between the diazotrophic community, i.e., bacteria able to fix 
N2, and plant species. Within this context, typical of pastures and 
meadows, acid soil with high amounts of organic carbon can favor 
functions different from those related to N cycling, even though general 
microbial communities are not influenced by pH and organic carbon, as 
the constant abundance of 16S genes reveals. 
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4.4. Effect of management type, region, pH, and C org 

The investigated permanent grasslands presented interesting pat-
terns of microbial community responses to the selected factors. The 
constant absence of significant effects of management type on both 
phyla and functions, as well as genes’ abundances (Fig. 2, Supplemen-
tary Material Tables S3 and S6), suggests that the dominant common 
cores of microbial community structures can resist disturbances derived 
from pastures and meadows. This may be due to the grazing-like 
mowing practice applied to both types, which simulates the distur-
bance resulting from animal presence and leads to similar community 
cores (Liu et al., 2014; Mencel et al., 2022; Schroder et al., 2011). 
Additionally, the return of animal excreta as fertilizer may have limited 
direct effects on community composition, as the excreta also contain 
DNA from transient taxa that are abundant in the soil and browsed 
vegetation where animals spend their time (NandaKafle et al., 2017). 
Furthermore, persistent management practices can alter soil conditions, 
such as pH and organic carbon, which are known to directly influence 
microbial communities (Lauber et al., 2009; Ni et al., 2021). The con-
stant absence of effect of management type can be due to its absorption 
by the effects of pH and organic carbon. Thus, the effect of the man-
agement type can be considered more indirect than direct since it can act 
on the microbial community by altering soil conditions. The investigated 
permanent grasslands showed a significant tendency for microbial 
communities’ taxonomic and functional diversity to be grouped by the 
’region’, indicating distinct microbial compositions across different 
geographical areas, which are likely influenced by local environmental 
conditions, such as pH and C org. The strongest driver for differentiating 
microbial communities at the ASV level was region, while at the phylum 
and function levels, it was the pH, according to ANOSIM analysis. This 
difference highlights the possibility of a stronger local environmental 
influence than pH in shaping microbial ASVs, such as vegetation or other 
factors not considered in this study. The pH and organic carbon were 
confirmed as direct drivers for the diversification or adaptation of mi-
crobial communities of soil (Rousk et al., 2010; Tripathi et al., 2018), 
especially at ASV level. Among these factors, pH showed the strongest 
influence on microbial communities from our comparison., This result 
aligns with Yang et al. (2022a,b), which suggest that pH serves as a 
primary driver due to its significant impact on a wide range of biogeo-
chemical conditions, thereby affecting microbial growth and survival 
through the modulation of extracellular enzyme activity. The variable 
effects of pH observed on certain genes related to the N cycle further 
support its influence on extracellular enzyme activity. Consequently, the 
effect of pH on extracellular enzyme activity can influence various 
metabolic pathways and functional profiles. C org seemed to be a sig-
nificant, yet not constant, driver for soil microbial communities, as it 
significantly affected ASVs but not phyla and functional profiles (Ni 
et al., 2021; Žifčáková et al., 2017). The weaker effect of C org compared 
to pH may be attributed to the differences in their mechanisms of in-
fluence: C org can influence microbial activity by altering the avail-
ability of resources (Eisenhauer et al. 2010; Smith et al. 2021), whereas 
pH directly affects the physiology of microorganisms (Lauber et al., 
2009; Jin and Kirk, 2018). Thus, our results showed a hierarchy among 
pedological drivers. 

4.5. Phylum diversity as an Indicator of functional potential 

The coherence between phylum-level taxonomy and function, 
strengthens the concept that functional profiles of ecosystems are mainly 
defined by the phyla. Therefore, the diversity of the phylum can be 
regarded as a better index of the functional potential compared to ASV 
diversity, despite the positive and significant correlation between the 
number of total ASVs and functions (Fig. 5 A). A high number of ASVs 
appears to increase the number of both functions and phyla, but only 
marginally considering the whole community. The marginal contribu-
tion of ASV diversity to functional profiles may be explained, since most 

functions are not monophyletic and multiple, coexisting distinct ASVs 
can perform common functions (Aguilar et al., 2004; Louca et al., 2018; 
Martiny et al., 2015). The presence of distinct ASVs capable of per-
forming shared functions provides an ecosystem buffer against taxo-
nomic diversity variation due to local disturbances, making the entire 
community performance resistant to impacts of a given extent (Jurburg 
and Salles, 2015; Louca et al., 2018). Thus, it is reasonable to uncouple 
considerations on ASV diversity from microbial functional diversity 
thanks to the existence of functional redundancy across taxonomy 
(Louca et al., 2018). It can also be postulated that the current databases 
used to extract the functional profiles could likely be more influenced by 
high taxonomy levels, such as phylum, during the assignment. This 
could also be partly due to the presence of ASVs that lack lineage 
annotation, as their individuation is based only on a concept of sequence 
uniqueness, but not on taxonomical recognition, as revealed by the 
negative correlation between function assignment and total ASVs 
number (Fig. 5 A). The functional profiles and the abundance of target 
genes were not always coherent. The nitrogen fixation was found 
significantly associated to intermediate pH and the France region, but 
the nifH presented the highest average abundance in Italy and no sig-
nificant influence of pH. Instead, the nitrification and the oxidation of 
ammonium presented coherent results between functional profiles and 
gene abundances. Both the processes were significantly associated to the 
Italian sites and the most alkaline class according to the genes amoA. 
Different results between inferred functions from sequencing analysis 
and real-time PCR were found in previous studies (Yang et al., 2022). 
The different patterns between functional profiles derived from 
sequencing and real-time PCR can rely on the difference between the 
two molecular techniques. The sequencing provides a comprehensive 
view of the microbial community targeting specific region of the 16S 
rRNA while the real-time PCR amplifies and detects specific DNA se-
quences. Both techniques present limitations that can partially explain 
the different results. Sequencing can be affected by biases due to the 
difficult distinction of similar ASVs with high-sequence similarity of 
partial 16S variable regions (Gao et al. 2017; Jeong et al. 2021) with 
consequent limitations to infer the functional profiles using reference 
database, such as FAPROTAX. Real-time PCR provides quantitative in-
formation about a target gene, without distinguishing whether the gene 
belongs to live microorganisms or is a cell-free relic that has been pre-
served and accumulated in the soil (Kralik and Ricchi 2017; Smith and 
Osborn 2009). Thus, both methods can overestimate and underestimate 
the abundance of a target function but the combination of them can 
provide mutually compensative and consequently more robust infor-
mation about the functional potentialities of an environment. 

In terms of innovation level and field advancement over previously 
acquired notions, the present report addressed, from different stand-
points, including whole bacterial community (NGS metabarcoding) and 
single genes abundance (by qPCR), a hitherto unexplored direct 
comparative assessment between pastures and meadows. Such analysis 
allowed to trace an ecological equivalence between the impacts of these 
two alternative management practices. This evidence pointed out how 
two types of perturbation that periodically affect the plant biomass 
cover concur to similar outcomes in soil community composition and 
consequent physiology. 

5. Conclusions 

Our study across a latitude gradient in Europe provides valuable 
insights into the status of soil microbial communities in permanent 
grasslands, despite the limited sample size. Although these communities 
shared a common core of phyla, their deep-level variability was mainly 
influenced by pedological conditions, particularly pH, which also 
significantly impacted taxonomy-inferred functions. The coherence be-
tween phylum-level taxonomy and function suggests that phylum di-
versity could be a more reliable indicator of functional potential 
compared to ASV diversity, owing to the presence of functional 
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redundancy across taxonomy. Regarding management type, whether 
pasture or meadow, we observed only marginal effects on ASV-level 
diversity, with no significant shifts in higher taxonomic levels and 
functional profiles. This indicates that, at the examined level of inten-
sification, the use of grasslands for pasture or meadow may have minor 
effects on functional biodiversity, as microbial communities exhibit high 
resistance to local disturbances. Thus, the management type had a 
marginal effect compared to the geographical region and pedological 
drivers. Among the pedological drivers, pH emerged as the strongest 
direct influencer of microbial communities, with organic carbon also 
exerting a significant but less pronounced effect compared to pH. The 
hierarchical effect of these drivers underscores the intricate interplay 
between environmental factors and microbial communities in perma-
nent grasslands. Our findings verified our starting hypotheses providing 
valuable guidance for future studies aiming to investigate microbial 
patterns and identify different drivers, enabling the development of 
more sustainable management strategies for permanent grasslands. 
Understanding the functional diversity of the soil microbial community 
in these grasslands plays a crucial role in enhancing management 
practices to maximize ecosystem services, such as carbon sequestration 
and nitrogen fixation, while minimizing ecosystem disservices, such as 
greenhouse gas emissions. This knowledge is crucial for advancing 
agricultural sustainability and ecosystem conservation efforts. Further 
prospects to enhance this knowledge include increasing the sample size 
to cover an intensity gradient of different management types across a 
broad geographical region and considering more microbial drivers, such 
as local vegetation, soil moisture, and nitrogen. These efforts aim to 
improve the understanding of hierarchical effects on soil microbial 
communities. 
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