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Robotized indoor phenotyping allows
genomic prediction of adaptive traits in
the field

Jugurta Bouidghaghen 1,2, Laurence Moreau3, Katia Beauchêne4,
Romain Chapuis5, Nathalie Mangel6, Llorenç Cabrera‐Bosquet1,
Claude Welcker 1, Matthieu Bogard 2 & François Tardieu 1

Breeding for resilience to climate change requires considering adaptive traits
such as plant architecture, stomatal conductance and growth, beyond the
current selection for yield. Robotized indoor phenotyping allows measuring
such traits at high throughput for speed breeding, but is often considered as
non-relevant for field conditions. Here, we show that maize adaptive traits can
be inferred in different fields, based on genotypic values obtained indoor and
on environmental conditions in each considered field. The modelling of
environmental effects allows translation from indoor to fields, but also from
one field to another field. Furthermore, genotypic values of considered traits
match between indoor and field conditions. Genomic prediction results in
adequate ranking of genotypes for the tested traits, although with lesser
precision for elite varieties presenting reduced phenotypic variability. Hence,
it distinguishes genotypes with high or low values for adaptive traits, con-
ferring either spender or conservative strategies for water use under future
climates.

Breeding for the improvement of crop resilience is increasingly
necessary for the sustainability of cropping systems and for food
security in the context of climate change and growing population1,2.
Most current breeding schemes are based on yield measurement of
thousands of genotypes grown under diverse environmental sce-
narios, assisted by genomic selection that allows yield prediction
for many thousands of untested genotypes based on their genomic
information3,4. In this approach, the measurement of other traits is
most often limited to crop cycle duration, which defines the grow-
ing areas in which resulting genotypes can be grown, and to traits
that may jeopardize the commercialization of selected candidates,
such as resistance to diseases or quality performance (e.g. oil con-
tent or protein content in rape seed and wheat, respectively)5.
However, in the context of climate change, other traits that affect

light interception, plant development, transpiration and growth are
important for predicting, via statistical or crop models, the suit-
ability of genotypes to future environmental conditions6–8. Fur-
thermore, a recent analysis of maize genetic progress suggests that
physiological traits involved in plant response to heat and drought,
such as leaf growth rate or stomatal conductance, have not been
improved over the last 60 years of maize selection9. Yield was
improved via other traits such as the fine-tuning of phenology and
the constitutive increase of grain number, but physiological adap-
tive traits are still a potential reservoir of interesting alleles for cli-
mate change9.

The progress of high-throughput phenotyping now allows one
to measure physiological traits for hundreds of genotypes. Robot-
ized indoor phenotyping platforms allow estimation, with typical

Received: 30 April 2023

Accepted: 6 October 2023

Check for updates

1LEPSE, Univ Montpellier, INRAE, Montpellier, France. 2ARVALIS, Chemin de la côte vieille, Baziège, France. 3GQE-Le Moulon, INRAE, Université Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France. 4ARVALIS, 45 Voie Romaine, Ouzouer-Le-Marché, Beauce La Romaine, France. 5DIA-
SCOPE, Univ Montpellier, INRAE, Montpellier, France. 6ARVALIS, Station de recherche et d’expérimentation, Boigneville, France.

e-mail: francois.tardieu@inrae.fr

Nature Communications |         (2023) 14:6603 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0001-0071-210X
http://orcid.org/0009-0001-0071-210X
http://orcid.org/0009-0001-0071-210X
http://orcid.org/0009-0001-0071-210X
http://orcid.org/0009-0001-0071-210X
http://orcid.org/0000-0002-8275-1259
http://orcid.org/0000-0002-8275-1259
http://orcid.org/0000-0002-8275-1259
http://orcid.org/0000-0002-8275-1259
http://orcid.org/0000-0002-8275-1259
http://orcid.org/0000-0003-1349-8330
http://orcid.org/0000-0003-1349-8330
http://orcid.org/0000-0003-1349-8330
http://orcid.org/0000-0003-1349-8330
http://orcid.org/0000-0003-1349-8330
http://orcid.org/0000-0002-7287-0094
http://orcid.org/0000-0002-7287-0094
http://orcid.org/0000-0002-7287-0094
http://orcid.org/0000-0002-7287-0094
http://orcid.org/0000-0002-7287-0094
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42298-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42298-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42298-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42298-z&domain=pdf
mailto:francois.tardieu@inrae.fr


time definitions of some minutes to one day, of traits that underlie
the genetic variability of leaf area and their responses to environ-
mental conditions, e.g. leaf expansion rate, leaf width, phyllochron
and leaf number10–13. They also allow estimation of traits controlling
transpiration, e.g. stomatal conductance14 and those controlling
plant architecture, e.g. the vertical distribution of leaf area and the
azimuthal distribution of leaves along the stem, with good
heritability15. Then, light interception, transpiration, and radiation
use efficiency can be simulated in virtual field canopies, which
reproduce 3D plants characterized in the indoor platform15–17. Field
phenotyping also allows measuring leaf area at several dates, for
hundreds of genotypes in different fields characterized by mea-
sured environmental conditions18–20. This can result in the estima-
tion of intercepted light in the same fields and, via model inversion,
of leaf area and plant architecture21–23.

However, the use in breeding of these physiological and growth-
related traits faces the difficulty of their high sensitivity to environ-
mental conditions, resulting in large genotype x environment
interactions24–27. This difficulty is not limited to the extrapolation of
trait values from indoor to field conditions: most of these traits also
largely vary between fields depending on environmental conditions,
making difficult the prediction of traits in one field from those mea-
sured in another field24,28,29. The relationship between these traits and
yield is also highly depending on environmental scenarios30,31. Conse-
quently, physiological adaptive traits have not been considered per se
in breeding programs9,32.

The recent development of speed breeding in controlled con-
ditions may offer new opportunities for selection strategies invol-
ving plant traits. Speed breeding reduces the duration of each
generation by setting environmental conditions favouring rapid

development, thereby allowing up to eight generations of selection
per year33,34. Yield and agronomic traits like disease resistance are
predicted based on genomic information at each generation, while a
full phenotyping of the most promising genotypes is carried out in
the field after some generations35. However, this approach also
potentially includes, in breeding schemes, other traits measured
indoor for training a prediction model used in genomic selection,
and phenotyped for selected candidates after a few generations. For
instance, in wheat, Watson et al.36 performed speed breeding
involving the length of flag leaves and ear length, in addition to
yield. Conditions for the use of speed breeding in our case are that
physiological adaptive traits translate from indoor conditions to the
field, and are accurate enough to make it feasible to implement
rapid cycling based on indoor phenotyping and genomic predic-
tion. Three panels of maize hybrids were used to test these condi-
tions (Table 1, Supplementary Table 1): a ‘diversity panel’ with 246
hybrids31, a ‘genetic progress panel’ with a historical series of 56
commercial hybrids9 and a ‘recent hybrids panel’ with 86 commer-
cial hybrids marketed from 2008 to 2020 (most indoor measure-
ments on 20 contrasting hybrids, Supplementary Data 1 and
Supplementary Table 2).

In thiswork,wefirst show thatgenotypic values of traitsmeasured
indoor closely correlate with those in the field, either directly or via
modeling (Table 2). We then show that, although absolute trait values
differ if measured indoor or in the field, they still follow common
trends in response to environmental conditions, and canbe inferredby
using an ecophysiological model. Finally, we examine to what extent
measurements in indoor platforms can serve to train statistical pre-
diction models that estimate genotypic values of traits based on
genomic information only (Table 2).

Table 1 | Summary of variance components and genomic heritability of considered traits

Trait Unit Panel #
Hyb

#
Rep

Mean value hg
2 σg

2 σa
2 σd

2 σe
2

Leaf appearance rate (LAR) Leaf/ day20°C Diversity panel 246 11 0.251 0.63 1.4E-04 1.1E-04 3.4E-05 8.1E-05

Genetic pro-
gress panel

56 7 0.265 0.63 1.7E-04 9.2E-05 7.4E-05 9.9E-05

Recent hybridspanel 50 3 0.262 0.56 4.8E-05 2.5E-05 2.3E-05 3.7E-05

Vegetative phase duration Days20 °C Diversity panel 246 12 68.22 0.82 4.25 3.66 0.59 0.95

Genetic pro-
gress panel

56 7 63.34 0.71 7.39 5.20 2.19 3.05

Recent hybridspanel 60 9 65.02 0.68 2.11 1.24 0.86 0.99

rhPAD (relative height at 50% of
leaf area)

Unitless Diversity panel 246 11 0.308 0.74 7.8E-04 6.3E-04 1.4E-04 2.7E-04

Genetic pro-
gress panel

56 7 0.279 0.69 1.5E-03 9.9E-04 4.9E-04 6.8E-04

Recent hybridspanel 20 3 0.360 0.54 1.1E-03 5.3E-04 5.2E-04 9.1E-04

Stomatal conductance (gsmax) mmol/m2/s Diversity panel 246 11 108.4 0.48 57.2 38.4 18.8 61.2

Genetic pro-
gress panel

56 7 119.8 0.53 61.77 31.35 30.42 54.02

Recent hybridspanel – – – – – – – –

Leaf expansion rate (LER) cm2/day20 °C Diversity panel 246 11 134.6 0.61 107.6 76.2 31.3 69.0

Genetic pro-
gress panel

56 7 163.9 0.62 343.8 215.0 128.8 211.5

Recent hybridspanel 20 3 146.9 0.54 221.6 110.0 111.5 185.5

Leaf area index (LAI) Unitless Diversity panel – – – – – – – –

Genetic pro-
gress panel

56 7 3.65 0.66 0.23 0.15 0.08 0.13

Recent hybridspanel – – – – – – – –

#Hyb, number of hybrids; for the recent hybrids panel, it is defined by the number of hybrids in the considered fields or in the indoor experiment. #Rep, number of independent values calculated for
the considered trait. hg

2, genomic heritability (narrow-sense, see Methods), σg
2, total genetic variance. σa

2 and σd
2, variances explained by additive and dominance relationship matrices72,

respectively. σe
2, residual variance. For estimations per experiment, see Supplementary Table 3.
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Results
Traits measured indoor correlated with those in the field,
depending on categories of traits
A genetic approach based on indoor trait measurements requires that
the latter are genetically correlated tomeasurements of the same traits
in the field. However, such comparison is not always possible, because
robotized indoor phenotyping can measure traits that would be
impossible, or very tedious, to measure in the field, such as stomatal
conductance or the 3D leaf distribution on the plant stem. Conversely,
some traits measured indoor are largely irrelevant to the field, in
particular those performed onwhole canopies. Hence, comparisons of
the genetic variability of trait values obtained indoor and in the field
face different levels of difficulty depending on traits. We focused our
study on traits that are heritable and have a direct impact on biomass
accumulation (Table 1 and Supplementary Table 3). They present
contrasting ‘phenotypic distances’37 between indoor and field mea-
surements, thereby causing different degrees of complexity.

Leaf appearance rate (LAR) represents the simplest case, as it is
measured with the same protocol indoor and in the field. Its genomic
heritability was 0.63 in the diversity and genetic progress panels
(Table 1). In the ‘recent hybrid panel’ (Fig. 1 and Supplementary
Tables 2 and 4), correlations between genotypic values indoor and in
the field (Fig. 1a and Table 2) were measured either via correlations
between BLUEs estimated values or via genetic correlations assessed
with a multivariate mixed model38,39. As expected40, genetic correla-
tions were lower than correlations between BLUEs, but were still

significant (p-value < 0.02). In both cases (Table 2), they were slightly
higher than those between one field and another field (Fig. 1b; r = 0.57,
n = 21, p-value = 0.007 and r =0.49, n = 26, p-value = 0.011, respec-
tively, for correlations between BLUEs). The latter are considered here
as a benchmark for evaluating the quality of translation from indoor to
field experiments. Importantly, the ranking of hybrids and their dis-
tribution in highest and lowest quartiles were essentially conserved
between indoor and field conditions, a necessary condition for
breeding (Supplementary Table 4). Furthermore, these correlations
and rankings were similar to those between fields for the duration of
the vegetative phase, a trait that is commonly measured in breeding
programmes (Fig. 2a, b).

Plant architecture is a more difficult case because its measure-
ment relies on different principles in indoor vs field experiments
(Fig. 3, Table 2, and Supplementary Tables 2 and 4). The architectural
trait considered indoor (rhPAD)was derived from3D reconstructions of
individual plants, via the difference in altitude between the top of the
plant and the point where half of leaf area is reached, normalized by
plant height15. This trait is closely related to light interception by a
canopy15 and had high heritability (Table 1). It cannot be measured in
the field, where 3D reconstruction of individual plants cannot be

Fig. 1 | Leaf appearance rate (LAR) translated fromplatform to field, and could
be inferred via genomic prediction. a Correlations between genotypic values
measured indoor and in a field. b Correlations between one field and another field
were similar to those between indoor and a field. c Comparison of observed mean
genotypic values and mean predicted values (G-BLUPs) in a 5-fold cross-validation
scheme with 10 iterations. d Comparison of observed mean genotypic values and
predicted values in the independent dataset, with observed values originating from
data of a, b (BLUEs) and G-BLUP model calibration made using dataset of c. In
a, b and d light blue circles,mid-early hybrids (G2), dark blue squares, intermediate
hybrids (G3), red triangles, mid-late hybrids (G4). In c, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In a, r = 0.57 (95% CI = 0.19–0.81), n = 21, df = 19, p-value = 0.007,
CVRMSE = 7.7%. In b, r = 0.49 (95% CI = 0.12–0.74), n = 26, df = 24, p-value = 0.011,
CVRMSE = 5.3%, In c, r =0.58 (95% CI = 0.50–0.65), n = 302, df = 299, p-value < 2.2E-
16, CVRMSE = 5.2%. In d, r =0.53 (95% CI = 0.30–0.71), n = 50, df = 48, p-value = 6.3E-
05, CVRMSE = 2.8%. Significance of the correlation coefficients was tested using two-
sided t-test. For spearman correlation of ranks (rho) and other statistics, see Sup-
plementary Tables 4 and 5. Source data are provided as a Source Data file.
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performed. Conversely, drone imaging in the field results in the cal-
culation of a related trait, the Average Leaf inclination Angle (ALA),
derived from the inversion of the radiative transfer model
‘PROSAIL’41,42, which takes into account the deviation of light inter-
ception efficiency of a given canopy in relation to a standard canopy
having the same leaf area. Thegenotypic values ofALAmeasured in the
field correlated to those of rhPAD measured in a phenotyping platform
in an experiment with 56maize hybrids of the ‘genetic progress’ panel
(Fig. 3b, Field 5, Supplementary Tables 2 and 4). The same applied to
20 hybrids of the ‘recent hybrids’ panel in two field experiments, with
good relationships between rhPAD and ALA (Fig. 3c, d), high heritability
of both variables (Supplementary Fig. 1) and good conservation of
lowest and highest quartiles (Supplementary Table 4). Notably, ALA
values and heritability were sensitive to crop phenological stage

whereas those of rhPAD were more stable (Supplementary Fig. 1).
Hence, architectural data collected indoor were, in this case, appro-
priate for characterizing each genotype inmodels of light interception,
whereas ALA measured in the field would be more complex to use in
this context.

In the same way, the leaf expansion rate of individual plants (LER)
can only be measured indoor, with good heritability (Table 1)43. Cor-
responding measurements in the field are leaf area or leaf dimensions
at given dates, so direct comparisons were not possible. However, we
show below that the final width and length of maize 8th leaf matched
between indoor and field conditions for the diversity panel. Hence,
final leaf dimensions potentially allow indirect calculation of LER in the
field44.

Leaf area index (LAI), a key feature for light interception and
transpiration, is defined for a fraction of field canopy (typically 1m2).
Although heritable within a given field, it largely differs between fields
in relation to environmental conditions and plant density45. It can be
measured indoor, but a direct comparison with the field would make
no sense because the density and spatial arrangement of plants in
indoor experiments make the considered canopy irrelevant to the
field24,46. Indeed, LAImeasured in thefieldwas not correlated to the LAI
calculated by considering plant leaf areameasured indoor at flowering
time, multiplied by the plant density in the corresponding field (Sup-
plementary Fig. 2, r = −0.25, n = 51, p-value = 0.073). This was because
environmental conditions and management practices were too dif-
ferent between the greenhouse and the field. Instead, we calculated
LAI based on the genotypic values of upstream traits measured indoor
(Table 2 and Fig. 4). We compared (i) measured values in the field,
obtained via UAV imaging and the inversion of the PROSAIL radiative
transfer model41,42 with (ii) the LAI simulated by a crop model11. Model
inputs were the genotypic values of four traits measured in indoor
platform (LAR, maximum leaf growth rate (LER), responses of leaf
growth rate to VPD and soil water potential, and final leaf number),
plus plant density and the environmental conditions recorded every
hour in the considered field. The correspondence between measured
and estimated LAI, tested on the ‘genetic progress’ panel suggested
that this approach is promising in well-watered (WW) condition
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(r =0.64, n = 51, p-value = 3.6E-07, Fig. 4a), and even in water-deficit
(WD) condition although the indoor platform experiment was per-
formed inWWcondition, except for the response of leaf growth rate to
soil water potential (r = 0.44, n = 51, p-value = 1.3E-03, Fig. 4b and
Supplementary Table 4). Notably, the PROSAIL model inversion
allowing LAI estimation in the field always resulted in values lower than
4.5 for all hybrids. When the real LAI was higher, light interception
efficiency was close to 100%, somodel inversion could not provide LAI
values higher than 4.547.

Finally, stomatal conductance is a difficult case in which traits
cannot be directly measured at high throughput, either in the field or
in indoor platforms. Its measurement for one leaf requires between 3
and 15min, depending on the considered device, making high-
throughput measurements impossible. However, it can be indirectly
estimated at plant level in platform experiments by inversion of the
Penman-Monteith equation, based on measurements of individual
plant transpiration, leaf area, light, and VPD14. Resulting estimations of
whole-plant stomatal conductance were well related to leaf stomatal
conductance measured via gas exchange, between well-watered and
water deficit treatments (Fig. 5a and Supplementary Table 1), but also
between genotypes in the well-watered treatment (r2 = 0.54).

Overall, the ranking of genotypes for leaf appearance rate, plant
architecture, and LAI were consistent between field and indoor con-
ditions, thereby opening the way for a prediction of values in the field
based on platform information (Table 2 and Supplementary Table 4).
This could not be tested for stomatal conductance, for which field
measurements cannot be performed and indirect measurements via
canopy temperature are not precise enough in non-extreme
conditions.

The differences in absolute values of traits between indoor and
fields were accounted for by environmental conditions
Beyond the correlations between genotypic values of traits measured
indoor and in the field, it is the absolute values of traits, measured in
each experiment, that eventually drive the adaptation of studied
genotypes to drought and high temperature. For example, a correct
estimation of genotype ranking for LAI has a very small impact on light
interception if all genotypes have a LAI higher than 4, whereas the
same genotype ranking in a range of LAI from 2 to 4 has a large
impact47. Meta-analyses showed that phenotypic values differ between
controlled conditions and field24, but they also largely vary from one
field to another one11,24. Hence, we tested if the difficulty for translating
values between two experiments may not be specific to field – plat-
form comparisons, but applies to comparisons between any environ-
ment and another one, depending on environmental conditions in
each experiment.

This hypothesis was first tested by examining the mean absolute
values of maize leaf length and width between field and indoor plat-
forms for the diversity panel in Lacube et al.44. A superficial analysis
would suggest that the mean dimensions of leaf 8 largely differed
between indoor and field conditions, with a mean leaf length of 115 vs
76 cm, respectively, and a mean leaf width of 6.8 cm vs 7.5 cm,
respectively (note the inversion of ranking between the two traits).
However, leaf dimensions also largely varied among field experiments,
from 6.8 to 10 cm for leaf width and from 68 to 102 cm for leaf length
(Fig. 6a, b). We showed earlier that leaf width depends on the amount
of light intercepted during the growth of the considered leaf44.
Accordingly, leaf width in the field was linearly related to the cumu-
lated intercepted light (r =0.83,n = 64,p-value < 2.2E-16), and the same
relationship accounted for the difference between experiments in
fields and platform (Fig. 6a). In the same way, the large variability of
leaf length, infield and controlled conditions,was accounted for by the
vapor pressure deficit (VPD) during leaf growth (Fig. 6b, r = −0.62,
n = 44, p-value = 6.2E-06), consistent with studies showing a linear
effect of VPDon leaf elongation rate43. Hence, leafwidth and length did

not differ intrinsically between indoor and field conditions: differences
were accounted for by the same environmental conditions than those
that accounted for differences between one field and another one, and
could be calculated via a crop model11.

A similar case occurred with temperature-dependent traits, such
as the duration of the vegetative phase (Fields 1, 2, and 3, Supple-
mentary Table 2) or leaf appearance rate (Fields 1, 3 and PhenoArch,
Supplementary Table 2). When expressed in calendar time, these trait
values differed greatly between environments (Supplementary Fig. 3a,
b), whereas theywere consistent if the effect of temperaturewas taken
into account via a model of thermal time48,49. Expressed in this way,
measured values were similar between field experiments for the
duration of the vegetative phase and for LAR (Figs. 2a, b and 1b,
respectively) or between a field experiment and an indoor platform
experiment (Fig. 1a), although some differences still existed between
experiments (CVRMSE = 4.4% and7% inFig. 2a, b, CVRMSE = 5.3%and 7.7%
in Fig. 1a, b). Among possibilities for explaining such differences in
duration of the vegetative phase and LAR, the frequency of field visits
was three days on average, but slightly differed between experiments.

Overall, values translation from indoor platforms to field, and
fromone field to another field, could be carried out for a range of traits
by taking into account appropriate environmental variables.

Measurements in indoor platforms can be used for genomic
prediction of traits
High-throughput phenotyping allows characterization of some hun-
dreds of genotypes (at most) whereas many thousands of genotypes
are required for breeding3,4. In the sameway, it would not be feasible to
phenotype the offspring at eachgeneration of speedbreeding because
of the resulting cost and workload34,36. Hence, the use of physiological
traits in breeding requires one’s ability to predict them based on
genomic information, as it is the case for yield50,51. We have tested this
possibility for the traits presented in the former paragraphs. Briefly, we
trained a G-BLUP model based on the 246 hybrids of the ‘diversity
panel’ and the 56 hybrids of the ‘genetic progress’ panel (Supple-
mentary Table 1). This training was performed with the genotypic
means (BLUEs over the experiments carried out in Millet et al.31 and
Welcker et al.9) of the duration of the vegetative phase, the leaf
appearance rate, maximum leaf expansion rate (calculated with two
methods based on different assumptions, see “Methods” section), the
architectural trait rhPAD and stomatal conductance. Predictions were
performed using the genomic information at 440 000 polymorphic
SNPs. Prediction accuracies and RMSEs were assessed either with a
5-fold cross-validation (CV1) scheme28 (random sampling of hybrids
using a stratification strategy for respecting the proportions of genetic
groups, Supplementary Fig. 4), or with an external validation set made
of genotypic trait means estimated in the ‘recent hybrids panel’
(independent experiments, Supplementary Data 1).

Cross-validation provided good quality of prediction for studied
traits, assessed either by the correlation (r) between observed BLUEs
and predicted G-BLUPs values, or by the prediction accuracy of
genomic selection (Acc), calculated by dividing the correlation coef-
ficient (r) by the square root of trait genomic heritability52,53 (Table 2).
This was the case for leaf appearance rate (r =0.58, n = 302, p-value <
2.2E-16, CVRMSE = 5.2% in Fig. 1c), leaf expansion rate (r = 0.76, n = 302,
p-value < 2.2E-16, CVRMSE = 8.7% in Fig. 7a), rhPAD (r = 0.65, n = 302, p-
value < 2.2E-16, CVRMSE = 9.4% in Fig. 3e) and stomatal conductance
(r =0.56, n = 302, p-value < 2.2E-16, CVRMSE = 8.4% in Fig. 5b) (Supple-
mentary Table 5). These values are similar but slightly lower than those
for the duration of the vegetative phase in our study (r =0.84, n = 302,
p-value < 2.2E-16, CVRMSE = 2.7% in Fig. 2c), and for yield or flowering
time traits in other studies51,54–56. Notably, genomic prediction with
G-BLUPmodel performed similarly for the genotypes originating from
the two panels, in spite of the difference in structure and origins of
these panels (Supplementary Fig. 5) and the fact that measurements
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were performed in different experiments. Furthermore, when pre-
dicting traits with a PC-BLUP model that is used as predictors the
genotypes coordinates on the first five axes of SNP PCoA (Principal
Coordinate Analysis) of the panels (Supplementary Fig. 5), the pre-
diction quality decreasedwhen considering individual clouds ofpoints
corresponding to each panel (Supplementary Fig. 6 and Supplemen-
tary Table 6).

The range of G-BLUP predicted values was expectedly smaller, for
all tested traits, than that of observed values. This bias is linked to the
fact that the narrow-sense heritability estimated using genomic addi-
tive and dominance relationships of studied traits was lower than 1
(0.68–0.82, 0.56–0.63, 0.54–0.62, 0.54–0.74, and 0.48–0.53 for the
duration of the vegetative phase, LAR, leaf expansion rate, rhPAD and

stomatal conductance, respectively, Table 1). Hence, the prediction
based on genomic information covered a smaller range of values than
original data.

The external validation was amore challenging scheme, where we
tried to predict the performance of new genotypes evaluated in new
independent experiments. Moreover, the ‘recent hybrids panel’ used
here covered smaller ranges of trait phenotypic values than those in
the ‘diversity’ and ‘genetic progress’ panels considered jointly. Con-
sequently, the comparison of observed vs G-BLUP predicted values led
to lower prediction accuracies than in the case of cross-validation (r
ranged between 0.34 and 0.71, Table 2). This applied to traits mea-
sured indoor (LAR, Fig. 1d, LER, Fig. 7b and rhPAD, Fig. 3f) as well as for
the duration of the vegetative phase measured in the field (Fig. 2d and
Supplementary Table 5), so this problem was not specific of indoor
genomic prediction. The external validation using the simple PC-BLUP
model resulted in much lower prediction accuracies than that using
the G-BLUPmodel (Supplementary Fig. 6 and Supplementary Table 6).
This suggests that G-BLUP predictions captured genetic effects
beyond that explained by population structure.

Discussion
Three conditions can be considered as requirements for traits mea-
sured indoor to be used in trait-based selection in a context of climate
change. Firstly, traits measured indoor should be genetically corre-
lated to those infields (regardless of absolute values either indooror in
eachfield), so indoor breeding is relevant tofield conditions. Secondly,
the absolute value of indoor traits should translate to that infieldswith
diverse climate scenarios, either directly or via models. Finally, indoor
traits need to be predicted with sufficient accuracy from the genomic
information of non-phenotyped genotypes.

The traits presented here satisfied the first condition. Close cor-
relations were observed between the genotypic values of traits mea-
sured indoor and in multi-site field experiments. This was the case
when the considered trait wasmeasured with similar protocols indoor
or in the field, for instance leaf appearance rate or the duration of the
vegetative phase. It was also the casewhen the trait wasmeasuredwith
different methods as in the case of plant architecture. Finally, the
integrated trait LAI, which is highly dependent on the plant density and
environmental conditions in the considered canopy, required a
method involving crop modeling. The correlations observed in these
three cases between indoor platform and fields are therefore higher
(r=0.57 to 0.77, Table 2) than those reported by Poorter et al.24 for a
set of growth-related traits meta-analysis (median r=0.51). Two rea-
sonsmay explain this disparity. (i) Traits considered in Poorter’s meta-
analysis, namely yield, leaf nitrogen concentration and specific leaf
area are more integrated than those studied here (except LAI) and,
therefore more prone to high genotype x environment interactions
and changes in the ranking of genotypes. (ii) The traits studied here
hadmoderate to high heritabilities over experiments, thereby showing
a low residual variance resulting from experimental errors. Further-
more, measuring yield, yield components, or leaf area index in phe-
notyping platforms is probably not relevant because these traits result
from cumulative processes over a long period, during which condi-
tions indoor are very different from those in the field. The methods
presented here for comparing indoor and field trait values con-
siderably reduced the genotype x environment interaction (GEI) for
such integrated traits. For example, a direct comparison of LAI indoor
and in the field resulted in a high GEI, without correlation between
them. Conversely, the GEI was largely reduced when upstream traits
measured indoor (with a low GEI) were combined, via a crop model,
with the management practices and environmental conditions in the
considered field37.

The second condition, namely that trait values can translate from
indoor conditions to a diversity of fields, was fulfilled for the traits
reported here if the differences in environmental conditions were
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taken into account, thereby dealing with the GEI via a previously
reported model31.

• Modeling temperature effects allowed consistency between
field and platform experiments for leaf appearance rate and the
duration of the vegetative phase in this study. This result can be
generalized to traits related to the progression of plant devel-
opment of many species. In particular, germination rate, leaf
appearance rate, the reciprocal of the duration of growth of
individual leaves and reproductive organs are common to a large
range of environments if they are expressed in thermal time57.
Crop models, based on this result, successfully predict plant
phenology in wide ranges of environments8,30.

• The amount of intercepted light was also needed for other traits
to be consistent between experiments. Thiswas the casehere for
maize leaf width measured indoor and in several fields. Beyond
this particular trait, Monteith showed that biomass accumula-
tion is proportional to the cumulated light intercepted by
plants47. In particular, we showed that, in a series of experiments
with maize, the time course of plant biomass largely differed
between experiments but was consistent if expressed as a
function of intercepted light16. Again, crop models based on
intercepted light can predict plant biomass accumulation with
reasonable accuracy30,58.

• Plant water status was, in addition, necessary to account for
differences in traits related to organ expansive growth (expres-
sed in terms of volume or length). Its effect can be predicted
from the cell scale59 to the organ scale60–62. Here, this was the
case for leaf length in well-irrigatedmaize fields, as a function of
air VPD. Leaf elongation rate is closely related to a combination
of soil water potential and VPD inmaize, fescue, or barley60,63, so
our result can probably be extended to other species. Stomatal
conductance can also be predicted from a combination of soil
water status, evaporative demand, and incident light via
functional models involving chemical and hydraulic signals64.
Crop models that take into account light, soil water content and
evaporative demand can predict stomatal conductance and net
photosynthesis by simulating physiological processes65,66, so
photosynthesis in controlled conditions can be extended to a
range of field conditions66.

Overall, we confirmed that raw phenotypic traits cannot translate
directly from indoor platforms to fields, as reviewed in Poorter et al.24.
However, taking into account specific environmental conditions
allowed this translation for the traits presented here, which depend on
one or two environmental conditions. Again, more integrated traits
such as leaf area index, grain number or grain yield measured in a
platform cannot be directly extended to field via simple relationships
as presented in former paragraphs. These traits can be predicted in a
range of field conditions based on genotype-specific parameters and
environmental conditions measured in the considered fields. This was
the case here for leaf area index, butwas also the case for grainnumber
and grain yield in a multi-site field experiments, based on a mixed
model involving genetic parameters and environmental conditions31.

The third condition is that traits can be predicted from genomic
information. Here, cross-validation based on a large genetic range
showed good results (compared to Guo et al.56, Yuan et al.55, or Toda
et al.51), with r ranging from 0.56 to 0.84 for the studied traits (Table 2
and Supplementary Table 5). External validation on the panel of recent
hybrid varieties provided less accurate results, but correlations
between predicted and observed values still ranged from 0.34 to 0.71
and mostly with significant p-values (from 1.5 E-10 to 0.14) and
acceptable CV of errors (from 2.5% to 15.6%) (Supplementary Table 5).
By using this panel for external validation, we chose the most chal-
lenging case, in which one attempts to use a genomic prediction
model, trained with a panel with wide genetic variability, to predict
elite genotypes that have a reduced phenotypic variability for studied
traits. Hence, our results could not be considered as fully satisfactory if
the purpose was to rank elite genotypes (Supplementary Table 5).
Conversely, the cross-validation in a wider genetic range suggests that
genomic prediction may be used for identifying genotypes with high
or low genotypic values for studied traits in breeding populations with
higher genetic and phenotypic variabilities. This allows the design of
ideotypes with contrasting strategies in relation to water and heat
stress, namely ‘conservative’ ideotypes with low stomatal con-
ductance, leaf growth, leaf appearance rate, for stress-prone areas, vs
‘spender’ ideotypes with highest values for each of these traits.
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Fig. 6 | Leafwidth and length responded similarly to environmental conditions
in fields and indoor platforms. a Relationship between leaf width and the
cumulated light intercepted byplants during leafwidening.bRelationship between
leaf length and leaf-to-air vapor pressure deficit (VPDla: mean of maximum daily
values) during leaf elongation. Each point, one experiment and leaf rank. Leafwidth
and length values of four leaf ranks (8–11, circles, squares, diamonds and triangles,
respectively) were corrected for leaf rank so equivalent values for leaf 8 are
presented44. Blue dots: field, red dots: indoor platform. Black lines, linear regres-
sions. In a, r =0.83 (95% CI = 0.73-0.89), n = 64, df = 62, p-value < 2.2E-16. In
b, r = −0.62 (95% CI = −0.78-0.40), n = 44, df = 42, p-value = 6.2E-06. Significance of
the correlation coefficients was tested using two-sided t-test. Source data are
provided as a Source Data file.
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Methods
Genetic materials
Three panels ofmaize hybrids were used in this study (Supplementary
Table 1). First, a diversity panel included 246hybrids resulting from the
cross of a common flint parent (UH007) with 246 dent lines that
maximized the diversity in the dent group while keeping a restricted
flowering window31,67. This panel involved four genetic groups, namely
Iodent (39 hybrids), Lancaster (45 hybrids), Stiff-Stalk (55 hybrids), and
diverse-dent hybrids (107) consisting in an admixture of the former
three groups67. Second, a ‘genetic progress’ panel included 56 highly
successful commercial hybrids released on the European market from
1950 to 20159. This panel showed a limited range of maturity classes,

from mid-early (FAO 280) to mid-late (FAO 480), covering the largest
growing area in Europe. Finally, a ‘recent hybrids’ panel included 86
commercial hybrids released from 2008 to 2020, belonging to mid-
early tomid-latematurity classes (Supplementary Data 1). Yield data in
30 sites x 2 years per hybrid were available at the beginning of this
study (ARVALIS, www.varmais.fr).

Platform experiments
Platform experiments were performed in PhenoArch, an indoor
robotized and image-based phenotyping platform that allows precise
measurement of plant architecture, plant phenology and growth,
transpiration, stomatal conductance and water use efficiency (https://
www6.montpellier.inrae.fr/lepse/Plateformes-de-phenotypage-M3P/
Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch)16 hosted at
Montpellier Plant Phenotyping Platforms (M3P). The diversity panel
was evaluated in four experiments (in spring 2012, 2013, and 2016, and
winter 2013) as described in Prado et al.14. Three or two plants per
hybrid were grown depending on the experiment (Supplementary
Table 1). The ‘genetic progress’ panel was evaluated in four experi-
ments, with most data used here originating from an experiment with
seven replicates per hybrid9. A subset of 20 hybrids of the ‘recent
hybrids’ panel was evaluated in one experiment during winter 2021,
with three replicates per hybrid. All experiments followed an alpha-
lattice design, with two levels of soil water content imposed, namely
retention capacity (well‐watered, soil water potential of −0.05MPa)
and water deficit (soil water potential from −0.3 to −0.6MPa
depending on the experiment). Soil water content in pots was main-
tained at target values by compensating transpired water three times
per day via individual measurements of each plant16. Soil water
potential was estimated from soil water content based on a water
release curve14. Air temperature and humidity were measured at six
positions in the platform every 15min. Daily incident photosynthetic
photon flux density (PPFD) over each plant within the platform was
estimated by combining a 2D map of light transmission, and the out-
side PPFD measured every 15min with a sensor placed on the green-
house roof16. The greenhouse temperature wasmaintained at 25 ± 4 °C
during the day and 17 ± 2 °C during the night. Supplemental light was
provided either during daytime when external solar radiation was
below 300Wm−2 or to extend the photoperiod by using 400W HPS
Plantastar lamps.

In each experiment, the number of visible leaves of every plant
was manually scored weekly during the vegetative phase. Leaf
appearance rate (LAR, reciprocal of the phyllochron) was calculated as
the slope of the linear relationship between the number of visible
leaves and thermal time, during the period from plant emergence to
12-leaf stage. Red‐Green‐Blue (2056× 2454) images taken from13 views
(12 side views from 30° rotational difference and one top view) were
captured daily for each plant during the night. Plant pixels from each
image were segmented from those of the background and used for
estimating the whole plant leaf area and fresh biomass68. The time
courses of leaf area and plant fresh biomass were then fitted indivi-
dually by using P-spline growth curve models69. The architectural trait
rhPAD was calculated daily from 3D reconstructions of each plant,
based on RGB images at PhenoArch platform15. rhPAD index repre-
sented the point in the distribution of leaf area along the stem (from
the top of the plant, relative to total plant height) where half of the
cumulative leaf area is reached. Whole‐plant stomatal conductance
was calculated over 4 time‐periods per day for 20 days for each hybrid
plant in PhenoArch platform, via inversion of the Penman–Monteith
equation based on transpiration, plant growth, net radiation and VPD
collected in the experiment14. Its value under saturating light was
estimated for each hybrid by combining coupled values of stomatal
conductance and incident light observed in all experiments. The
maximum leaf expansion rate (LER) was extracted from time courses
of leaf area in the platform and corresponded to the maximum first-
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Fig. 7 | Maximum leaf expansion rate (LER) could be predicted from genomic
information via cross-validations in panels with large phenotypic variability
but predictions were not accurate for the independent dataset. a Comparison
of observedmean genotypic values andmean (G-BLUP) predicted values in a 5-fold
cross-validation scheme with 10 iterations for plant max leaf expansion rate (LER).
b Comparison of observed mean genotypic values and predicted values for
the recent hybrids dataset, with G-BLUP model calibration made using dataset of
a. LER (Leaf Expansion Rate) was extracted from time courses of leaf area in the
platform14 and determined as the slope of the linear regression between leaf area
and thermal time during the period from 24 to 45 d20°C. In a, purple empty circles,
diversity panel; red and yellow empty circles, genetic progress panel, hybrids
released before 1980 and 2000, respectively; green empty circles, hybrids released
after 2000. In b, light blue circles, mid-early hybrids (G2), dark blue squares,
intermediate hybrids (G3), red triangles, mid-late hybrids (G4). In a, r =0.76 (95%
CI = 0.71-0.82), n = 302, df = 297, p-value < 2.2E-16, CVRMSE = 8.7%. In b, r =0.34 (95%
CI = −0.12 ̶ 0.68), n = 20, df = 18, p-value =0.14, CVRMSE = 14.1%. Significance of the
correlation coefficients was tested using two-sided t-test. For rho and other sta-
tistics, see Supplementary Table 5. Source data are provided as a Source Data file.
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order derivative of P-spline fitted growth curves from 24 to 45 days at
20 °C after emergence69. Because this method provided somewhat
unstable results, we also calculated maximum LER as the slope of the
linear regression between leaf area and thermal time during the whole
period from 24 to 45 days at 20 °C.

Genotypic values (BLUEs) for each trait were estimated by cor-
recting raw traits values for spatial effects, by fitting a mixed model (R
package SpATS70,), with a fixed term for genotype and random effects
for rows and columns as well as a smooth surface defined on row and
column coordinates. Broad-sense heritabilities were calculated daily
with the same R package, using the samemodel but with the genotype
effect included as a random term. Regarding longitudinal traits, gen-
otypic values at individual time points, t, were obtained from their
smoothed time series using a generalized additive model fitted to the
spatially adjusted daily measurements, eyi,k tð Þ, for each plant k of gen-
otype i:

eyi,k tð Þ=αi + f i tð Þ+ ϵi,k tð Þ,ϵi,k tð Þ∼Nð0,σ2Þ ð1Þ

where αi is a genotype-specific intercept, fi (t) is a genotype-specific
thin plate regression spline function on time, and ϵi,k (t) is a random
error term (R package statgenHTP69,71,).

Genomic heritability (narrow-sense, hg
2) was estimated for each

trait, panel and experiment with a model considering genomic-based
additive and dominance relationship matrices72, using the R package
“BGLR”73.

Field experiments
The diversity panel was grown in 25 experiments (defined as combi-
nations of site × year ×water regime), either rainfed or irrigated, in ten
sites in 2012 or 201331. Sites were distributed on a west–east transect
for temperature and evaporative demand, across Europe at latitudes
from 44° to 49° N. The ‘genetic progress’ panel was grown in 26 field
experiments either rainfed or irrigated, in 16 European sites from2010
to 2017 spread along the same climatic transect as for experiments
with the diversity panel9. The ‘recent hybrids’ panel was grown in four
field experiments under irrigated conditions in the same range of
latitudes, in 2021 or 2022 in France (Supplementary Table 2). Experi-
ments followed an alpha-lattice design or randomized complete block
design (RCBD) and were split by varieties maturity classes (Supple-
mentary Table 2), each with three replicates of four-row plots, 6m
long. The targeted plant density was 9 plants m−2. In all experiments,
anthesis and silking dates were scored by visiting experiments every
third day. The number of appeared leaves was scored every week on
ten plants per hybrid during the vegetative phase, and leaf appearance
rate was calculated as in indoor experiments (Supplementary Table 2).

The duration of the vegetative phase was defined as the period
from plant emergence to anthesis, expressed in thermal time
(equivalent days at 20 °C)48. Leaf appearance rate was estimated as in
platform experiments.

UAV flights were performed three times in one experiment of the
‘genetic progress’ panel during the period from plant emergence to
flowering, and seven times in two experiments for the ‘recent hybrids’
panel during the same period (Supplementary Table 2). Quadcopter
drone (DJI Phantom 4) were equipped with a DJI multispectral camera
with 5.7mm focal length lens, acquiring 1600×1300pixel images. They
flew at a controlled altitude of 20m and a constant speed of 2.2m s−1

for about 20min per flight, with images captured at a one-second
interval. Flights were performed during clear and cloudless days
between 8:00 and 10:00 solar time. An automatic image-processing
pipeline was applied by Hiphen, Avignon, France (http://www.hiphen-
plant.com), following methods presented in Blancon et al.20. Environ-
mental variables were recorded every hour in all experiments,
including light, air temperature, relative humidity (RH), rainfall and
wind speed. Soil water potential was measured every day with

tensiometers at 30 and 60 cm depths with three or two replicates,
located in plots sown with a common reference hybrid.

The architectural trait ALA (Average Leaf inclination Angle to the
soil level) and Leaf Area Index (LAI) were calculated by inversion of the
PROSAIL model41,74, based on multispectral images of field UAV flights.
The PROSAIL model couples the PROSPECT leaf optical properties
model with the SAIL canopy bidirectional reflectancemodel. It links the
spectral variation of canopy reflectance, which is mainly related to leaf
biochemical contents, with its directional variation, which is primarily
related to canopy architecture and soil/vegetation contrast75. This link
allows simultaneous estimation of canopy biophysical/structural vari-
ables from remote sensing, including ALA and LAI traits42,76.

Leaf area index was also calculated by using a crop model (APSIM
model as modified in Lacube et al.11) parameterized with the genotypic
values (BLUEs) of four traits measured in PhenoArch platform (LAR,
maximum leaf growth rate, response of leaf growth rate to VPD and
final leaf number), plus the environmental and growing conditions
recorded in the considered field.

Spatial corrections, calculations of genotypic values and herit-
abilities of traits were performed with the same methods as in indoor
experiments.

Correlation analysis between experiments
Pearson (r) and Spearman (rho) correlation coefficients were calcu-
lated to evaluate to which extent the genotypic values (BLUEs) of traits
match between experiments, either in one field and another one, or in
one field and the indoor platform. Both types of correlations was
performed on the hybrids that were common to considered experi-
ments (commonhybrids number ranged from18 to 56, Supplementary
Data 1 and Supplementary Table 4). The significance of correlation
coefficients was evaluated based on the null hypothesis that there is no
correlation between the variables (r or rho = 0). Genetic correlations
(rg) between experiments were also assessed, using a multivariate
Bayesian Gaussianmixedmodel, fitted for each couple of experiments
(bivariate analysis, Table 2), withMTMRpackage38,39. Model fittingwas
based on 60,000 iterations, after discarding 10,000 cycles for burn-in
period and using a thinning rate of 5. Each multivariate model imple-
mented had the form:

yi =μi1n +Zaiai +Zd id i + εi ð2Þ

where the subscript i refers to experiments (two experiments analyzed
jointly, with trait values measured either indoor and in a field or in two
different fields, Table 2), yi is the vector of trait values (BLUEs) of n
hybrids in the considered couple of experiments,μi is the overallmean
(intercept), a i is the vector of randomadditive genetic effects,d i is the
vector of random dominance effects and εi is the vector of random
residual effects. Zai and Zdi are the incidence matrices for a i and d i,
respectively.

Variance components were calculated assuming: a i ∼ MVN (0,
GA⊗Va) with GA as the genomic-based additive relationship matrix
described below and Va as the additive effects variance–covariance
matrix, d i∼MVN (0, GD⊗Vd) with GD as the genomic-based dominance
relationship matrix described below and Vd as the dominance effects
variance–covariance matrix, εi ∼ MVN (0, I⊗R) where I denotes the
identitymatrix and R is the residual effects variance–covariancematrix.

Standard errors (SE) of all correlation coefficients were estimated
using Bonett andWright approximations77. Additionally, the theoretical
accuracy of indirect selection (iAcc), i.e. in case of an indirect pheno-
typic selection based on observed values in a given experiment (indoor
or in a field), was calculated as the genetic correlation between the
considered couple of experiments, multiplied by the square root of
trait genomic heritability in the reference experiment for selection52

(Supplementary Table 4). Then, we quantified the efficiency of indirect
selection relative to a direct phenotypic selection in the targeted
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environment (Eff), by dividing the accuracy of indirect selection by the
square root of trait genomic heritability in the target field experiment52.

Rootmean squared error of estimations (RMSE) and bias showing
the discrepancy between experiments genotypic values (BLUEs) were
calculated too. We present them as a coefficient of variation of the
error (CVRMSE) or bias (CVBias), which is theRMSEor bias expressed as a
percentage of the mean value. Finally, to appreciate the consistency
between experiments of the highest and lowest genotypic values, we
evaluated the frequency of similar assignment to the highest or the
lowest quartile between experiments for each trait. This consisted of
estimating how many hybrids of the highest quartile of one experi-
ment were also present in the highest quartile of the other experiment
(Supplementary Table 4). The same was performed for the lowest
quartile.

Genotypic data and diversity analyses
All panelswere genotypedusing the600KAffymetrix®Axiom® array78.
Genotypes of the hybrids were either inferred from genotypes of the
parental lines (diversity panel) or resulted from the direct genotyping
of the hybrids (genetic progress and recent hybrids panels). After
quality control, 440,000polymorphic SNPswere retained for diversity
analyses and genomic prediction (excluding SNPs with minor allele
frequency lower than 0.05 and/ormissing values formore than 20% of
hybrids). Missing values were otherwise imputed using BEAGLE v379.

Genotypic data generated were organized as M matrices with N
rows and L columns, N and L being the panel size and number of
markers, respectively. Genotype of hybrid n at locus (SNP marker) j
was coded as 0 (the homozygote for B73 line allele), 1 (the hetero-
zygote) or 2 (the other homozygote). “snpReady” R package80 was
used to estimate observed heterozygosity as

Ho =
1
L

XL

j = 1
ðnHj=NÞ ð3Þ

and Nei’s index of genetic diversity as

Nei GD=
1
L
=
XL

j = 1
ð1� pj

2 � ð1� pjÞ2Þ ð4Þ

with N the number of hybrids, nHj is the number of heterozygous
hybrids at the jth biallelic locus, L is the total number of loci, and pj is
the frequency of the reference (B73 line allele) at locus j (Supple-
mentary Table 7). Principal Coordinate Analysis (PCoA) was also per-
formed on SNP markers data (Supplementary Fig. 5).

Genomic prediction model
Genomic predictions of each trait was performed with a genomic best
linear unbiased prediction model (GBLUP-AD), including random
additive and dominance effects:

y=μ1n +Zaa+Zdd + ε ð5Þ

where y is the vector of trait genotypicmeans (BLUEs over experiments)
of n hybrids, µ is the overall mean (intercept), a is the vector of random
additive genetic effects, and is assumed to follow a normal distribution
∼N (0, GAσa

2) with GA as the genomic-based additive relationshipmatrix
described below and σa

2 as the additive genetic variance; d is the vector
of random dominance effects which follows a normal distribution ∼ N
(0, GDσd

2) with GD as the genomic-based dominance relationshipmatrix
described below and σd

2 as the dominance genetic variance; ε ∼ N (0,
Iσε

2) is the vector of random residual effects, where I denotes the
identity matrix and σε

2 is the residual variance. Za and Zd are the
incidence matrices for a and d, respectively.

The genomic-based relationship matrices were built as defined in
Vitezica et al.72 and González-Diéguez et al.81. The genomic-based

additive relationship matrix (GA), called realized relationship matrix
was estimated as

GA =
HaHa

0

trðHaHa
0Þ=N ð6Þ

where Ha is a rescaled genotype matrix Ha =M–P, where M is the
genotype matrix coded as 0, 1, and 2 for genotypes BB, Bb and bb
respectively and with dimensions number of hybrids (N) by number of
loci (L); P is the matrix of locus scores 2pj, with pj being the reference
allele frequency of the jth SNP biallelic locus (having alleles B/b); tr is
the trace. The genomic-based dominance relationship matrix (GD) was
estimated as

GD =
HdHd

0

trðHdHd
0Þ=N ð7Þ

where Hd is the matrix containing elements hd for each individual and
locus equal to:

hd =

�2pBbpbb pBB +pbb � ðpBB � pbbÞ2
h i�1

4pBBpbb pBB +pbb � ðpBB � pbbÞ2
h i�1

�2pBbpBB pBB +pbb � ðpBB � pbbÞ2
h i�1

8>>>>><
>>>>>:

for genotypes

BB

Bb

bb

8><
>:

ð8Þ
where pBB, pBb, and pbb are the genotypic frequencies for the geno-
types BB, Bb, and bb respectively at the locus.

For moderate heritability physiological traits (LER and gsmax), in
addition to random additive and dominance effects estimated from
genomic-based relationship matrices, the genotypes of markers asso-
ciated to quantitative trait loci (QTLs), previously identified in a
genome-wide association study (GWAS) of the diversity panel14, were
added as fixed effects in prediction models:

y=μ1n +Xβ+Zaa+Zdd + ε ð9Þ

whereX is an n × l marker genotypematrix for n hybrids and I markers
associated to trait QTLs and β is the markers fixed effects vector.

To test if G-BLUP model predictions are capturing genetic effects
above that explained by population structure, we fitted a simple PC-
BLUP model to the same data. In this model, the genotypes coordi-
nates on the firstfive axes of SNP PCoAof the panels (representing of a
cumulative percentage of variance of 35%), were used as predictors.
Other genomic prediction models (RR-BLUP, BayesB, BayesC, and
BayesR) were also tested but showed no significantly better results
than those presented in this paper.

All prediction models were fitted using the Bayesian Generalized
Linear Regression (BGLR) R package73, based on 60,000 iterations,
after discarding 10,000 cycles for burn-in period and using a thinning
rate of 5.

Training and validation schemes of genomic predictions
Genomic predictions were first evaluated by a 5-fold cross-validation
scheme (CV1) repeated 10 times, applied to diversity and genetic
progress panelsdatasets. In CV1, we aimed tomeasure the ability of the
models to predict the performance of hybrids that would not have
been evaluated in any of the observed environments28. For each
iteration, the two panels genotypes were split into 5 subsets, then each
subset (one fifth) was predicted using the remaining four fifths as
training set. This generated a total of 5 × 10 testing sets. Each training
set was sampled randomly but proportionally to ‘diversity panel’
genetic groups and across years of releaseof ‘geneticprogress’hybrids
(Supplementary Fig. 4). This samplingmethodwas chosen tomaintain
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a good coverage of the total genetic space covered by the training
set82. The ‘recent hybrids’ panel dataset was then considered as an
external validation of the prediction models. Here, the ‘diversity’ and
‘genetic progress’ panels were used together as training set, and pre-
dictions were made for the recent hybrids observed in independent
experiments.

Five statistics were calculated to assess the performance of pre-
diction models for each trait: the Pearson (r) and Spearman (rho)
correlation coefficients between observed genotypic means (BLUEs
over experiments) and predicted values (G-BLUPs), the prediction
accuracy of genomic selection (Acc, estimated as the predictive ability
(r) divided by the square root of trait genomic heritability53), the root
mean squared error of predictions (RMSE) showing the discrepancy
betweenpredicted andobserved values and the coefficient of variation
of the error (CVRMSE), which is the RMSE expressed as a percentage of
mean observed value. For cross-validation scheme, the statistics esti-
mations were performed within each fold and then averaged across
folds and iterations. Standard errors (SE) of correlation coefficients
were calculated using Bonett and Wright approximations77.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Recherche
Data Gouv database [https://recherche.data.gouv.fr/fr]. The datasets
for phenotypic and genotypic values for the diversity panel are avail-
able at https://doi.org/10.15454/IASSTN. The datasets for phenotypic
and genotypic values for the genetic progress panel are available at
https://doi.org/10.15454/KLD0GH. The dataset for the ‘recent hybrid’
panel is available at https://doi.org/10.57745/NZY1KL. Source data are
provided with this paper.
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