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The potential for population genomics to elucidate invasion pathways of a species is limited by taxonomic
identification issues. The Oriental fruit fly pest, Bactrocera dorsalis (Hendel) belongs to a complex in which
several sympatric species are attracted to the same lure used in trapping and are morphologically cryptic
and/or reported to hybridize. In this study, we evaluated the taxonomic ambiguity between B. dorsalis and
2 major cryptic species, based on morphological expertise and 289 target specimens sampled across the
whole distribution range. Specimens were then subjected to DNA sequence analyses of the COl mitochon-
drial barcode and the EIF3L nuclear marker to evaluate the potential for molecular identification, in particular
for specimens for which morphological identification was inconclusive. To this aim, we produced reference
datasets with DNA sequences from target specimens whose morphological identification was unambiguous,
which we complemented with 56 new DNA sequences from closest relatives and 76 published and curated DNA
sequences of different species in the complex. After the necessary morphological observation, about 3.5% of
the target dataset and 47.6% of the specimens from Southeast Asian islands displayed ambiguous character
states shared with B. carambolae and/or B. occipitalis. Critical interpretation of DNA sequence data solved mor-
phological ambiguities only when combining both mitochondrial and nuclear markers. COI discriminated B.
dorsalis from 5 species; EIF3L and ITS from another species. We recommend this procedure to ensure correct
identification of B. dorsalis specimens in population genetics studies and surveillance programs.

Key words: mtDNA, nDNA, haplotype diversity, ambiguous identification

Introduction

Over the last 2 decades, the Oriental fruit fly, Bactrocera dorsalis
(Hendel) (Diptera: Tephritidae), has emerged as one of the most inva-
sive and destructive insect pests of tropical and subtropical fruits and
vegetables, particularly in sub-Saharan Africa and the Indian Ocean
(Drew and White 20035, Schutze et al. 2015). Bactrocera dorsalis is
highly polyphagous, with more than 300 host plants (Allwood et
al. 1999, Clarke et al. 2005, Ekesi and Billah 2007), although its
major host is mango (Mangifera indica) (Sileshi et al. 2019, Ndlela
et al. 2022). Population genetics has been, and increasingly is, a
powerful tool for providing new insights into its invasion biology,
in particular introduction sources, invasion success, and coloniza-
tion dynamics (Aketarawong et al. 2007, Khamis et al. 2009, Wan

et al. 2011, Li et al. 2012, Shi et al. 2012, Choudhary et al. 2016,
Kim et al. 2021). Most previous studies omitted to detail the method
used for specimen identification, despite a clearly articulated need to
do so as outlined by Schutze et al. (2017) advocating an integrative
taxonomic approach to tephritid fruit fly species delimitation and
diagnoses (but see Choudhary et al. 2016, Qin et al. 2018, Zhang
et al. 2022). There is a risk of confusion with several sympatric and
morphologically cryptic species, since B. dorsalis belongs to a com-
plex of about 90 species including roughly 30 species attracted to
methyl-eugenol (ME), a male-targeted chemical lure used for sam-
pling in population genetics studies and surveillance programs. The
undetected presence of a species closely related to B. dorsalis in pop-
ulation genetics analyses skews estimations of genetic structure and
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diversity, and thereby compromises the understanding of underlying
processes or induces discrepancies between studies.

Bactrocera dorsalis identification based on morphological
characters alone is sometimes difficult because its intraspecific var-
iability overlaps with other members of the complex, especially
2 other important pests attracted to ME: B. carambolae Drew &
Hancock and B. occipitalis (Bezzi) (Leblanc et al. 20135, Pieterse et
al. 2017, Taddei et al. 2023). Moreover, cases of hybridization have
been reported between B. dorsalis and B. carambolae, B. kandiensis
Drew & Hancock, B. occipitalis, and B. raiensis Drew & Hancock
(Wee and Tan 20085, Schutze et al. 2013, Schutze, Mahmood et al.
2015, Nugnes et al. 2018, San Jose et al. 2018, Zhang et al. 2022,
Doorenweerd et al. 2020). Since accurate identification is crucial for
surveillance of B. dorsalis, standard diagnostic protocols (e.g., EPPO
2021) incorporated a DNA barcode approach, often based on the
single mitochondrial Cytochrome ¢ Oxidase subunit I (COI), which
has become a widely used identification tool (Hebert et al. 2003).
However, the ability of the mtDNA barcode to distinguish B. dor-
salis from other species within the complex remains controversial
and its issues relating to tephritid diagnoses are well documented

A B. dorsalis

WPYF

B B. carambolae

B. raiensis

C B. kandiensis

B. occipitalis

(Krosch et al. 2019, 2020), some studies indicating a substantial
overlap in intra- and interspecific sequence variation for many spe-
cies in the complex (e.g., Jiang et al. 2014 and references within;
San Jose et al. 2018, Doorenweerd et al. 2020). The contradictory
and unclear results may be explained by differences in taxonomic
coverage and intraspecific sampling effort, in particular of the target
species, and by identification errors, in particular when DNA entries
from public databases are used (e.g., Asadi et al. 2019).

As a consequence, B. dorsalis identifications could possibly be
validated by combining the mtDNA barcode with independent
nDNA markers. Finding appropriate nuclear barcodes is chal-
lenging, however, since nuclear genes often lack sufficient species-
level diagnostic variability. In this context, IPPC (2019) recommends
using the nuclear Internal Transcribed Spacer 1 (ITS1) (Boykin et al.
2014), which discriminates B. dorsalis from B. carambolae (only) via
length polymorphism. Furthermore, Plant Health Australia (2020)
provides reference sequences for 4 nuclear markers, including the
Eukaryotic translation Initiation Factor 3 subunit L gene (EIF3L),
developed from anchored hybrid enrichment research and which
seems the most promising for discriminating the species closest to

Fig. 1. Distribution maps and sampling points for B. dorsalis (A), B. carambolae and B. raiensis (B), and B. kandiensis and B. occipitalis (C).The maps are adapted
from the April 2023 EPPO database, completed with the addition of India for B. kandiensis.The size of dots is proportional to the number of samples collected in
each country. (B) Sampling dot inThailand is for B. raiensis. Note that the Plant Health Australia collection samples are not represented here because no locality

information was provided with the reference sequences.
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N . dorsalis within the complex. While this region has proved useful
= B ~ . . . .
£ 3 ;ﬁ N S in evolutionary analyses for the broader tribe (Starkie et al. 2022),
— > IS . . e
g @8 2 435 s = §0 further research is needed to evaluate this locus utility as part of an
=5 3 2 & § 88 integrated molecular approach to differentiate B. dorsalis from mor-
Q Q S I . . .
=S S g phologically cryptic congeners.
A A Here, we evaluate taxonomic ambiguity associated with conven-
.S S 8 tional morphological characterization of B. dorsalis specimens and
g |8 L propose a protocol integrating 2 types of molecular information to
] § = § = ensure an authoritative identification of equivocal specimens: the mi-
< |3 § 3 § tochondrial COI barcode and the nuclear EIF3L and ITS markers.
E) e s Particular care went into sample sizes and geographical ranges to
S — s — . Sy
~= |z 7z ensure a rigorous validation of DNA barcodes, at least for the target
species and its closest relatives (i.e., species morphologically similar
g and/or reported to hybridize).
!
< N -
S S IS S IS
E |83 .38 S87 22
E |8 2893 RT 2SO0
S 4 ;.2 ¥ 4 8. @ .
S| SS5S55588255S5888¢: Materials and Methods
S STESEEETSITESE LS . . -
o o ~ = 9 ~ = -
SIS SIRS S SIS We sampled 289 adult fruit fly specimens across the whole distri
= Q: QMM AQMAA Q: QM AMAM[RA bution range of B. dorsalis (Fig. 1, Supplementary Table S1): 213
specimens from the collection of the French Agency for Food,
= Environmental and Occupational Health & Safety, Plant Health
3 .
= L9 R Laboratory (ANSES — LSV), reared from larvae intercepted at
Q m 3 Q 3 . . . .
E |24 g S g § v European borders on infested imported fruits, and 76 specimens col-
o~ v o~ v . . . . . .
_§ = 3T 8§ = 3T 8§ lected worldwide in orchards using ME traps, including 3 specimens
o~ O 3 '] O 3 '] . . .
= | 8 N S« 8 rom the Queensland Primary Industries Insect Collection .
= |53+t §=< 8 from th land Primary Industries Insect Coll DPC
O | SmAeRm S mAan Specimens were identified morphologically using IPPC (2019),
< < p phologically using
completed with Drew and Romi s an ite and Elson-
pleted with D d Romig (2013,2016) and White and El
£ Harris (1992), by at least 1 expert in taxonomic entomology and/
'z £ or person trained in morphological techniques. Following Schutze,
2 BS Aketarawong et al. (2015), we considered B. invadens, B. papayae,
8 2 o . .
2 s § g, + and B. philippinensis as synonyms of B. dorsalis.
3 <= = 3 S 34 *§ We used nondestructive DNA extraction protocols on whole
< SSF 33 . . . .
& N 453 33 8 specimens to conserve morphological characters, as detailed in
5} = = 3T 89 §° P P g
% 3 3358 § g8 Supplementary Table S1. The 658 bp 5° standard “barcoding region™
é I~ < 8 of the COI gene (Hebert et al. 2003) and the 581 bp of the EIF3L
2

gene (Plant Health Australia 2020) were amplified using polymerase
chain reactions (PCRs) performed as detailed in Supplementary
Table S2 and sequenced by Eurofins Genomics. All nucleotide
sequences were checked for ambiguous bases, the presence of frame
shift mutations and stop codons, edited using CodonCode Aligner
v.10.0.2 and aligned using Seaview v5.0.5 (Gouy et al. 2021). PCR
products of the ITST marker (Boykin et al. 2014), obtained as de-
tailed in Supplementary Table S2, were run in 2.5% electrophoresis
agarose gel for 90 min to double blind read the fragment size, ex-
pected to be 544 bp for B. carambolae and 500 bp for other B. dor-
salis complex species.

For specimens for which morphological identification was in-
conclusive, molecular identification was achieved by visualizing the
position of their COI and EIF3L sequences in tree graphics relatively
to curated sequences of species of the B. dorsalis complex. The ref-
erence datasets included 406 (COI) and 309 (EIF3L) sequences from
target specimens with unambiguous morphological identifications,

Ambiguous morphological characters

specimens of the B. dorsalis species complex published by Plant
Health Australia (2020) (Supplementary Table S1), and additional
specimens from species morphologically confusable and/or with re-
ported hybridizations with B. dorsalis (see Fig. 1, Supplementary
Tables S1 and S3 for sample size details). Maximum likelihood
(ML) trees were constructed on unique haplotypes, recovered with
the sidier package (Mufioz-Pajares 2013), using MEGA v.X (Kumar
et al. 2018) and the T92+G mutational model (Tamura 1992). We
performed 500 bootstrap replications and condensed the ML trees
to show clades supported by bootstrap values over 50%. For the

markings on tergite 4.
- Shining spots on abdomen neither light nor dark.

around apex of wing.

- Costal band slightly overlapping R2 + 3 vein and moderately broad  B. dorsalis, B. occipitalis,
- Rectangular anterolateral black markings on tergite 4.

- Costal band overlapping R2 + 3 vein, broad around apex of wing.
- Not easy to tell if there are rectangular anterolateral black

- Fulvous femora.

Table 1. Continued

Sample ID
PHL_268
PHL_269
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haploid COI barcode, we also constructed a minimum spanning net-
work among haplotypes using Popart v.1.7 (Leigh and Bryant 2015).

Results and Discussion

Based on morphological keys, we confidently identified 279
specimens as B. dorsalis out of the 289 studied. The 10 remaining
specimens, ~3.5% of the target dataset, possessed character states
intermediate between B. dorsalis and other species of the complex,
including B. carambolae, B. occipitalis and several little-known spe-
cies rarely cited in literature and indifferent to ME (but attracted
to Cue-lure, except B. irvingiae Drew & Hancock, for which no
lure is known), preventing conclusive morphological identification
(Table 1). All these specimens originated from either Indonesia,
Malaysia, or the Philippines, where the rate of ambiguous individuals
reaches 47.6%. The characters that diverged from the conventional
morphological description of B. dorsalis were mainly the extent of
the wing costal band and apex spot (Fig. 2G and H) and the abdom-
inal color pattern (Fig. 2I and J).

COI barcoding confidently discriminated B. dorsalis from B.
cacuminata (Hering), B. endiandrae (Perkins & May), B. latilineola
Drew, B. occipitalis, and B. opiliae (Drew & Hardy) (Fig. 3A)
whereas B. carambolae and B. raiensis specimens branched individu-
ally among B. dorsalis individuals in the ML tree without clustering
according to species. The minimum spanning network of the mi-
tochondrial haplotypes from B. dorsalis and its closest relatives
was largely congruent with the ML tree: while the most frequently
observed haplotypes clearly segregated according to species, the

B. carambolae

B. dorsalis

star-like shapes of the B. dorsalis, B. carambolae, and B. raiensis
haplogroups overlapped to the point of preventing species resolu-
tion (Supplementary Fig. S1).

In addition, 7 specimens from India, Sri Lanka, Cameroon and
the Congo that were confidently identified morphologically and
with the EIF3L marker (see Fig. 3B and text below) as B. dorsalis
clustered in the ML tree with B. kandiensis reference mitochon-
drial sequences (Fig. 3A). These represented 2.4% of the target
specimens, 23.5% of which originated from the B. kandiensis
range, and 2.3% of those from the invaded African continent.
The minimum spanning network showed not only these B. dor-
salis haplotypes in the B. kandiensis haplogroup, but also 1 dis-
tant haplotype in the B. carambolae haplogroup, and B. raiensis
haplotypes in the B. dorsalis haplogroup (Supplementary Fig. S1).
This supports previous reports of mitochondrial introgression
events between B. dorsalis and B. carambolae, B. kandiensis, and
B. raiensis.

Regarding the EIF3L marker, 34 specimens out of 272 (12.5%)
failed the PCR amplification step due to poor DNA quality
(Supplementary Table S1). Among those that worked, EIF3L confi-
dently discriminated B. carambolae and B. endiandrae from B. dor-
salis (Fig. 3B). However, B. cacuminata, B. kandiensis (1 specimen,
Bactrocera_kandiensis_LKA_154, with heterozygous sites on diag-
nostic bases; see below), B. latilineola, B. occipitalis, B. opiliae, and
B. raiensis could not be discriminated from B. dorsalis. Concerning
ITS1, length polymorphism differentiated B. carambolae from other
species in the complex and PCR amplification was more successful
than with EIF3L (~99%) (Supplementary Table S1).

B. occipitalis

Costal band

- / Apex spot

Fig. 2. Photographs of the wing (above) and abdomen (below) from typical B. carambolae (A, D), B. dorsalis (B, E), and B. occipitalis (C, F) specimens and from
specimens with morphological traits intermediate between B. carambolae and B. dorsalis (G, 1) and between B. carambolae, B. dorsalis and B. occipitalis (H, J).

20z Atenuer g0 uo 1senb Aq 68806 2/€61.2/9/91 L/8101E/98]/W00"dNO oIS PEDE//:SAY WO PAPEO|UMOQ


http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toad178#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toad178#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toad178#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toad178#supplementary-data

2198

Journal of Economic Entomology, 2023, Vol. 116, No. 6

= M comnorsn
Sactrocera dorsalis DRSDS6
Uos%
s
THASs
Sactozer,
AL aienss
Vi, Raio0z
Viypy 303
o8]
Fidtoce W32
BT oy
s sy

i ) "o
Vg2, 2
o, A
Yoo (7155507

'a%j";'.’;%%b. P

Fig. 3. Consensus Maximum Likelihood (ML) unrooted tree from (A) 192 COI sequences, and (B) 190 EIF3L sequences of B. dorsalis complex species. Colors
reflect species of reference sequences. Haplotypes in black correspond to the target dataset. Specimens in bold and italics are the 9 ambiguous specimens.
Specimens flagged with a star are B. dorsalis specimens with a B. kandiendis mitochondria.

Table 2: Success (v) and fail (X) of each morphological and molec-
ular tool to discriminate B. dorsalis from other species in the com-
plex, to highlight the importance of a multidisciplinary approach
when studying the B. dorsalis complex.

Morphology COI EIF3L/ ITS1

B. cacuminata \/ \/ X
B. carambolae X X

B. endiandrae N N X
B. kandiensis N X X
B. latilineola N N X
B. occipitalis X y X
B. opiliae N N X
B. raiensis v X X

Two molecular markers (COI + EIF3L or ITS1) thus success-
fully discriminated B. dorsalis from 6 species of the complex, in-
cluding the morphologically similar pest species B. carambolae
and B. occipitalis (Table 2). Bactrocera dorsalis had bases dif-
ferent from B. carambolae at positions 99 and 348 for EIF3L,
and from B. occipitalis at positions 178 and 530 for COL In both
species pairs, the different bases were rare and often not borne
by all 278 B. dorsalis specimens. Identification of the 10 ambig-
uous specimens was thus achieved using the ML trees constructed
from each marker (see list in Table 1): the COI barcode con-
firmed IDN_322, IDN_331, IDN_373, PHL_268, and PHL_269
as not B. occipitalis (Fig. 3A), and the EIF3L marker and ITS1
length polymorphism confirmed IDN_323, MYS_352, MYS_354,
and MYS_356 as B. carambolae and IDN_322, IDN_331 and
PHL_268 as B. dorsalis (Table 1; Fig. 3B). Specimens IDN_373,
IDN_376, and PHL_269 were neither B. occipitalis nor B.
carambolae according to COI and EIF3L (Fig. 3), but they could
be either B. dorsalis or 1 of the 6 lesser-known species unattracted

to ME (Table 1).

B. kandiensis and B. raiensis could not be discriminated from
B. dorsalis with COI nor EIF3L (Fig. 3), but their morphology is
sufficient for identification (Table 2). The limited individual diag-
nostic capacity of these molecular markers was confirmed by the
considerable overlap between the distributions of intraspecific and
interspecific distances (Supplementary Fig. S2) and the low sampling
coverage of haplotype diversity (Supplementary Fig. S3). Using next-
generation sequencing will produce large genomic resources with
which to target diagnostic nuclear loci. However, we demonstrate
that combining a mtDNA (i.e., COI) with a nDNA (i.e., EIF3L)
marker is effective for identifying B. dorsalis among morphologically
similar specimens of sibling and other closely related taxa. To as-
sign taxonomic status to specimens, we therefore recommend com-
bining expert morphological description with both mitochondrial
and nuclear DNA barcodes, particularly when studying B. dorsalis
in Southeast Asian islands.
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