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Abstract
Next-generation biomonitoring proposes to combine machine-learning algorithms 
with environmental DNA data to automate the monitoring of the Earth's major eco-
systems. In the present study, we searched for molecular biomarkers of tree water 
status to develop next-generation biomonitoring of forest ecosystems. Because phyl-
losphere microbial communities respond to both tree physiology and climate change, 
we investigated whether environmental DNA data from tree phyllosphere could be 
used as molecular biomarkers of tree water status in forest ecosystems. Using an am-
plicon sequencing approach, we analysed phyllosphere microbial communities of four 
tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest 
experiment composed of irrigated and non-irrigated plots. We used these microbial 
community data to train a machine-learning algorithm (Random Forest) to classify 
irrigated and non-irrigated trees. The Random Forest algorithm detected tree water 
status from phyllosphere microbial community composition with more than 90% ac-
curacy for oak species, and more than 75% for pine and birch. Phyllosphere fungal 
communities were more informative than phyllosphere bacterial communities in all 
tree species. Seven fungal amplicon sequence variants were identified as candidates 
for the development of molecular biomarkers of water status in oak trees. Altogether, 
our results show that microbial community data from tree phyllosphere provides in-
formation on tree water status in forest ecosystems and could be included in next-
generation biomonitoring programmes that would use in situ, real-time sequencing 
of environmental DNA to help monitor the health of European temperate forest 
ecosystems.
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environmental DNA data, machine-learning algorithms, molecular biomarkers, next-generation 
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1  |  INTRODUC TION

Next-generation biomonitoring of ecosystem change proposes to 
automate the monitoring of the Earth's major ecosystems by com-
bining in situ, real-time sequencing of environmental DNA with 
machine-learning algorithms (Bohan et al., 2017; Cordier et al., 2021; 
Cordier, Lanzén, et al.,  2018). As traditional biomonitoring, next-
generation biomonitoring relies on biomarkers, defined as organ-
isms or communities of organisms whose reactions give clues for 
the condition of the whole ecosystem (Gerhardt, 2002). However, 
next-generation biomonitoring proposes to derive these biomarkers 
from environmental DNA data (Cordier et al., 2017; Cordier, Forster, 
et al., 2018; Cordier, Lanzén, et al., 2018), rather than from species 
inventories based on morphological observations. To our knowledge, 
the concept of next-generation biomonitoring has hardly been ap-
plied to forest ecosystems so far, although forest ecosystems are in-
creasingly impacted by human activity and climate change. Drought 
stress is a major driver of forest ecosystem change and is responsi-
ble for tree mortality events all around the world (Allen et al., 2010, 
2015; Brodribb et al., 2020). Predicting the occurrence of these tree 
mortality events requires global, interdisciplinary, real-time and 
long-term monitoring approaches, integrating multiple indicators 
of tree drought stress (Hartmann et al.,  2018). Here we therefore 
searched for novel molecular biomarkers of tree water status, de-
rived from environmental DNA, that could be included in integrative 
programmes of European temperate forest ecosystem monitoring.

Our vision of the implementation of next-generation biomoni-
toring for forest ecosystems relies on the diversified communities of 
microorganisms that constitute the microbiota of all plant and tree 
species. The plant microbiota includes some microbial species that 
promote plant growth (Compant et al., 2010; Hardoim et al., 2015), 
and contribute to plant resistance to microbial pathogens (Hacquard 
et al., 2017; Hacquard & Schadt, 2015; McLaren & Callahan, 2020; 
Vannier et al.,  2019) and insect pests (Pineda et al.,  2017; Vacher 
et al.,  2021), and to the tolerance to abiotic stressors including 
drought (Lata et al., 2018; Rho et al., 2018; Rodriguez et al., 2008). 
In addition to contributing to plant response to environmental 
stressors, plant-associated microbial communities respond rapidly 
to environmental change. For instance, it has been shown that root 
bacterial communities of trees respond to drought by a richness de-
crease (Kristy et al., 2022). We therefore hypothesised that the tree 
microbiota could be a relevant biomarker of tree condition in forest 
ecosystems, as it responds rapidly to environmental change while 
contributing to tree health and growth.

Among all the microbial communities associated with a tree, 
those of the leaf are of particular interest for next-generation bio-
monitoring of forest ecosystems for two reasons. First, leaves are an 
easy-to-sample above-ground material. Moreover, epiphytes (i.e. the 
microbes living on the leaf surface) are at the interface between the 
plant and the atmosphere, while endophytes (i.e. the microbes liv-
ing within leaf tissue) are closely linked to the leaf condition (Vacher 
et al.,  2016). Therefore, the phyllosphere microbiota (i.e. the total 
community of endophytes and epiphytes) responds to variations in 

both climate (Aydogan et al.,  2018; Cordier et al.,  2012; Laforest-
Lapointe et al.,  2017) and plant physiology (Kembel et al.,  2014; 
Rosado et al.,  2018). The phyllosphere microbiota of trees is thus 
expected to be impacted by climate change, especially drought 
events and temperature rises (Perreault & Laforest-Lapointe, 2022; 
Zhu et al., 2022). Accordingly, several experimental studies in for-
est ecosystems have demonstrated that the phyllosphere microbi-
ota responds significantly to drought events and climate warming. 
For instance, the diversity of phyllosphere bacterial and fungal 
communities in holm oak, Quercus ilex, has been found to increase 
with drought stress (Peñuelas et al.,  2012). Peñuelas et al.  (2012) 
suggested that the increase in volatile organic compound emissions 
after a moderate drought might raise the amount and diversity of 
carbon sources available to microorganisms at the leaf surface, thus 
leading to an increase in diversity of the total microbial community. 
In contrast, leaf fungal diversity has been shown to decrease with 
heat in pedunculate oak, Quercus robur (Faticov et al., 2021) and pop-
lar, Populus balsamifera (Bálint et al., 2015).

The analysis of microbial communities in environmental samples, 
such as tree leaves, has been greatly facilitated by high-throughput 
sequencing methods developed over the last 15 years. The assess-
ment of microbial community composition is increasingly cheaper 
and faster (Nilsson et al., 2019). As environmental sequencing data 
are big data that hold a huge amount of information, they have 
required the development of advanced computational methods 
to extract relevant information. For instance, machine-learning 
algorithms are increasingly used to detect changes in environ-
mental conditions or host physiology, based on the microbial com-
munity composition in environmental DNA samples (see Knights 
et al., 2011; Namkung, 2020 for a review). One of the most widely 
used machine-learning methods is the Random Forest algorithm 
(Breiman, 2001; Xu et al., 2022), which is a supervised classification 
algorithm requiring two steps. First, a small microbial community 
dataset (i.e. the training dataset) is used to train the Random For-
est algorithm to classify samples into groups, defined by a discrete 
variable characterizing the environment where the samples were 
collected. Second, the algorithm is used to predict the variable of 
interest for other samples, for which only the microbial community 
composition is known. For instance, Random Forest algorithms have 
been used on microbial community data to classify sites according to 
their pollution level (Liu et al., 2018) or the potential for crop produc-
tivity (Chang et al., 2017), and to assign seeds to a plant variety (Kim 
et al., 2020). In addition to the ability to handle huge datasets, Ran-
dom Forest algorithms allow the construction of decision-making 
tools for ecosystem monitoring (Cordier et al., 2017, 2021).

The aim of this study was to investigate whether microbial envi-
ronmental DNA, sequenced with high-throughput methods and anal-
ysed with machine-learning algorithms, can be used as a biomarker of 
tree water status, in order to develop next-generation biomonitoring 
programmes for forest ecosystems. We focused on phyllosphere mi-
crobiota and analysed its association with tree water status in four 
tree species (Q. ilex, Q. robur, Pinus pinaster and Betula pendula). We 
investigated which component of microbial community data performs 
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    |  3CAMBON et al.

best at detecting tree water status. We specifically compared the abil-
ity of fungal versus bacterial data and rare versus abundant taxa at 
classifying trees according to their water status. We also investigated 
which taxonomic aggregation levels (ASV, genus, family, class, order) 
of the microbial community data perform best. We finally discussed 
the strengths and limitations of these DNA-based biomarkers.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

The study was carried out in the ORPHEE (https://sites.google.com/
view/orphe​eexpe​rimen​t/home) tree diversity experiment. This ex-
periment, planted in 2008 in the south-west of France (44°44′24.9”N, 
0°47′48.1″W), belongs to the TreeDivNet international network 
(https://treed​ivnet.ugent.be/). Eight block repetitions were estab-
lished, each block consisting of a set of 32 experimental forest plots 
planted with a combination of one to five temperate tree species (P. 
pinaster, B. pendula, Q. robur, Q. ilex and Q. pyrenaica). Each plot is 
0.4 ha and contains 100 trees planted 2 m apart in a 10 × 10 grid. The 
whole experiment covers 12 ha. Four out of eight blocks have been 
irrigated since 2015 using a 2 m high sprinkling system (Figure 1a). 
Irrigated blocks receive 3 mm of water every night from the 22th of 

May to late September. This volume was estimated based on evapo-
transpiration data and has been proved sufficient to avoid irrigated 
trees suffering from soil water deficit during the growing season in 
several studies conducted before and after our sampling. In 2015, 
Q. robur pre-dawn water potential was lower in non-irrigated blocks 
than in irrigated blocks (−0.37 and −0.19 MPa respectively; Castag-
neyrol et al., 2017). The same pattern was observed for B. pendula 
in 2016 (−1.63 and −0.43 MPa for non-irrigated and irrigated blocks 
respectively; Castagneyrol et al., 2018) and for Q. ilex in 2019 (−0.49 
and −0.18 MPa for non-irrigated and irrigated blocks respectively; 
Galmán et al., 2022).

2.2  |  Leaf sampling and processing

We analysed the leaf microbiota of two evergreen tree species (P. 
pinaster and Q. ilex) and two deciduous tree species (B. pendula and 
Q. robur) planted in monocultures in the ORPHEE experiment. The 
trees belonged to 32 plots, corresponding to 4 tree species × 2 water 
treatments (irrigated vs. non-irrigated) × 4 replicates (blocks). In each 
plot, we sampled leaves (or needles) on 12 trees selected in the cen-
tral part of the plot to limit edge effects (Figure 1a).

We performed two sampling campaigns. The first one occurred 
in May 2019, a few days after irrigation started, and the second in 

F I G U R E  1  Experimental design. (a) 
The ORPHEE experimental setup. For 
each tree species (Betula pendula, Pinus 
pinaster, Quercus ilex and Quercus robur), 
four irrigated (IRR) and four non-irrigated 
(NON-IRR) monoculture plots were 
sampled. In each plot, leaves from 12 
trees were sampled in May and July 2019 
for microbiota analysis. Branches from 
three trees were sampled to measure 
predawn water potential. (b) Timeline of 
the sampling. Irrigated plots were watered 
between early May and late September 
(blue line) in the sampling year (2019) and 
during the 4 years preceding sampling 
(2015 to 2018). Leaves were sampled in 
May, before the summer period, and in 
July, during the summer. Q. robur and B. 
pendula being deciduous species, leaves 
sampled in both May and July were 
leaves of the year. P. pinaster and Q. ilex 
being evergreen species, leaves/needles 
sampled in May were mature leaves/
needles from the previous spring, while 
leaves sampled in July were both mature 
leaves/needles (dark green) and young 
leaves/needles (light green).

(a)

(b)
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4  |    CAMBON et al.

July 2019 (Figure 1b). In May, the sampling campaign lasted two con-
secutive days (23th and 24th of May 2019), all the trees of a given 
species being sampled the same day. The July sampling lasted 3 days 
(16th–18th of July 2019), with the sampling of each species com-
pleted in 2 days.

For each sampling campaign, a south-facing branch was cut from 
the canopy of each tree, at approximately 1.5 m height for Q. ilex and 
Q. robur and 8 m height for B. pendula and P. pinaster, using shears 
and pole pruners respectively. During the May sampling campaign, 
three visually healthy leaves (or needle pairs) were sampled from 
each branch, using new gloves between each tree. In July, three 
additional leaves were sampled in Q. ilex, to obtain thee young and 
three mature leaves per tree. Similarly, three additional needle pairs 
were sampled in P. pinaster (Figure 1b).

Leaves and needles were processed in the field, immediately 
after sampling. One disc of 5 or 7 mm diameter was cut in each 
leaf for B. pendula and the two oak species, respectively, while 
eight chunks of approximately 2 mm each were cut from each nee-
dle pair in P. pinaster. Tools were cleaned with 10% bleach and 
70% ethanol between each tree and an autoclaved piece of paper 
filter was used as a work surface. The three leaf discs or 24 nee-
dle chunks from the same tree were placed together into 1 mL of 
RNAlater (Invitrogen) in a 2 mL Eppendorf tube and stored on ice 
to prevent DNA degradation. The same day, samples were frozen 
at −80°C.

In addition, we analysed the endophytic and epiphytic com-
munities of leaves for three trees per plot, chosen randomly in 
the centre of the plot among the 12 trees sampled previously 
(Figure  1a). To sample the epiphytic community, the upper and 
lower surfaces of three leaves per tree, or three needle pairs per 
tree, were swabbed in the field using sterile swabs previously 
soaked in sterile RNAlater. Swabs were then stored on ice until 
storage at −20°C in the lab. To sample the endophytic commu-
nity, three leaves or three needle pairs per tree were collected and 
placed into plastic bags. The bags were stored on ice in the field 
before storage at −80°C in the lab a couple hours later. Leaves 
and needles were subsequently surface-sterilized, with a slightly 
modified version of Unterseher and Schnittler  (2009)'s protocol. 
Leaves and needles were (i) washed with sterile distilled water, 
then placed in (ii) 70% EtOH for 2 min, (iii) 2% Ca(ClO)2 for 5 min, 
(iv) 70% EtOH for 1 min and (v) briefly rinsed in commercial ster-
ile purified water (Otec Aguettant, France). Leaf discs and needle 
chunks were then cut as described above and stored at −20°C until 
DNA extraction.

2.3  |  Water potential measurements

Predawn water potential was measured on three trees randomly 
chosen in the centre of each plot (Figure 1a), both during the May 
and July sampling campaigns (Figure 1b). The three trees were the 
same as those selected for the analysis of epiphytic and endo-
phytic microbial communities. Water potential measurements and 

leaf sampling were performed on the same day. Water potential 
measurements were performed between 5:00 AM and 7:00 AM by 
installing two Scholander pressure bombs (DGMeca, Gradignan, 
France) in the centre of the ORPHEE experiment. One branch was 
collected from the south side of the upper crown of each tree and 
water potentials were measured within 1 min of branch collec-
tion. The value of water potential was estimated as the negative 
of the balance pressure (MPa) applied on leaves using pressure 
chambers.

2.4  |  Leaf microbial community profiling

2.4.1  |  DNA extraction

Leaf discs and needle chunks were taken out from the storage so-
lution (RNAlater, Invitrogen) under a laminar flow hood using ster-
ile tools. The excess solution was removed using an autoclaved 
piece of paper filter. For each tree, a sample consisted of either 
three leaf discs or 24 needle chunks. For each tree species, sam-
ples were randomized in 96-well plates and stored at −80°C. Leaf 
samples were then frozen in liquid nitrogen and ground for 3 × 30′ 
at 1500 rpm using two 4 mm diameter autoclaved steel beads per 
well with a Geno Grinder (SPEX Group Holdings Ltd, Aberdeen, 
UK). Needle samples were freeze-dried overnight prior to grinding 
to facilitate sample disruption. DNA was extracted with a DNeasy 
Plant Mini Kit 96 (Qiagen) following the manufacturer's protocol, 
except that the incubation time was extended to 1 h at 65°C. All 
extractions were made in a confined laboratory to prevent any 
contamination.

Epiphyte swab tips were cut using scissors under a laminar 
flow hood into 2 mm pieces and stored in 2 mL Eppendorf tubes 
at −80°C until DNA extraction. Scissors were cleaned with 10% 
bleach and 70% ethanol between each sample. DNA was ex-
tracted using the PowerSoil kit (Qiagen) following the manufac-
turer's protocol.

Three negative extraction controls were placed on each ex-
traction plate. They consisted of wells without any plant material, 
containing only the extraction reagents. DNA yield and purity 
were checked by spectrophotometry using Nanodrop 2000 (Ther-
moScientific), and electrophoresis on 2% agarose gels. DNA yields 
obtained for B. pendula and P. pinaster were lower than the ones ob-
tained for Q. robur and Q. petrae.

2.4.2  |  DNA amplification

The V5-V6 hypervariable region of the bacterial 16S rRNA gene and 
the ITS1 region of the fungal nuclear ribosomal internal transcribed 
spacer (ITS) were then amplified from all samples. All amplifications 
were made in a confined laboratory to prevent any contamination.

The V5-V6 region of the bacterial 16S rRNA gene was am-
plified using the 799F (Chelius & Triplett,  2001) and 1115R 
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    |  5CAMBON et al.

(Turner et al.,  1999) primers. Each primer contained the Illu-
mina adaptor sequence, a tag and a heterogeneity spacer, as 
described in (Laforest-Lapointe et al.,  2017) (799F: 5′-CAAGC​
AGA ​AGA​CGG​CAT​ACG​AGA​TGT​GAC​TGG​AGT​TCA​GAC​GTG​
TGCTCTTCCGATCTxxxxxxxxxxxxHS-A ACMG​GAT ​TAG​ATA​
CCCKG-3′; 1115R: 5′-AATGA​TAC​GGC​GAC​CAC​CGA​GAT​CTA​CAC​
TCT​TTC​CCT​ACA​CGA​CGCTCTTCCGATCTxxxxxxxxxxxxHS-
AGGGT​TGC​GCT​CGTTG-3′, where HS represents a 0-7-base-pair 
heterogeneity spacer and “x” a 12 nucleotides tag). For Q. ilex 
and Q. robur, the reactions were performed in a volume of 20 μL, 
containing 10 μL of the 2X Taq polymerase (Qiagen), 1 μL of each 
primer (0,1 μM final) and 1 μL of environmental DNA. DNA was 
first denatured at 95°C for 15 min, and then amplified for 30 cycles 
of 94°C for 30 s, 53°C for 90 s, 72°C for 90 s, and finally extended 
at 72°C for 10 min. For B. pendula and P. pinaster, the reactions 
were performed in 20 μL, containing 4 μL of Buffer Phusion HF 5X, 
0.2 μL of Phusion HSII polymerase (New England BioLab), 0.6 μL 
of dimethyl sulfoxide (Thermo Scientific), 2 μL of each primer 
(0,2 μM final) and 1 μL of environmental DNA. DNA was first de-
natured at 98°C for 30 s, and then amplified for 35 cycles of 98°C 
for 15 s, 60°C for 30 s, 72°C for 30 s and finally extended at 72°C 
for 10 min.

The fungal ITS1 region was amplified using the ITS1F (Gardes & 
Bruns, 1993) and ITS2 (White et al., 1990) primers containing the 
Illumina adaptor sequence and a tag (ITS1F: 5′-CAAGC​AGA​AGA​
CGG​CAT​ACG​AGA​TGT​GAC​TGG​AGT​TCA​GAC​GTG​TGCTCTTC-
CGATCTxxxxxxxxxxxxCTTGG​TCA​TTT​AGA​GGA​AGTAA-3′; ITS2: 
5′-AATGA​TAC​GGC​GAC​CAC​CGA​GAT​CTA​CAC​TCT​TTC​CCT​ACA​
CGA​CGCTCTTCCGATCTxxxxxxxxxxxxGCTGC​GTT​CTT​CAT​
CGATGC-3′, where “x” is a 12 nucleotides tag). For all tree spe-
cies, the reactions were performed in a volume of 20 μL, contain-
ing 10 μL of the 2X Taq polymerase (Qiagen), 1 μL of each primer 
(0,1 μM final) and 1 μL of environmental DNA. DNA was first dena-
tured at 95°C for 15 min, and then amplified for 35 cycles of 94°C 
for 30 s, 57°C for 90 s, 72°C for 90 s, and finally extended at 72°C 
for 10 min.

For all PCR reactions, negative PCR controls (3 per plate) con-
sisted in wells without any DNA, containing only the PCR reagents. 
Positive PCR controls (1 per plate) consisted in pure DNA of a bac-
terial or a fungal marine species (Sulfitobacter pontiacus and Candida 
oceani respectively), as they were unlikely to be found in the tree 
leaf samples. PCR was conducted on a Veriti 96-well Thermal Cycler 
(Applied Biosystems) and all amplifications were confirmed by elec-
trophoresis on a 2% agarose gel.

PCR products were purified using SpeedBeads™ magnetic car-
boxylate modified particles (Sigma), quantified (Quant-it PicoGreen 
dsDNA assay kit, Thermo Fisher Scientific) and equimolarly pooled 
(Hamilton Microlab STAR robot). Amplicon concentrations obtained 
for B. pendula and P. pinaster were lower than the ones obtained for 
Q. robur and Q. petrae. Average size fragment was checked using a 
Tapestation (Agilent Technologies). Libraries were sequenced on a 
MiSeq (Illumina) with the reagent kit v2 (500-cycles, MS-102-2003) 

for leaf samples, and the nano reagent kit v2 (500-cycles, MS-
103-1003) for swab samples.

2.4.3  |  Bioinformatic analysis

Sequence demultiplexing (with exact index search) was per-
formed using DoubleTagDemultiplexer (https://github.com/yoann​
-dufre​sne/Doubl​eTagD​emult​iplexer). Demultiplexed sequences 
were processed using the dada2 R package v1.12.1 (Callahan 
et al., 2016) following the dada2 tutorial (v1.16 and v1.8 for 16S 
and ITS respectively). Primer sequences were removed using cuta-
dapt (Martin, 2011), and sequences with more than one expected 
error based on quality scores (Edgar & Flyvbjerg, 2015), contain-
ing ambiguous nucleotides or shorter than 100 bp were trimmed. 
Amplicon sequence variants (ASVs) were then inferred for each 
sample using the dada function. Forward and reverse denoised 
reads were paired using the mergePairs function, and chimeric se-
quences were removed using the removeBimeraDenovo function 
provided in the dada2 package. Taxonomic assignments of ASVs 
were performed with RDP Naive Bayesian Classifier algorithm 
(Wang et al., 2007) implemented in dada2 (assignTaxonomy func-
tion), with the SILVA reference database v138 (Quast et al., 2012) 
for bacteria and the UNITE reference database v8.3 (Nilsson 
et al.,  2018; UNITE Community,  2019) for fungi. All ASVs unas-
signed to the bacterial kingdom or the Dikarya clade, or match-
ing chloroplastic and mitochondrial sequences were removed. The 
ASV table was then curated using positive and negative controls. 
Negative controls were used to remove reads resulting from cross 
contamination or reagent contamination following the (Galan 
et al., 2016) procedure. Sequences detected in the positive con-
trols were removed from other environmental samples follow-
ing Galan et al.  (2016) procedure. Additional contaminants were 
identified based on their frequency using the decontam package 
v1.12.0 (Davis et al.,  2018). Finally, samples with less than 100 
reads were discarded from the ASV table (Table S1).

2.5  |  Statistical analysis

2.5.1  |  Comparison of tree water status between 
irrigated and non-irrigated plots

Data analyses were performed using R version 4.0.2 (2020-06-
22) (R  Core Team,  2020). Predawn water potential measurements 
were analysed for each tree species with a linear mixed-effect 
model (LMM) using the lmer function of the lmerTest package 
v3.1.3 (Kuznetsova et al., 2017), followed by an analysis of variance 
(ANOVA), and a post hoc Wilcoxon rank-sum test with continuity 
correction using the wilcox.test function (R base). The model had 
the sampling month, the irrigation treatment and their interaction as 
fixed effects, and the block as a random factor.
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6  |    CAMBON et al.

2.5.2  |  Comparison of phyllosphere 
microbiota diversity and composition between 
irrigated and non-irrigated plots

The alpha-diversity of leaf microbial communities was estimated 
with the Shannon index using the diversity function of the vegan 
package v2.5-7 (Oksanen et al., 2019). It was analysed for each tree 
species with a generalized linear model (GLM) with a Gamma distri-
bution using the glm function of the stats package v4.2.1 (R Core 
Team, 2020). The models had the number of reads per sample, the 
sampling month, the irrigation treatment and the interaction be-
tween the month and irrigation treatment as fixed effects. In the 
case of Q. ilex and P. pinaster, the models also included leaf age 
(young vs. mature) as a fixed effect. The experimental block was 
not introduced as a random factor because it led to singular models, 
suggesting overfitting. A post hoc Wilcoxon rank-sum test was then 
used to compare alpha-diversity values between irrigated and non-
irrigated trees, for each sampling month and each tree species taken 
separately, using the wilcox.test function (R base).

Dissimilarities in community composition among leaf samples 
were estimated using the Bray–Curtis distance after Hellinger stan-
dardization, using the vegdist and decostand functions of the vegan 
package v2.5-7 (Oksanen et al., 2019). A Principal Coordinate Anal-
ysis (PCoA) analysis was performed for each tree species using the 
pcoa function of the ape package v5.5 (Paradis & Schliep, 2019). The 
factors structuring the phyllosphere microbiota composition were 
assessed for each tree species with a Permutational multivariate 
analysis of variance (PERMANOVA), using the adonis2 function from 
the vegan package v2.5-7 (Oksanen et al., 2019). The models had the 
number of reads per sample, the sampling month, the leaf age (only 
for Q. ilex and P. pinaster), the irrigation treatment and the interac-
tion between the month and irrigation treatment as fixed effects.

2.5.3  |  Machine-learning of irrigation treatment 
from phyllosphere microbiota data

We used the Random Forest (RF) algorithm to learn the irrigation 
treatment from phyllosphere microbiota data with the ranger pack-
age v0.13.1 (Wright & Ziegler, 2017). The algorithm was applied to 
each tree species separately, so that the RF input data consisted in 
96 trees (12 trees × 4 irrigated blocks, and 12 trees × 4 non-irrigated 
blocks). To begin with, all leaf samples were included in the learn-
ing, without introducing information on leaf age (young or mature 
leaf) and on sampling month (May or July). We excluded samples 
for which we separated the epiphytic and endophytic communities.

For each tree species, we created 60 ASV tables representing 
different dimensions of the information contained in the microbial 
community data. The 60 ASV tables corresponded to 3 microbial 
targets (fungi only, bacteria only, fungi and bacteria together) × 2 fil-
tering thresholds (all ASVs, only abundant or prevalent ASVs) × 5 tax-
onomic aggregation levels (ASV, genus, family, class, order) × 2 data 
types (quantitative data or presence/absence data). The taxonomic 

aggregation was performed by summing the number of reads of all 
ASVs assigned to the same genus, family, class or order and discard-
ing ASVs unassigned to the considered taxonomic level. In quantita-
tive ASV tables, we defined abundant ASVs as those with a number 
of reads higher than the 3rd quartile of the ASV read number distri-
bution. In the presence/absence ASV tables, we defined prevalent 
ASVs as those present in at least half of the samples. Finally, we ei-
ther kept all samples in the datasets, or split the datasets according 
to the sampling month to compare the RF performance between 
May and July samples.

For each tree species and each ASV table, the RF training step 
involved 500 decision trees, and cross-validation was performed 
using the k-fold method with five splits of the dataset. We optimized 
each algorithm by using N = 20 different values of the mtry parame-
ter of the ranger function from the ranger package v0.13.1 (Wright 
& Ziegler, 2017). The mtry parameter corresponds to the number of 
variables (in our case, the number of ASVs) randomly selected by the 
algorithm for each split of the decision trees. The values of the mtry 
parameter to be tested, noted mi with i = {1, … ,N}, were calculated 
as a function of the number n of ASVs in the dataset (adapted from 
Chang et al., 2017):

Then, the ability of each algorithm to classify leaf samples col-
lected from trees experiencing higher water deficit (i.e. growing in 
non-irrigated plots) was evaluated using the following metrics:

with TP the true positives, TN the true negatives, FP the false positives 
and FN the false negatives.

To check that the algorithm was indeed learning the effect of 
irrigation treatment and not that of tree spatial position within the 
experiment, we also performed a non-random cross validation. Ir-
rigated and non-irrigated blocks were randomly paired, and each 
pair of blocks were used as the training dataset, while the remaining 
blocks were used as the testing dataset. Doing so, trees from the 
same blocks could not be part of the training and the testing dataset 
at the same time.

2.5.4  |  Identification of microbial 
biomarkers candidates

Finally, in cases where the error rate was low (less than 10%), we 
identified which ASVs were the most important for classifying 

mi =
i × n

N × 2
+ 1

error =
FP + FN

TP + TN + FP + FN

sensitivity =
TP

TP + FN

precision =
TP

TP + FP
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    |  7CAMBON et al.

samples into irrigated versus non-irrigated treatment, by using 
the Gini index estimated by the ranger function. A null or negative 
Gini index means that the ASV is not informative for classification, 
while high values indicate that they are more informative. A sig-
nificance test was performed to select the most important ASVs 
for classification, using the importance_pvalue function from the 
ranger package v0.13.1 (Wright & Ziegler,  2017). Each selected 
ASV was then compared to the list of epiphyte and endophyte 
ASVs and was assigned to a compartment accordingly (epiphytic, 
endophytic or both).

3  |  RESULTS

3.1  |  Effect of irrigation on tree water status

According to linear mixed-effect models (Table  S2), the irrigation 
treatment had significant effects on predawn water potential, in in-
teraction with sampling month, for 3 tree species (Q. ilex, B. pendula 
and P. pinaster). As expected, in May, the predawn water potential 
did not differ between irrigated and non-irrigated plots for all four 
tree species (Figure 2). In July, the predawn water potential was sig-
nificantly lower in non-irrigated plots compared to irrigated plots for 
Q. ilex and B. pendula, according to post-hoc tests (Figure 2), suggest-
ing that these two species experienced a higher level of water deficit 

in non-irrigated plots at the time of sampling. The same trend was 
observed in P. pinaster, although the difference was not significant 
according to the post hoc test.

3.2  |  Effect of irrigation on leaf microbiota 
diversity and composition

The raw bacterial datasets consisted of 11.3 × 106, 2.2 × 106, 
8.2 × 106 and 5.2 × 106 demultiplexed 16S rRNA gene reads for Q. 
ilex, Q. robur, B. pendula and P. pinaster respectively. The sequence 
filtering and ASV inference steps retained 72%, 65%, 4% and 18% 
of the 16S rRNA gene reads for the four tree species respectively 
(Table  S1). The final bacterial datasets consisted of 8.1 × 106, 
1.4 × 106, 3.5 × 105 and 9.6 × 105 high-quality reads distributed into 
231, 150, 95 and 152 samples and grouped into 1057, 229, 76 and 
120 ASVs respectively.

The raw fungal datasets consisted in 6.7 × 106, 3.6 × 106, 3.7 × 106 
and 5.6 × 106 demultiplexed ITS reads for Q. ilex, Q. robur, B. pendula 
and P. pinaster respectively. The sequence filtering and ASV infer-
ence steps retained 45%, 60%, 76% and 71% of the ITS reads for 
the four tree species respectively (Table S1). The final fungal data-
sets consisted in 3 × 106, 2.1 × 106, 2.8 × 106 and 4 × 106 high-quality 
reads distributed into 232, 148, 179 and 268 samples and grouped 
into 943, 514, 249 and 660 ASVs respectively.

F I G U R E  2  Predawn water potential 
of trees. Predawn water potential was 
measured with a pressure chamber 
before sunrise for 12 trees per species 
(3 trees per plot; Figure 1a) during each 
sampling campaign (May and July). Violin 
shapes show the distribution of water 
potential values and black bars represent 
the median. Stars indicate significant 
differences between irrigated and non-
irrigated plots (Wilcoxon rank sum test 
with continuity correction, p-value <.05).

Q. ilex

May July
−1.5

−1.0

−0.5

0.0

0.5

*

Q. robur

May July
−1.5

−1.0

−0.5

0.0

0.5

B. pendula

May July
−1.5

−1.0

−0.5

0.0

0.5

*

P. pinaster

May July
−1.5

−1.0

−0.5

0.0

0.5

Pr
ed

aw
n 

w
at

er
 p

ot
en

tia
l (

M
Pa

)

Irrigated
Non−irrigated

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17149 by Inrae - D
ipso, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8  |    CAMBON et al.

According to generalized linear models, the sequencing depth 
had a significant effect on bacterial alpha-diversity for all tree spe-
cies (Table S3). The leaf age also had a significant effect for both 
evergreen species (Q. ilex and P. pinaster), and the sampling month 
had a significant effect for Q. robur. The post hoc test showed that 
bacterial alpha-diversity was lower in non-irrigated trees com-
pared to irrigated one in July for Q. robur (Figure S1). The sequenc-
ing depth and sampling month had a significant effect on fungal 
alpha-diversity for all tree species but B. pendula (Table S3). The leaf 
age also had a significant effect for both evergreen species (Q. ilex 
and P. pinaster). Irrigation treatment also had a significant effect 
for P. pinaster, fungal-alpha diversity being slightly higher for non-
irrigated trees compared to irrigated ones, although the post hoc 
test was not significant (Figure S1). Fungal alpha-diversity was also 
higher in non-irrigated trees compared to irrigated ones in July for 
Q. robur (Figure S1).

The irrigation treatment had a significant effect on bacterial 
beta-diversity for Q. ilex and P. pinaster, explaining 3% and 1% of 
variance respectively (Table S4 and Figure S2). The irrigation treat-
ment:sampling month interaction also had a significant effect on 
bacterial beta-diversity for Q. ilex, explaining 1% of variance. The 
irrigation treatment had a significant effect on fungal beta-diversity 
for all tree species, explaining 3%, 4%, 1% and 2% of variance for Q. 
ilex, Q. robur, B. pendula and P. pinaster respectively (Table S4 and 
Figure S2). The irrigation treatment:sampling month interaction was 

also significant for Q. ilex, Q. robur and B. pendula, explaining 1%, 1% 
and 2% of variance respectively.

3.3  |  Supervised classification of phyllosphere 
microbiota samples according to the 
irrigation treatment

After optimisation and k-fold cross validation, the RF algorithm 
was able to classify non-irrigated samples with 1% ± 1%, 8% ± 4%, 
24% ± 6% and 21% ± 13% of error for Q. ilex, Q. robur, B. pendula 
and P. pinaster respectively. This optimal classification was ob-
tained using abundant fungal ASVs for Q. ilex, Q. robur, B. pendula 
and all fungal ASVs for P. pinaster respectively. In general, ASV 
tables including fungal data gave the best results, while bacte-
rial data alone gave higher error rates (Figure  3 and Table  S5). 
The sensitivity, precision and error rate of the classification were 
not improved by aggregating the data at the genus, family, order 
or class level (Figure S3). The best results were obtained by using 
the ASV level (Figures  3 and S3 and Table  S5). Almost identical 
results were obtained when using presence/absence ASV tables, 
with 2% ± 2%, 7% ± 8%, 24% ± 9% and 21% ± 10% of error rate for 
Q. ilex, Q. robur, B. pendula and P. pinaster respectively (Figure S4 
and Table S5). The best classifications were obtained by decreasing 
the number of ASVs used on each branch of the classification tree 

F I G U R E  3  Random forest algorithm 
performance to classify samples from 
the non-irrigated treatment using 
quantitative phyllosphere microbiota 
data, depending on the microbial dataset 
features. Sensitivity and precision were 
assessed by a fivefold cross validation. 
Each dot represents the mean sensitivity 
and precision obtained for a given 
phyllosphere microbiota quantitative 
dataset and a given mtry parameter 
value. Coloured dots are obtained with 
the optimal mtry value (i.e. giving the 
lowest error rate). The mtry parameter 
corresponds to the number of ASVs used 
for each split of the decision tree. Bars 
represent the standard deviation over 
the five iterations of cross-validation. The 
lowest error rate is indicated in percent. 
Note that to improve readability, the X-
axis for Quercus ilex differs from those of 
the other tree species.
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    |  9CAMBON et al.

(mtry parameter, Table S5). Similar results were obtained using non-
random cross-validation with quantitative data of abundant fungi 
(3% ± 3%, 9% ± 7%, 28% ± 6% and 24% ± 9% of error rate for Q. ilex, 
Q. robur, B. pendula and P. pinaster respectively).

We found that the error rate of classification was comparable 
when splitting datasets according to the sampling month (Figure S5). 
For Q. ilex, we obtained an error rate of 3% and 2% when applying 
the RF algorithm to fungal quantitative data from May samples only 
and July samples only respectively. Similarly, we obtained an error 
rate of 12% and 6% for Q. robur, 21% and 28% for B. pendula and 22% 
and 28% for P. pinaster.

We found that the error rate of classification was negatively cor-
related with the mean sequencing depth, meaning that the higher 
the sequencing depth, the better the classification (Figure 4, Pear-
son's product–moment correlation after log10 transformation of the 
number of reads: p-value = .02, correlation coefficient = −.67).

3.3.1  |  Microbial biomarkers candidates

The most informative ASVs were analysed for Q. ilex and Q. robur, 
using the abundant fungi dataset, since we obtained the lowest error 
rates for these conditions (1% and 8% respectively, Figure  3). We 
identified 23 and 17 fungal ASVs significantly involved in the classifi-
cation of Q. ilex and Q. robur trees respectively (Figure 5). For Q. ilex, 
the five most important fungal ASVs were assigned to the Tremel-
lomycetes (ASV_59 and ASV_65), Leotiomycetes (ASV_6), Paraphae-
osphaeria michotii (ASV_195) and Dothideomycetes (ASV_48). For 
Q. robur, the five most important fungal ASVs were assigned to the 
Dothideomycetes (ASV_48), Cladosporium (ASV_18), Pseudorotiaceae 
(ASV_36), Dothideales (ASV_28) and Dothideomycetes (ASV_167). 
Seven ASVs were important for the classification of both Q. ilex and 
Q. robur samples (Figure 5).

These informative ASVs were all detected in the epiphytic com-
partment, and sometimes in both the epiphytic and endophytic 
compartments. None of them was detected as a strict endophyte 
(Figure S6).

4  |  DISCUSSION

In the present study, we investigated the effect of tree water sta-
tus on the phyllosphere microbiota of four temperate tree species 
(Q. robur, Q. ilex, P. pinaster and B. pendula). We tested the hypoth-
esis that the phyllosphere microbiota composition responds to tree 
water status and represents a biomarker that could be used in future 
programmes of European temperate forest ecosystems biomonitor-
ing, in combination with other measurements of tree condition.

To test these hypotheses, we used an experimental design con-
sisting of non-irrigated and irrigated forest plots, in which irrigation 
has been applied throughout the whole summer period (May to 
October) for several years (Castagneyrol et al., 2017). As expected, 
trees did not suffer from water deficit in spring according to water 
potential measurements, while they had a higher water deficit in 
non-irrigated plots compared to irrigated plots during the summer. 
This was true for all tree species except Q. robur for which the effect 
of irrigation treatment on summer water deficit was weaker. The 
experimental design thus allowed us to compare the phyllosphere 
microbiota of trees that have repeatedly experienced water deficit 
during summer (Castagneyrol et al., 2017, 2018; Galmán et al., 2022) 
to the microbiota of unstressed trees in irrigated plots.

4.1  |  Phyllosphere microbiota responds to tree 
water status in European temperate forests

Leaf bacterial and fungal communities were analysed using amplicon 
sequencing, by considering together epiphytes and endophytes. The 
leaf fungal community composition (beta-diversity) varied with tree 
water status in the four tree species, while the bacterial community 
composition varied only in P. pinaster and Q. ilex. The experimental 
factors that we recorded in our study (sampling date, leaf age and 
irrigation treatment) explained a small proportion of the variance in 
microbial community composition, suggesting that other factors play 
a role. For instance, tree genotype (Faticov et al., 2021) and micro-
climate environment of each tree might structure the communities. 

F I G U R E  4  Relationship between the 
sequencing depth of the phyllosphere 
microbiota datasets and the classification 
error rate obtained with the Random 
forest algorithm using phyllosphere 
microbiota data. Dots represent the 
mean error rate obtained after fivefold 
cross validation for each phyllosphere 
microbiota dataset and each tree species, 
and bars represent standard deviation.
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10  |    CAMBON et al.

Our results are nonetheless similar to other phyllosphere studies 
that rarely explain a lot of variance in the microbial community com-
position (e.g. Debray et al., 2022; Faticov et al., 2021). The leaf fungal 
richness (alpha-diversity) decreased slightly with irrigation in Q. robur 
and P. pinaster. Interestingly, irrigation increased bacterial diversity 
and decreased fungal diversity in leaves of Q. robur, as observed re-
cently in the tomato phyllosphere (Debray et al., 2022). Similarly, the 
diversity of bacterial endophytes in natural poplar populations was 
recently found to be reduced by drought (Firrincieli et al., 2020). The 
decrease in phyllosphere bacterial diversity with drought is however 
not a general trend, as opposite results were found in Q. ilex (Peñue-
las et al., 2012; Rico et al., 2014). Altogether, this suggests that water 
deficit in trees does impact the phyllosphere microbial community, 
but classical community ecology analyses based on the comparison 
of alpha- and beta-diversity patterns might not be sufficient to ex-
tract clear and consistent patterns. In the present study, we there-
fore used Random Forest (RF) algorithms (Namkung, 2020) to better 
link phyllosphere microbiota with tree water status.

4.2  |  Phyllosphere microbiota can be used as a 
biomarker of tree water status

Using Random Forest algorithms, we were able to classify samples 
according to irrigation treatments from leaf microbial community 
data with less than 10% error rate for Q. robur and Q. ilex, and less 
than 25% of error rate for P. pinaster and B. pendula. This means 
that we could detect trees with higher water deficit from leaf mi-
crobial communities with more than 90% of accuracy for Q. robur 
and Q. ilex, and more than 75% of accuracy for P. pinaster and B. 
pendula. We obtained similar results when making sure that trees 
from the same block could not be present in both the training and 
the testing datasets, confirming that the algorithm is learning the 
irrigation treatment and not the tree location within the experi-
ment. Because Q. robur and Q. ilex trees were smaller than P. pin-
aster and B. pendula, the leaves were closer to the sprinkling system 

and leaf surface humidity may have been more influenced by the 
irrigation treatment, explaining a stronger response of the microbial 
community. Interestingly, the RF algorithms were able to predict, 
sometimes very accurately, the irrigation treatment of the trees, 
while classical PERMANOVA analyses of community composition 
(beta-diversity) found a very low percentage of variance explained 
by irrigation treatment. For instance, irrigation treatment explained 
3% of the variability in Q. ilex fungal community, yet the fungal 
community contained enough information to predict irrigation 
treatment with 99% of accuracy using Random Forest. This result 
is similar to that of Wilhelm et al.  (2022), who showed that Ran-
dom Forest methods applied to soil bacterial community composi-
tion could accurately predict soil health properties, even though a 
PERMANOVA analysis showed that most variation in the bacterial 
community was explained by geographical location. These findings 
emphasize the efficiency of machine learning methods to exploit 
the large and complex datasets generated by the sequencing of mi-
crobial communities.

4.3  |  Phyllosphere microbiota contains signature of 
past water deficit

Random Forest algorithms were able to predict irrigation treat-
ments from leaf microbial community data even if leaves had not 
been collected during the summer water deficit period. We ob-
tained good predictions for all four tree species using mixtures of 
samples collected in May (before the summer) and July (during sum-
mer), as well as mixtures of mature and new leaves for evergreen 
species (Q. ilex and P. pinaster). This suggests that the phyllosphere 
microbiota of trees is a robust biomarker of tree water status as 
microbial data do not need to be collected on a specific type of 
leaf or at a specific time. The effect of tree age on prediction ac-
curacy should, however, be investigated as the study site was com-
posed of trees of the same age. The prediction accuracy that we 
obtained with leaves sampled in May only was surprisingly high and 

F I G U R E  5  Mean Gini index and 
taxonomic assignment of fungal ASVs with 
a significant importance for classification. 
ASVs common to Quercus ilex and Quercus 
robur are in bold. Bars represent standard 
deviation over the 5 folds of the cross-
validation in random forest classifications. 
Blue dots correspond to ASVs associated 
with the irrigated treatment, and orange 
dots correspond to ASVs associated with 
the non-irrigated treatment.
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comparable to the one obtained from leaves sampled in July only 
for both evergreen and deciduous species. This shows that newly 
emerged leaves which have never experienced water deficit can still 
contain a signature of the past summer water deficits and suggests 
that the phyllosphere microbiota could be used as a biomarker of 
past water deficit even in deciduous tree species. It is in agreement 
with another study showing that long-term seasonal patterns are 
the main factor influencing the phyllosphere community (Stone & 
Jackson, 2021). The presence of a signature of past summer water 
deficits in newly emerged leaves could be explained by their coloni-
zation from stem and branches microbial communities, which would 
keep a signature of the host physiology throughout the year. Tree 
physiology at the time of leaf emergence, which may depend on 
past stresses, could also influence directly the microbial commu-
nity composition in newly emerged leaves. Hence, leaf microbial 
communities may not be early warning systems of environmental 
changes, but are good indicators of environmental conditions over 
the long run (Carignan & Villard, 2002).

4.4  |  The best biomarkers of tree water 
status are fungi

For all four tree species, the best detection of tree water deficit was 
obtained using fungal data, compared to bacterial data. Although 
this could be explained by the higher sequencing depth of fungal 
datasets for Q. robur, B. pendula and P. pinaster, bacterial and fungal 
data were of comparable sequencing depth for Q. ilex, allowing for 
a biological comparison. In that case, fungal data predicted irriga-
tion treatment with 99% of accuracy, as opposed to 96% of accuracy 
for bacterial data. This is coherent with previous studies showing 
contrasting effects of drought stress on phyllosphere bacterial and 
fungal communities (Debray et al., 2022). This also suggests that the 
bacterial community does not need to be sequenced to detect tree 
drought stress, thus reducing the cost of using phyllosphere micro-
biota for forest biomonitoring (Carignan & Villard, 2002).

4.5  |  Microbe taxonomy is not needed to assess 
tree water status

We found that the ASV level was the most informative, and that the 
microbial data do not need to be aggregated to higher taxonomic lev-
els to detect tree water deficit. These findings are in agreement with 
those of Wilhelm et al. (2022), who showed that microbial data at the 
ASV level are the most informative to predict soil health properties. 
In both studies, the bacterial and fungal ASVs can be used as bio-
markers without prior knowledge on their taxonomy. These results 
contrast with those of Chang et al. (2017), who showed that bacte-
rial ASVs aggregated at the order level were the most informative to 
predict crop productivity. This difference might be due to a higher 
functional redundancy in the soil microbial communities analysed by 
Chang et al.  (2017), or to better taxonomic assignments for those 

communities. In our study, many ASVs could not be taxonomically 
assigned because the microbial sequences were not represented 
in reference databases. Therefore, there was a loss of information 
when aggregating the data based on taxonomy, because the unas-
signed ASV had to be removed from the data.

4.6  |  Presence-absence data are sufficient to 
assess tree water status

Our results also showed that the signature of tree water deficit is 
contained in the presence of some abundant ASVs. Removing rare 
ASVs did not decrease the accuracy of water deficit detection. Nei-
ther did the removal of abundance information, by transforming the 
microbial community data into presence–absence data. These ob-
servations suggest that tree water deficit triggers a turnover within 
the abundant members of the phyllosphere community. As the 
abundance data obtained from Illumina sequencing are only semi-
quantitative (e.g. Castaño et al.,  2020 a recent study on ITS-like 
markers), they might add some noise in the data and impair water 
deficit detection. Our results suggest that presence-absence data of 
abundant ASVs are more reliable, and are sufficient to detect water 
deficit.

4.7  |  We found fungal biomarkers of tree water 
status in oaks

To go further, we analysed the ASVs that were the most informa-
tive for the detection of water deficit. We focused on the two oak 
species (Q. ilex and Q. robur) since we obtained the best detections 
for these two tree species, compared to P. pinaster and B. pendula. 
Based on the Random Forest results, we identified seven fungal 
ASVs important for tree water status assessment in both oak spe-
cies: ASV_6 (taxonomically assigned to Leotiomycetes), ASV_33 
(Zymoseptoria), ASV_36 (Pseudeurotiaceae) and ASV_59 (Tremello-
mycetes) were associated with lower water deficit, while ASV_11 
(Ramularia plurivora), ASV_18 (Cladosporium) and ASV_48 (Dothide-
omycetes) were associated with higher water deficit. All those fun-
gal ASVs were detected both in the total leaf community (obtained 
by sequencing ground leaf discs) and in the epiphytic community 
(obtained by swabbing leaf surfaces), suggesting that they are all 
epiphytes, with an endophytic stage for some of them (obtained 
by sequencing ground leaf discs after surface sterilization). These 
results also suggest that swabs could be used to sample the leaf 
microbial community, instead of sampling full leaves and making 
discs. This is encouraging for the practicality of using the phyllo-
sphere microbiota as a biomarker of tree water status in the fu-
ture. Some recently developed tools such as LANDMark (Rudar 
et al.,  2022) have been shown to outperform Random Forests in 
the identification of biomarkers, and could be used on our dataset 
to confirm the stress marker potential of the seven fungal ASVs we 
identified in this study.
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4.8  |  Sequencing data quality influences tree water 
deficit detection

The use of phyllosphere microbiota as a biomarker of tree water sta-
tus requires high quality sequencing data. In our study, extracting 
high quality and quantity of DNA has been more challenging for B. 
pendula and P. pinaster than for the two oak species. This difficulty, 
combined with the necessity to use degenerated primers to avoid 
chloroplast amplification for the 16S rRNA gene, resulted in poor 
amplification and thus low number of bacterial reads for B. pendula 
and P. pinaster. This impeded the accuracy of water deficit detec-
tion for those tree species, indicating that extraction protocols may 
need to be optimized for each tree species to use the phyllosphere 
microbiota as a biomarker of tree water status in the future. As a 
result, the use of leaf microbial data to monitor water status in trees 
might still be challenging for some tree species, and its potential 
high-throughput and systematic implementation will rely on future 
technological advances. However, the speed at which molecular 
methods evolve and improve gives no doubt about the development 
of performant and cost-effective methods in the near future, which 
could be directly implemented in the field (Pomerantz et al., 2022).

4.9  |  Training datasets are needed to detect 
water deficit

In addition to good quality sequencing data, detecting water defi-
cit stress from phyllosphere microbiota using Random Forest algo-
rithms requires training datasets describing the microbiota of trees 
of known water status. Building these datasets is difficult because 
it requires predawn water potential measurements on a large num-
ber of trees. To overcome this difficulty, future studies could assess 
the performance of the algorithm trained on our data to detect tree 
water deficit of the same oak species but in other European tem-
perate forest sites. If detections are accurate, training datasets from 
studies such as ours could be used as a public resource to build clas-
sifiers, which could be subsequently used as a tool by forest practi-
tioners in different sites. However, the performance of our method 
should first be tested for other climates and forest types.

4.10  |  A promising tool for in situ automated 
biomonitoring

Overall, our results support the idea that environmental DNA 
and supervised machine learning methods can be efficiently com-
bined for the next-generation biomonitoring of ecosystems (Bohan 
et al., 2017; Cordier, Lanzén, et al., 2018). We showed that phyllo-
sphere microbiota sequencing data can be analysed with Random 
Forest algorithms to accurately assess tree water status in forest 
ecosystems. The fact that only presence-absence data of prevalent 
and epiphytic fungi were necessary to achieve a good detection of 
tree water deficit shows the potential for cheap and high-throughput 

implementation of these methods. Emerging molecular techniques 
for in situ detection of species, such as on-site sequencing methods 
nanopore (Pomerantz et al.,  2022) or detection of biomarker spe-
cies using ultrarapid mobile qPCR (Doi et al., 2021), could help, in 
the near future, to use leaf fungi as a biomarker of water deficit. 
The combination of in situ sequencing of fungal communities, cloud-
based automated classification of sequence data, together with the 
use of other environmental DNA biomarkers and remotely sensed 
data would definitely fit in the scope of next-generation biomonitor-
ing of ecosystems (Bohan et al., 2017). Such techniques would also 
fit in global and interdisciplinary monitoring programmes of forest 
health (Hartmann et al., 2018).
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