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How does the spatial heterogeneity of landscapes interact with the adaptive evolution of populations to influence their spreading speed? This question arises in agricultural contexts where a pathogen population spreads in a landscape composed of several types of crops, as well as in epidemiological settings where a virus propagates among individuals with distinct immune profiles. To address it, we introduce an analytical method based on reaction-diffusion models. We focus on spatially periodic environments with two distinct patches, where the dispersing population consists of two specialized morphs, each potentially mutating to the other. We present clear formulas for the speed together with criteria for persistence, accounting for both rapidly and slowly varying environments, as well as small and large mutation rates. Altogether, our analytical and numerical results yield a comprehensive understanding of persistence and spreading dynamics. Notably, compared to a situation without mutations or to a single morph propagating in a heterogeneous landscape, the introduction of mutations to a second morph with reverse specialization, while consistently impeding persistence, can significantly increase speed, even if the mutation rate between the two morphs is very small. Additionally, we find that the amplitude of the spatial fragmentation effect is significantly amplified in this case. This has implications for agroecology, emphasizing the higher importance of landscape structure in influencing adaptation-driven population dynamics.

Introduction

As computational advancements and machine learning-based modeling transform various scientific domains, a pivotal question emerges: Are traditional analytical approaches, such as reaction-diffusion models, still pertinent in spatial ecology? 1 Reaction-diffusion models have several features that have contributed to their continued use since the early 20th century. From the point of view of the trade-off between generality, realism, and precision introduced by [START_REF] Levins | The strategy of model building in population biology[END_REF], reaction-diffusion models have the advantage of generality, in the sense of applicability to a large number of systems. They remain interpretable, due to their mechanistic nature striving to represent the system based on biological and physical processes. Following the principle of parsimony, which states that the model should be "as simple as possible but as complex as necessary" [START_REF] Sun | Simple or complicated agent-based models? a complicated issue[END_REF], these KISS (for "Keep It Simple, Stupid" [START_REF] Axelrod | The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration: Agent-Based Models of Competition and Collaboration[END_REF]) models appear to be favorably positioned in terms of the bias-variance trade-off when the goals are theoretical. Moreover, one of the major aspects that has contributed to the success of reaction-diffusion approaches in spatial ecology is that their results can sometimes be expressed in the form of simple mathematical expressions. The most famous example is the Fisher-KPP model in a homogeneous one-dimensional environment. In the context of this model, a population that is initially confined to a limited area will spread with a speed c = 2 √ r D. This very simple formula provides valuable insight into the effects of the intrinsic growth rate (r) and the spatial diffusion parameter (D) on the speed at which the population spreads. This formula has had a considerable impact on theoretical ecology (e.g. [START_REF] Skellam | Random dispersal in theoretical populations[END_REF][START_REF] Mollison | Dependence of epidemic and population velocities on basic parameters[END_REF][START_REF] Okubo | Diffusion and Ecological Problems -Modern Perspectives[END_REF], whether in describing biological invasions or epidemiological phenomena. One can wonder if obtaining so simple formulas remains feasible as the model becomes more realistic.

The study of local adaptation and its role in driving population dynamics in heterogeneous environments has received considerable attention, both from an experimental and a theoretical perspective, see [START_REF] Kawecki | Conceptual issues in local adaptation[END_REF] and references therein. Local adaptation is a process whereby subpopulations evolve, through Darwinian selection, to become better adapted to their local environment [START_REF] Williams | Adaptation and natural selection: A critique of some current evolutionary thought[END_REF]. In the absence of forces beyond Darwinian selection, genotype-environment (G x E) interactions should cause each local population to adapt to its specific environmental conditions, regardless of the conditions present in the other regions of the space. We consider here the case of an asexual population expanding its spatial range in a heterogeneous environment. Then, several factors can prevent the population from reaching the local adaptive optimum, and can influence the spreading speed of the population. These factors include the mutation load (i.e. the reduction in the average fitness of a population due to the accumulation of deleterious mutations [START_REF] Kimura | The mutational load with epistatic gene interactions in fitness[END_REF][START_REF] Martin | Lethal mutagenesis and evolutionary epidemiology[END_REF], and migration of individuals from other regions of space [START_REF] Débarre | Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environments[END_REF]. In addition to these evolutionary effects, the amplitude and spatial distribution of heterogeneities also contribute to the overall picture, as they are known to impact the spreading speed in non-adaptive contexts [START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF]Berestycki et al., 2005b). In this work, we propose a method to characterize analytically the spreading speed in models involving both spatial heterogeneity of the environment and adaptive evolution of the population.

The motivation for this work stems from the shift from an intensive cropping system supported by uniform agricultural landscapes to the agroecology paradigm, where crop diversification plays a central role to ensure the stability of yields [START_REF] Gascuel-Odoux | A research agenda for scaling up agroecology in european countries[END_REF][START_REF] Caquet | Agroécologie: des recherches pour la transition des filières et des territoires[END_REF]Food and Agriculture Organization of the United Nations, 2018;[START_REF] Beillouin | Positive but variable effects of crop diversification on biodiversity and ecosystem services[END_REF]. In particular, host diversity is known to influence disease spread through various mechanisms [START_REF] Keesing | Effects of species diversity on disease risk[END_REF], one of which results from the interplay between the dispersal and competition among pathogen genotypes that adapt differentially to the various hosts present in the environment [START_REF] Borg | Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps[END_REF]. In this context, most studies emphasize the role of host diversity in shaping pathogen evolution [START_REF] Débarre | Evolution of specialization in a spatially continuous environment[END_REF], pathogen diversity (Papaïx et al., 2014), and the risk of disease persistence [START_REF] Lively | The Effect of Host Genetic Diversity on Disease Spread[END_REF]. However, it is interesting to note that little effort has been dedicated to understanding how host diversity affects the speed of disease spread. In heterogeneous spatially-periodic environments, and with a unique morph (i.e., without adaptation), Fisher-KPP type models have also seen some success, yielding numerous results on the connections between the spatial structure of the environment, persistence, and spreading [START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF][START_REF] Cantrell | Spatial ecology via reaction-diffusion equations[END_REF]Berestycki et al., 2005a,b). However, these connections have generally only been described in a qualitative manner. In particular, the formula for the spreading speed is not as explicit as the formula c = 2 √ r D when r(x) and D(x) depend on the space variable x. One way to overcome this issue is to look at the limiting cases of small and large periods L, which respectively correspond to highly fragmented and low-fragmented environments. The case of small periods naturally leads to a homogenization limit and a simple formula c(L → 0) = 2 ⟨r⟩ a ⟨D⟩ h , where ⟨r⟩ a is the arithmetic mean of r(x) and ⟨D⟩ h is the harmonic mean of D(x) over a period cell [START_REF] El Smaily | Homogenization and influence of fragmentation in a biological invasion model[END_REF]. This formula already highlights a breaking of symmetry between the effect of r and D on the spreading speed. It can be complemented by studying the other limit, where the period length becomes very large, to better capture the effect of heterogeneities [START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF][START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF].

When adaptation occurs, the expanding population may consist of multiple morphs, each specializing in a limited number of hosts. In this scenario, polymorphism in life history traits among individuals, as discussed by [START_REF] Elliott | Dispersal polymorphism and the speed of biological invasions[END_REF] and [START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF], has the potential to influence the invasion speed. Both studies primarily focus on dispersal polymorphism and the complementarity between strategies that invest in growth and those that invest in dispersal. However, they considered only homogeneous environments. Our goal in this study is to examine the influence of adaptation on the spreading speed of a species within a heterogeneous environment. We specifically analyze scenarios in which the environment is periodic, consisting of two distinct patches. The spreading population is made up of two unique morphs, each specialized for one of the patch types. Crucially, part of the offspring of one morph can mutate at birth to become the other morph. We anticipate that the interaction between the two morphs will have a significant impact on the spreading speed. Some parameters can exhibit dual effects, making it imperative to derive a straightforward qualitative formula based on the parameters of the model. For instance, a higher mutation rate is known to increase the mutation load and decrease the time needed for local environment adaptation [START_REF] Anciaux | Population persistence under high mutation rate: from evolutionary rescue to lethal mutagenesis[END_REF][START_REF] Lavigne | When sinks become sources: adaptive colonization in asexuals[END_REF]. Predicting the effect of the mutation rate on the spreading speed, therefore, becomes a complex endeavor. Explicit analytic formulas will offer invaluable insight into the intertwined roles of adaptive, demographic, and spatial factors.

Recent formulas have been derived [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF], but they tend to be abstract and provide limited ecological insight. In this study, we present straightforward and clear formulas for speed, accounting for both rapidly and slowly varying environments, as well as for small and large mutation rates. The rapidly varying environment limit is a direct consequence of the results in [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF]. In contrast, determining the speed for slowly varying environments is notably more intricate and unveils some unexpected results, which stand as the cornerstone of our research. Altogether, our formulas, complemented by insight from numerical simulations, enhance our understanding of the specific impacts of the mutation rate, on the one hand, and of the environmental fragmentation, on the other hand, on the expansion of the population. In particular, our research reveals that allowing mutations between the two morphs results in a sudden increase of the speed, with respect to the scenario without mutations; this emerges as one of the primary and significant results of the paper.

Material and methods

Model development

The model describes the spread of two distinct morphs of a single species within a heterogeneous 1-dimensional environment composed of two types of patches. This scenario mimics the propagation of pathogens in an environment with alternating hosts, see Figure 1 for a schematic description of the model. The two morphs are differentiated by their varying fitness levels (i.e. their growth rates), and interact through local competition. Additionally, a portion of the offspring of one morph may switch to the other morph through the process of mutation at birth. The spread of these morphs is further influenced by spatial diffusion. We represent the overall dynamics of this system with the following reaction-diffusion model:

∂ t u(t, x) = D ∂ xx u + r u L (x) u -γ L (x) u (u + v) + µ (v -u), ∂ t v(t, x) = D ∂ xx v + r v L (x) v -γ L (x) v (u + v) + µ (u -v), t > 0, x ∈ R. (1)
In this context, x represents the spatial variable, while u(t, x) and v(t, x) are the population densities of the two morphs. The periodic functions r u L (x) and r v L (x) are the growth rates of the two morphs (which depend on the spatial position x). Additionally, D is the spatial diffusion coefficient, which is constant in space and shared by both morphs, and µ is a coefficient proportional to the mutation rate. Finally, γ L (x) is a competition coefficient. The environment, described by the functions r u L and r v L , is assumed to be periodic with a period L, where one half [0, L/2) of the period cell corresponds to the first host, and the other half [L/2, L) corresponds to the second host. Namely,

r u L (x) = r u (x/L), r v L (x) = r v (x/L) and γ L (x) = γ(x/L), (2) 
where r u , r v and γ are 1-periodic functions. We assume that the two morphs have distinct specializations. One morph has a higher growth rate (R + > 0) on one of the patches and a lower growth rate (R -≤ R + ) on the other patch, while the other morph has the opposite specialization. In other words

r u L (x) = R + and r v L (x) = R -for x ∈ [0, L/2), r u L (x) = R -and r v L (x) = R + for x ∈ [L/2, L).
(3) Morphs u and v have specialized interactions with their hosts: morph u has fitness R + on host 1 and R -on host 2, and conversely morph v has fitness R -on host 1 and R + on host 2 (R + > R -). The horizontal arrow signifies spatial propagation of the morphs through the environment.

Host 1 Host 2 Host 1 Host 2 Morph u Morph v Mutation Competition G×E interactions Spatial propagation One period L r u = R - r v = R + r u = R + r v = R - r u = R - r v = R +
Persistence of the population. In reaction-diffusion equations, the persistence of the global population u+v is often determined by the sign of a principal eigenvalue that indicates whether the state (u, v) = (0, 0) is stable or not [START_REF] Cantrell | Spatial ecology via reaction-diffusion equations[END_REF].

In our setting, as shown in Theorem 2.9 of [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF], the persistence or extinction of the population depends on the sign of k 2 m 0 ("2 m" stands for 2 morphs; by contrast, k 1 m 0 corresponds to the 1 morph case), the principal eigenvalue of an elliptic operator L 2 m 0 (see Appendix A). When we study the spreading properties, we always assume that k 2 m 0 > 0, which ensures the persistence of the population. In our framework, a simple sufficient condition for this is R + + R -> 0 (see Appendix A). Depending on the value of L, i.e., on the spatial fragmentation, and on the mutation term µ, we obtain more precise relations between R + , R -, µ and k 2 m 0 . We will describe them in Section 3.

Spreading properties. In the case of a spatially homogeneous environment, i.e., when the coefficients do not depend on x, Girardin (2017) established the spreading properties of the system (1). The recent results of [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF] extend these properties to systems with spatially periodic coefficients. Before going further on, we need to introduce precisely the notion of spreading speed. The spreading speed to the right (the spreading speed to the left could be considered as well) is the asymptotic rate at which a species, initially concentrated in a finite spatial region, expands its spatial range to the right-hand side of the 1-dimensional environment. It can be defined here in the following way. If an observer travels to the right (i.e., towards increasing x values) above that speed, the observer will see the total population density u(t, x) + v(t, x) vanish. If the observer travels to the right below that speed, the observer will not see the total population density vanish. In mathematical terms, we consider initial conditions (u 0 , v 0 ) which are nonnegative, not identically equal to (0, 0) and such that (u 0 (x), v 0 (x)) = 0 for all x large enough. Then, c 2 m is the spreading speed associated with the system (1) if

lim t→∞ sup x≥w ′ t u(t, x) + v(t, x) = 0 for all w ′ > c 2 m , lim inf t→∞ inf x≤w ′′ t u(t, x) + v(t, x) ̸ = 0 for all w ′′ < c 2 m . (4) 
Let us first focus on the particular case µ = 0: There are no mutations between the two morphs. Since the speed depends on the linearization of the system at (0, 0) [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF], the competition term has no influence. With this assumption, the spreading speed is the same as with a single morph (c 2 m = c 1 m ), say u, in a heterogeneous environment:

∂ t u(t, x) = d ∂ xx u + r u L (x) u -γ L (x) u 2 .
In this case, the existence of a spreading speed is well-known, as well as its dependence with respect to the period L, as we mentioned in the Introduction. In particular, the limit of rapidly oscillating environments (small values of L) has been studied extensively [START_REF] El Smaily | Homogenization and influence of fragmentation in a biological invasion model[END_REF][START_REF] Kinezaki | Spatial dynamics of invasion in sinusoidally varying environments[END_REF]: the spreading speed converges to the speed in a spatially averaged medium, where the growth rate is replaced by its mean value

(R + + R -)/2. Namely, c 1 m (L → 0) = 2 D (R + + R -).
The other limit, of slowly oscillating environments, was studied in [START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF]. Their results imply that

c 1 m (L → ∞) = 4 √ D × (R + ) 2 + (R -) 2 + (R + + R -) √ △ (R + + R -+ 2 √ △) 3 2 , ( 5 
) with △ = (R + ) 2 + (R -) 2 -R + R -.
In cases where R -= 0, the expression simplifies to [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF] also considered more general forms for the reaction and diffusion coefficients. The dependence of the propagation velocity on the parameter L has also been recently analyzed: the velocity has been found to be an increasing function of the period L, first numerically for some specific examples in [START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF]; [START_REF] Kinezaki | Modeling biological invasions into periodically fragmented environments[END_REF], then analytically for the general case in [START_REF] Nadin | The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator[END_REF]. This set of results provided a better understanding of the effect of resource fragmentation on the rate of spread of a single-morph population, in the absence of adaptation. In particular, because of the monotonicity of the spreading speed with respect to L, the difference c 1 m (L → ∞) -c 1 m (L → 0) provides a quantitative measure of the potential effect of fragmentation.

c 1 m (L → ∞) = (8/9) √ 3 D R + ≃ 1.53 √ DR + .
Our objective in this study is to explore the scenario where µ > 0. The existence of a spreading speed follows from Griette and Matano (2021) (under the condition for persistence k 2 m 0 > 0). The results in [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF] imply that this spreading speed is characterized by the following formula:

c 2 m = min λ>0 k λ λ , (6) 
where k λ is the unique real number (principal eigenvalue) such that there exists a couple of positive L-periodic functions (ϕ 1 , ϕ 2 ) satisfying:

D ϕ ′′ 1 + 2 λ D ϕ ′ 1 + λ 2 D ϕ 1 + r u L (x) ϕ 1 + µ(ϕ 2 -ϕ 1 ) = k λ ϕ 1 , D ϕ ′′ 2 + 2 λ D ϕ ′ 2 + λ 2 D ϕ 2 + r v L (x) ϕ 2 + µ(ϕ 1 -ϕ 2 ) = k λ ϕ 2 , in R. ( 7 
)
This type of "Freidlin-Gärtner" formula is classical in the scalar case (i.e., with one morph [START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF][START_REF] Weinberger | On spreading speeds and traveling waves for growth and migration in periodic habitat[END_REF][START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF]. For systems such as (1), such a formula was first proved by [START_REF] Girardin | Non-cooperative Fisher-KPP systems: traveling waves and longtime behavior[END_REF] when the coefficients do not depend on x, and then extended by [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF] to the general case. This theoretical formula, however, provides limited ecological insight.

In this work, we derive explicit formulas for c 2 m , in the limit of rapidly varying (L → 0) and slowly varying environments (L → ∞) and in the limit of small mutations (µ → 0) and large mutations (µ → ∞).

Numerical computations. We present a novel algorithm designed to numerically compute the speed c 2 m . Our approach involves a finite difference approximation of the operator in (7), accounting for periodic conditions. Subsequently, we employ standard matrix methods (SciPy and ARPACK libraries using the eigs function) to determine the principal eigenvalue k λ for discrete λ values. This information is then used in conjunction with the formula (6) to yield an approximate computation c 2 m sim of c 2 m . A Jupyter notebook is available at https://doi.org/10.17605/OSF.IO/7RTFK. It can be easily launched on Google Colab, requiring no technical skills. We also developed a basic finite difference algorithm to visualize the solutions of the system (1). It is used here for illustrative purposes and is notably less accurate when compared to the other code used for speed computation. This code is also available as Jupyter notebook (same url).

µ L L → 0 Arbitrary L L → ∞ µ = 0 R + + R -> 0 k 1 m 0 > 0 R + > 0 µ → 0 R + + R -> 0 k 1 m 0 > 0 R + > 0 Arbitrary µ R + + R -> 0 k 2 m 0 > 0 R + > µ 1+(µ/(-R -)) or R + + R -> 0 µ → ∞ R + + R -> 0 R + + R -> 0 R + + R -> 0
Table 1: Criterion for persistence. The result remains unchanged whether the limit is taken first in µ or L. Respectively, k 1 m 0 and k 2 m 0 correspond to the principal eigenvalues that determine the persistence condition for a one-morph problem and a two-morph problem, see formulas in Appendix A. The condition R + > µ/(1 + (µ/(-R -)) is valid when R -< 0; otherwise persistence always holds for R + > R -> 0.

Main results

Persistence. We are equipped to provide a precise and quantitative criterion for persistence across a wide range of limits involving small or large periods and mutation rates. The outcomes are succinctly summarized in Table 1 and substantiated in Appendix A. Most of these results are intuitive and are direct consequences of the Rayleigh formula, see (A.3)-(A.4) in Appendix A.

In the scenario of rapidly varying environments (L → 0), the application of homogenization techniques allows the replacement of r u L and r v L by their spatial mean value (R + + R -)/2, resulting in the convergence of k 2 m 0 to (R + + R -)/2. As the period L increases, k 2 m 0 also increases and converges as L → +∞ towards

1 2 (R + -R -) 2 + 4 µ 2 -µ + (R + + R -)/2,
which leads to the condition R + > µ/[1 + (µ/(-R -))] for persistence. The limit value of k 2 m 0 as L → +∞ is the principal eigenvalue for a homogeneous environment where r u L = R + and r v L = R -: in the case of very large periods, the influence of spatial variations on persistence becomes negligible. We can observe from formulas (A.3)-(A.4) in Appendix A, that k 2 m 0 increases with L and decreases with D. Additionally, k 2 m 0 decreases as µ increases. This implies that the impact of the mutation load outweighs other plausible beneficial effects of mutation. Consequently, as far as the population persistence is concerned, the potential to mutate into an alternative morph with a distinct adaptive profile consistently proves unfavorable (i.e., k 2 m 0 < k 1 m 0 when µ > 0). It is worth noting that the instances of µ = 0 and µ → 0 are similar; there exists no abrupt shift in persistence behavior at µ = 0, even when L → ∞.

We notice that under our assumptions, where the growth rates r u and r v of the two morphs are symmetric (i.e. they mirror each other), the order of the limits taken with respect to µ and L can be interchanged in Table 1 without altering the outcomes. Moreover, the limits L → 0 and µ → ∞ lead to the same homogenization result. This actually conceals differences in the effects of these two limit transitions, which are elucidated in the proofs presented in Appendix A. The case of L → 0 corresponds to spatial homogenization (where r u and r v are replaced by their respective spatial averages), whereas the case of µ → ∞ corresponds to homogenization between the two morphs, but in a local spatial context (where r u (x) and r v (x) are replaced at each point x by their average value (r u (x)+r v (x))/2). The limits would be different if we broke the symmetry between r u and r v ; the formulas, however, would be much more complicated.

Spreading speed. We obtain an analytical charaterization of the spreading speed in rapidly (L → 0) and slowly (L → ∞) varying environments, see Table 2 and Appendix B for technical details. In particular, we prove that, for arbitrary µ,

c 2 m (L → 0) = 2D(R + + R -), (8) 
and that

c 2 m (L → ∞) = 2D R + + R -+ (R + -R -) 2 + 4 µ 2 -2µ . (9) 
Interestingly, although the model with two morphs is more intricate, the limiting spreading speed as L → +∞ is given by a formula (9) which seems simpler than the corresponding formula for the one morph model, see (5). In the limit L → ∞, we observe that c 2 m is a decreasing function of the mutation coefficient: the highest speeds are achieved when µ → 0. In the limit µ → 0, c 2 m → 2 √ D R + , which corresponds to the speed of propagation of a single morph in a homogeneous and favourable environment (i.e., with constant growth rate R + ). Interestingly, this speed is much larger than in the case µ = 0, see (5). This is more obvious in the case R -= 0: when µ = 0 we have

c 2 m (L → ∞) = c 1 m (L → ∞) = (8/9) √ 3 D R + ≈ 1.54 √ D R + , to be compared to the limit 2 √ D R + of c 2 m (L → ∞
) as µ → 0, which is 30% larger. Thus, the function µ → c 2 m (L → ∞)(µ) admits a discontinuity at µ = 0. Figure 2 illustrates solutions of the system (1), both with µ > 0 and with µ = 0, starting from the same compactly supported initial condition. The figure shows that the propagation is indeed faster when µ > 0.

Figure 3 gives a precise numerical description of the relationship between the speed c 2m and the parameters µ and L. It shows that, even if this discontinuity does not appear for finite values of L, it results in a significant jump in speed for small values of µ. This sudden increase is particularly pronounced as L increases, demonstrating that the presence of a second morph may hold a more significant influence under such circumstances. The speed culminates at an optimum mutation rate, and after the optimal µ value, the speed becomes a decreasing function of µ, highlighting the dominance of the unfavorable emergence of ill-adapted mutants (mutation load). The optimal µ value exhibits a tendency to decrease as L is increased, indicating that this mutation load effect arises sooner in low-fragmented environments. Consistent with our knowledge in the case of a single morph [START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF][START_REF] Kinezaki | Modeling biological invasions into periodically fragmented environments[END_REF][START_REF] Nadin | The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator[END_REF] 

µ L L → 0 Arbitrary L L → ∞ µ = 0 2D(R + + R -) c 1 m c 1 m (L → ∞), see (5) µ → 0 2D(R + + R -) c 1 m µ → 0 then L → ∞: c 1 m (L → ∞), see (5) L → ∞ then µ → 0: 2 √ D R + Arbitrary µ 2D(R + + R -) Fig. 3 2D R + + R -+ (R + -R -) 2 + 4 µ 2 -2µ µ → ∞ 2D(R + + R -) 2D(R + + R -) 2D(R + + R -)
Table 2: Spreading speed c 2 m . Except for the limit (L, µ) → (+∞, 0), the results remain unchanged whether the limit is taken first in µ or L. The notation c 1 m stands for the spreading speed when there is only one morph. 

R + = 2, R -= 0, D = 1, leading to c 1 m (L → 0) = 2, c 2 m (L → 0) = 2, c 1 m (L → ∞) ≈ 2.18, c 2 m (L → ∞) = 2 √ 2 ≈ 2.83 as µ → 0, see Table 2.
2010), we also observe in Figure 3 that the spreading speed increases with the period L, beginning at c 2 m (L → 0) and reaching its maximum at c 2 m (L → ∞). However, we observe that the range of variation, as indicated by the difference between the dashed and solid lines in Figure 3, is much more important in this context compared to the case of a single morph, where the difference is between the dashed and dotted lines in Figure 3. This also follows from the results in Table 2. For instance, in the particular case R -= 0 (as in Figure 3), the table shows that the maximum amplitude of variation as

L is increased is c 1 m (L → ∞) -c 1 m (L → 0) = ((8/9) √ 3 - √ 2) √ D R + ≈ 0.13 √ D R + in the case of one morph, vs c 2 m (L → ∞)-c 2 m (L → 0) = (2- √ 2) √ D R + ≈ 0.59 √ D R + in
the case of two morphs, for small µ.

When µ tends towards infinity, the spreading speed c 2 m (µ → ∞) the spreading speed converges to 2 D (R + + R -), signifying yet another homogenization limit. The system operates as though there were a single morph with a uniform growth rate of (R + + R -)/2. Similar to our earlier observations on persistence, this homogenization remains spatially local. A large mutation rate induces the replacement of the growth rates r u and r v at each spatial point x by their averaged value (r u (x) + r v (x))/2.

Let us now state a conjecture for a general formula describing the limit spreading speed as L approaches infinity, considering arbitrary 1-periodic functions r u and r v . This means that we no longer assume these functions to be piecewise constant or to mirror each other. The idea is to adapt the results presented in [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF], which addressed the limit as L tends to infinity for the critical invasion speed c 1 m in scenarios involving only one morph. This concept is elaborated upon in Appendix C, where we aim at establishing a formula applicable when both r u and r v are spatially constant and then extend it to accommodate scenarios where these functions are not necessarily constant. Our argument is founded on the observation that as the period becomes large, an individual should die before it manages to reach locations where the values of r u and r v deviate significantly from their values at the place of birth of the individual. Consequently, throughout its lifespan, an individual encounters nearly constant values of r u and r v . This leads us to propose the following conjecture.

Assume that r u and r v are arbitrary 1-periodic functions, and that persistence occurs (e.g.,

1 0 r u + r v > 0). Define j(k) := 1 0 k - 1 2 r u (x) + r v (x) -2µ + (r u (x) -r v (x)) 2 + 4µ 2 dx.
Then

c 2 m (L → ∞) = √ D inf λ>0 j -1 (λ) λ . ( 10 
)
For instance, consider the scenario where r u and r v alternately take two values, denoted again as R + and R -, such that r u (x) = R + if and only if r v (x) = R -. In this case, we obtain formula (9). It is important to note that this result does not depend on the positions and sizes of the patches where r u = R + in relation to those where r u = R -. This suggests that formula (9) should remain valid under more general assumptions than our initial ones.

Although the formula in (10) seems quite complex, it allows us to establish that c 2 m (L → ∞) should be a decreasing (or nonincreasing) function of µ in the general case. Furthermore, it enables us to explore other biological scenarios, such as variations in diffusion terms, as discussed in [START_REF] Elliott | Dispersal polymorphism and the speed of biological invasions[END_REF]; [START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF] in the spatially homogeneous case, or the comparison between generalist and specialist strategies, as detailed in Appendix C.

Discussion

In this study, by using the period length as a proxy for the fragmentation of the environment, and by considering a simplified scenario involving a population made up of two morphs, we examined the intertwined influences of habitat heterogeneity, fragmentation, and adaptation. Our analytical and numerical results clarify how these various factors affect the persistence and spatial propagation of the population. Notably, the introduction of mutations always leads to a decreased ability of persistence with respect to the setting without mutations. Conversely, the introduction of mutations may lead to an increased spreading speed. In the broader context of population dynamics literature, our findings align with the results of [START_REF] Elliott | Dispersal polymorphism and the speed of biological invasions[END_REF] and [START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF]. These studies focused on the impact of varying growth rate R and diffusion rate D on the spreading speed of a system made up of two morphs, typically an R-specialist (with a high growth rate R + and low diffusion rate D -) and a D-specialist (with a low growth rate R -< R + and high diffusion rate D + > D -) in a spatially homogeneous environment. They observed that, for some combinations of values of R and D, and with a low mutation rate between the two morphs, the system could spread faster when both morphs were present than when only one morph was present. This unexpected outcome appears to arise from the synergistic effect of the growth rate of the R-specialist and the diffusion rate of the D-specialist during expansion. Our results demonstrate that these synergetic effects are indeed common under various model assumptions. The "faster speed" induced by mutation we also observed can be interpreted as the population exploiting the best morph at each spatial point.

When we observe habitats with minimal fragmentation (L → ∞), there is a discontinuity in speed with respect to the parameter µ at µ = 0. This means that introducting a second morph with reverse specialization leads to a significantly higher speed, even if the mutation rate between the two morphs is very small. This result aligns with the idea that large host patches favor the selection of specialists that thrive on their preferred hosts [START_REF] Papaïx | Dynamics of adaptation in spatially heterogeneous metapopulations[END_REF]. Therefore, the mutation rate should be greater than 0 to allow the emergence of each morph in each newly colonized patch but as small as possible to minimize the mutation load from the appearance of ill-adapted morphs. We have encapsulated this effect in an analytical formula (eq. ( 9)) that, given the complexity of the model, is very simple (it is even simpler than the formula (5) that describes the spreading speed in habitats with minimal fragmentation with only one morph). Given that c 2 m is an increasing function of the period L, as observed in our numerical simulations, our results encompass the entire spectrum of spreading speed variation, contingent on environmental fragmentation. This range can be quantified analytically by the difference between c 2 m (L → ∞) and c 2 m (L → 0), thereby offering a quantitative measure of the potential impact of the fragmentation: it decreases as µ increases and is maximal as µ → 0. In this limiting scenario, the potential impact of the fragmentation amounts to 2

√ D R + -2 D (R + + R -)
. Therefore, it is much more important than in the one-morph setting (or µ = 0): For example, in the particular case where R -= 0 (no population growth on the unfavorable host), the potential effect of the fragmentation is multiplied by a factor of more than 4 (see Figure 3 and the comments below the figure) with two morphs, compared to the one-morph setting. This shows that the effect of the environmental fragmentation on the spreading speed is stronger in the presence of adaptation. The cultivation of mixtures of susceptible (R + > 0) and resistant (R -= 0) cultivars has been extensively studied in the literature [START_REF] Mundt | Use of multiline cultivars and cultivar mixtures for disease management[END_REF][START_REF] Borg | Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps[END_REF][START_REF] Rimbaud | Models of Plant Resistance Deployment[END_REF]. While several studies have highlighted the role of spatial structure among host genotypes in influencing disease spread (Papaïx et al., 2014;[START_REF] Skelsey | Influence of Host Diversity on Development of Epidemics: An Evaluation and Elaboration of Mixture Theory[END_REF], our results suggest that in scenarios where pathogens can adapt to different hosts, landscape configuration significantly influences the outcome. Therefore, landscape design can play a pivotal role in efforts to slow down pathogen spread.

The pronounced increase in speed with the introduction of mutations becomes more evident as L grows (lower fragmentation), indicating that the presence of a second morph might have more influence under such conditions. Beyond the optimal value of the mutation parameter µ, the spreading speed becomes a decreasing function of µ, highlighting the dominance of the unfavorable emergence of ill-adapted mutants (mutation load). The optimal µ value exhibits a tendency to decrease as L is increased. This illustrates the dual nature of the impact of mutations on the spreading speed with respect to the fragmentation of the environment: (i) mutations allow to speed up the population spread to adapt to new environments, proving beneficial in highly fragmented settings (small L), while (ii) they can also give rise to a large mutation load, resulting in recurrent introduction of ill-adapted phenotypes, leading to decreased speeds in less fragmented environments (large L). This can also be interpreted through the trade-off between generalist and specialist morphs. It has been established that high migration rates between two patches [START_REF] Débarre | Evolution of specialization in a spatially continuous environment[END_REF] or highly fragmented environments [START_REF] Papaïx | Dynamics of adaptation in spatially heterogeneous metapopulations[END_REF] tend to favor generalist strategies. These strategies correspond to populations that are moderately adapted to both patches. Here, in highly fragmented environments, a higher optimal value of µ appears to suggest the same principle, as the limit µ → ∞ yields the same results as a one-morph model with averaged parameters (refer to the following paragraph for details). As fragmentation decreases, specialists are favored, and the value of µ that optimizes the spreading speed decreases towards 0 as L → ∞.

For clarity and to achieve simpler formulas, we only considered a scenario where the growth rates of the two morphs mirror each other (r u = R + when r v = R -and vice versa). However, the methodology introduced in this study paves the way for more complex situations, such as when R + and R -have different values depending on the morph. In such cases, we would get different homogenization limits depending on whether we consider highly fragmented environments (L → 0, spatial homogenization limit) or very high mutation rates (µ → ∞, local homogenization limit where r u and r v are replaced by their mean value (r u + r v )/2 at each spatial point). In the specific case we considered, both limits are equal. We also proposed a conjecture for the limiting propagation speed in cases of minimal fragmentation (L → ∞) with general growth rates and potentially different diffusion terms between morphs. This formula suggests that our result (9) for the spreading speed in low-fragmented environments is valid under slightly more general assumptions. Additionally, it could allow future works to consider other scenarios than the interaction between two specialist morphs, for example, the case of a specialist morph associated with a generalist, or the case of a Dspecialist paired with an R-specialist, as seen in [START_REF] Elliott | Dispersal polymorphism and the speed of biological invasions[END_REF] and [START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF], but in the presence of spatial heterogeneities (see some calculations in Appendix C).

If the two-morph system has allowed us to identify certain key aspects related to the interactions between spatial heterogeneities and adaptation, in many real situations, mutations can lead to a multitude of morphs. An extension of our work is to consider, as in the approaches of [START_REF] Alfaro | Travelling waves in a nonlocal reactiondiffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF][START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF]; Peltier (2020); [START_REF] Alfaro | Populations facing a nonlinear environmental gradient: steady states and pulsating fronts[END_REF], a population structured in space, via the variable x, and in phenotypic traits, via another variable θ, and to assume a diffusive effect of mutations on phenotypes, leading to a model of the form:

∂ t u(t, x, θ) = D∂ xx u + µ∂ θθ u + r L (x, θ)u -u u(t, x, s) ds, (11) 
where r L (x, θ) is again L-periodic in x, and describes the suitability of the phenotype θ to the local condition. A major technical challenge will be to show that there is an asymptotic propagation speed and that this speed satisfies a Gärtner-Freidlin formula of the form (6). As in the present study, we can then examine the various limits L → 0, L → ∞, µ → 0 and µ → ∞ to get more explicit insight into the intertwined effects of spatial heterogeneities and adaptation.

In the context of our initial inquiry -regarding the relevance of traditional analytical approaches in the era of computational advancements and machine learning-based modeling -the results of this study offer a resounding affirmation of the continued significance of reaction-diffusion models in spatial ecology. While computational and data-driven methods present powerful tools for understanding complex systems, the insights derived from analytical models, as showcased in our investigation, offer clarity, intuition, and foundational understanding that is often challenging to extract from purely numerical or machine-learned models.

Appendix A. Population persistence, proofs of the results of Table 1.

Theorem 2.9 of [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF] shows that a necessary and sufficient condition for persistence is k 2 m 0 > 0, where k 2 m 0 is the principal eigenvalue of the operator L 2 m 0 :

L 2 m 0 : (ϕ 1 , ϕ 2 ) → (Dϕ ′′ 1 + r u L (x/L)ϕ 1 + µ(ϕ 2 -ϕ 1 ), Dϕ ′′ 2 + r v L (x/L)ϕ 2 + µ(ϕ 1 -ϕ 2 ))
with periodicity conditions. In other words, there is a couple of positive principal eigen-

functions (ϕ 1 , ϕ 2 ) satisfying L 2 m 0 (ϕ 1 , ϕ 2 ) = (k 2 m 0 ϕ 1 , k 2 m 0 ϕ 2 ) with periodicity conditions. Setting (ψ 1 , ψ 2 )(x) = (ϕ 1 , ϕ 2 )(L x) one may also write: D L 2 ψ ′′ 1 + R + ψ 1 + µ(ψ 2 -ψ 1 ) = k 2 m 0 ψ 1 , D L 2 ψ ′′ 2 + R -ψ 2 + µ(ψ 1 -ψ 2 ) = k 2 m 0 ψ 2 , in [0, 1/2) (A.1) and D L 2 ψ ′′ 1 + R -ψ 1 + µ(ψ 2 -ψ 1 ) = k 2 m 0 ψ 1 , D L 2 ψ ′′ 2 + R + ψ 2 + µ(ψ 1 -ψ 2 ) = k 2 m 0 ψ 2 , in [1/2, 1), (A.2)
where ψ 1 , ψ 2 are 1-periodic.

The following Rayleigh formula is also available:

k 2 m 0 = max (ψ 1 ,ψ 2 )∈E Q(ψ 1 , ψ 2 ), (A.3)
where

Q(ψ 1 , ψ 2 ) := - D L 2 1 0 [(ψ ′ 1 ) 2 + (ψ ′ 2 ) 2 ] + 1 0 (r u ψ 2 1 + r v ψ 2 2 ) + µ 2 1 0 ψ 1 ψ 2 -1 , (A.4)
and

E := (ψ 1 , ψ 2 ) ∈ H 1 per (R) 2 , 1 0 ψ 2 1 + ψ 2 2 = 1
and H 1 per (R) is the subspace of the Sobolev space H 1 loc (R), made of 1-periodic functions. For completeness, we also recall the criterion for persistence in the case of a unique morph governed by the equation Berestycki et al., 2005a). In this case, the criterion is

∂ t u(t, x) = d ∂ xx u + r u L (x) u -γ L (x) u 2 (see
k 1 m 0 > 0, where k 1 m 0 is the principal eigenvalue of the operator L 1 m 0 : (ψ, ψ 2 ) → D L 2 ψ ′′ 1 + r u L (x)
ψ with periodicity conditions. This principal eigenvalue can be characterized by the Rayleigh formula:

k 1 m 0 = max ψ∈G - D L 2 1 0 (ψ ′ ) 2 + 1 0 r u ψ 2 , with G := ψ ∈ H 1 per (R), 1 0 ψ 2 = 1 .
Arbitrary µ, with L → 0. Taking two constant functions

ψ 1 = ψ 2 = 1/ √ 2, we note that Q(ψ 1 , ψ 2 ) = 1 0 r u +r v = (R + +R -)/2. Thus (A.3) implies that k 2 m 0 ≥ (R + +R -)/2.
Conversely, as L → 0, due to the first term in (A.4), the functions ψ 1 , ψ 2 that realize the maximum in (A.3) necessarily converge to constants. Maximizing Q over the couples of constant functions in E, we conclude that lim L→0 k 2 m 0 = (R + + R -)/2. This expression is independent of µ, and therefore remains unchanged if we pass to the limit µ → 0 or µ → ∞.

Arbitrary µ, with L → ∞. Passing to the limit L → ∞ in (A.1)-(A.2) means solving the system

         a R + + µ(b -a) = lim L→+∞ k 2 m 0 a, b R -+ µ(a -b) = lim L→+∞ k 2 m 0 b, (A.5)
with a, b > 0. This leads to:

lim L→∞ k 2 m 0 = 1 2 (R + -R -) 2 + 4 µ 2 -µ + (R + + R -)/2.
To determine when persistence holds, we solve lim

L→∞ k 2 m 0 > 0, which is equivalent to (R + -R -) 2 + 4 µ 2 > 2µ -(R + + R -).
Arbitrary µ, with L → ∞. This is the most involved case. We set

I L := (R + -R -)/2 √ D , √ R + + (R + -R -)/2 √ D . (B.3)
We begin by considering values of λ in I L .

Let us set (φ 1 (x), φ 2 (x)) = (e λx ϕ 1 (x), e λx ϕ 2 (x)). The system (7) becomes

Dφ ′′ 1 + r u L (x)φ 1 + µ(φ 2 -φ 1 ) = k λ φ 1 , Dφ ′′ 2 + r u L (x)φ 2 + µ(φ 1 -φ 2 ) = k λ φ 2 , in [0, L]. (B.4)
Writing this system on each interval where the coefficients are constants, we get:

Dφ ′′ 1 + R + φ 1 + µ(φ 2 -φ 1 ) = k λ φ 1 , Dφ ′′ 2 + R -φ 2 + µ(φ 1 -φ 2 ) = k λ φ 2 ,
in [0, L/2), (B.5)

Dφ ′′ 1 + R -φ 1 + µ(φ 2 -φ 1 ) = k λ φ 1 , Dφ ′′ 2 + R + φ 2 + µ(φ 1 -φ 2 ) = k λ φ 2 , in [L/2, L). (B.6)
The functions φ 1 , φ 2 are of class C 1 on the whole space R, and are of class C 2 on the intervals (k, k + L/2) and (k + L/2, k + L), k ∈ Z, i.e., on the intervals where the coefficients are constant. Without loss of generality, as the couple (φ 1 (x), φ 2 (x)) is defined up to a multiplicative constant, we may set φ 1 (0) = 1. Altogether, with the periodicity and regularity conditions, we obtain the following constraints:

                               φ 2 (L) = e λL φ 2 (0), φ ′ 1 (L) = e λL φ ′ 1 (0), φ ′ 2 (L) = e λL φ ′ 2 (0), lim s→(L/2) -φ 1 (s) = lim s→(L/2) + φ 1 (s), lim s→(L/2) -φ 2 (s) = lim s→(L/2) + φ 2 (s), lim s→(L/2) -φ ′ 1 (s) = lim s→(L/2) + φ ′ 1 (s), lim s→(L/2) -φ ′ 2 (s) = lim s→(L/2) + φ ′ 2 (s), (B.7)
and another constraint that we will treat separately:

φ 1 (L) = e λL φ 1 (0) = e λL . (B.8)
We directly solve the two systems (B.5) and (B.6) of two constant coefficient second order linear homogeneous differential equations. Their general solution can be found, e.g., in [START_REF] Kamke | Differentialgleichungen lösungsmethoden und lösungen[END_REF]. The characteristic equation has the form:

X 4 -[(2k λ + 2µ -R + -R -)/D]X 2 + (k λ + µ -R + )(k λ + µ -R -)/D 2 -µ 2 /D 2 = 0.
Under the conditions (k λ + µ -R + )(k λ + µ -R -) -µ 2 ̸ = 0 (which follows from λ ∈ I L , see Lemma 3) and (R + -R -) 2 + 4 µ 2 ̸ = 0 (which is always satisfied), the characteristic equation has four distinct roots ±Z 1 and ±Z 2 , with:

             δ := (R + -R -) 2 + 4 µ 2 , Z 1 := 2µ + 2k λ -δ -R + -R - 2D , Z 2 := 2µ + 2k λ + δ -R + -R - 2D . 
(B.9)

The solutions of (B.5) with the constraint φ 1 (0) = 1 are, for x ∈ (0, L/2),

           φ 1 (x) = (1 -A 1 -A 2 -A 3 )e -Z 1 x + A 1 e Z 1 x + A 2 e -Z 2 x + A 3 e Z 2 x , φ 2 (x) = R --R + + δ 2 µ (1 -A 1 -A 2 -A 3 )e -Z 1 x + A 1 e Z 1 x + R --R + -δ 2 µ A 2 e -Z 2 x + A 3 e Z 2 x , (B.10) with A 1 , A 2 , A 3 ∈ R. Lemma 2 shows that 2µ + 2k λ -δ -R + -R -> 0, which implies that Z 1 , Z 2 are real.
Similarly, the solutions of (B.6) are, for x ∈ (L/2, L),

   φ 1 (x) = A 4 e -Z 1 x + A 5 e Z 1 x + A 6 e -Z 2 x + A 7 e Z 2 x , φ 2 (x) = R + -R -+ δ 2 µ A 4 e -Z 1 x + A 5 e Z 1 x + R + -R --δ 2 µ A 6 e -Z 2 x + A 7 e Z 2 x , (B.11) with A 4 , A 5 , A 6 , A 7 ∈ R.
Plugging the constraints (B.7) in (B.10) and (B.11), we observe that the coefficients A 1 , . . . , A 7 solve a linear system with 7 equations, for which we obtain an explicit solution which leads to explicit (but very lengthy) expressions for φ 1 and φ 2 . Using Z 1 < Z 2 , one may then write the last constraint (B.8) in the form

B 1 e L(2Z 1 +2Z 2 +3λ) -B 2 e L(2Z 1 +Z 2 +4λ) -B 3 e L(3Z 1 +2Z 2 +2λ) + o(B 1 e L(2Z 1 +2Z 2 +3λ) + B 2 e L(2Z 1 +Z 2 +4λ) + B 3 e L(3Z 1 +2Z 2 +2λ) ) = 0, as L → ∞, (B.12)
where B 1 , B 2 , B 3 > 0 are bounded independently of L. See Supplementary Maple notebook (pdf file available as Supplementary Material and code available at https: //doi.org/10.17605/OSF.IO/7RTFK).

Let us show that the term exp[L(3Z 1 + 2Z 2 + 2λ)] dominates exp[L(2Z 1 + Z 2 + 4λ)] as L → ∞. Assume by contradiction that there exists C > 0 such that for all L > 0, we have exp

[L(2Z 1 + Z 2 + 4λ)] ≥ C exp[L(3Z 1 + 2Z 2 + 2λ)]. Then, using (B.12), we get that 2Z 1 + 2Z 2 + 3λ ∼ 2Z 1 + Z 2 + 4λ which implies that: lim L→∞ Z 2 = λ. (B.13)
Coming back to the expression of Z 2 in (B.9), and setting k

∞ λ := lim L→∞ k λ , this shows that k ∞ λ = λ 2 D + (R + + R --δ)/2 -µ. Thus, k ∞ λ < λ 2 D + (R + + R -)/2
, which is in contradiction with the lower bound in Lemma 1. Thus, exp[L(3Z 1 + 2Z 2 + 2λ)] dominates exp[L(2Z 1 + Z 2 + 4λ)] as L → ∞ and, with (B.12), we necessarily get 2Z 1 + 2Z 2 + 3λ ∼ 3Z 1 + 2Z 2 + 2λ. This implies that:

lim L→∞ Z 1 = λ. (B.14)
Using the expression of Z 1 in (B.9), this shows that

k ∞ λ = λ 2 D + 1 2 (R + + R -+ δ) -µ. (B.15)
We note that this expression is consistent with the result of Lemma 1. We observe [START_REF] Griette | Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity[END_REF], we also know that λ Appendix C. A conjecture for a general formula for the speed

that λ → k ∞ λ is convex in I L and that λ → k ∞ λ /λ reaches a (strict) minimum in I L at λ m = (R + + R -+ δ -2µ)/(2D). From Proposition 2.2 in
→ k λ is strictly convex in R + . Thus λ → k ∞ λ is convex in R + . This implies that k ∞ λ /λ reaches its (unique) strict minimum in I L at λ = λ m (this is easily seen graphically, as k ∞ λ /λ reaches its minimum in R + at values of λ such that k ∞ λ = λ ∂ λ (k ∞ λ )). Finally, this shows that lim L→∞ c 2 m = min λ>0 k ∞ λ λ = min λ∈I L k ∞ λ λ = 2D R + + R -+ (R + -R -) 2 + 4 µ 2 -2µ .
We would like to adapt to our context the results of [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF], who dealt with the limit as L → ∞ of the spreading speed when there is only one morph. For simplicity we assume that the diffusion coefficient is D = 1.

In the one-morph setting, [START_REF] Hamel | A viscosity solution method for the spreading speed formula in slowly varying media[END_REF] showed that the limit of the spreading speed as L → +∞ is

c 1 m (L → +∞) = inf λ>0 j-1 (λ) λ , where j(k) = 1 0 k -r(x)dx,
Here, r plays the role of r u and r v . If we adapt their calculations to our case, we find the same expression for the limiting speed c 2 m , but j(k) is replaced by

j(k) = 1 0 k -r u (x) -µ + µ ψ 2,∞ (x) ψ 1,∞ (x) dx. (C.1)
Here, the functions ψ 1,∞ and ψ 2,∞ are defined as the limits as L → ∞ of the principal eigenfunctions ψ 1,L (x) = ϕ 1,L (Lx) and ψ 2,L = ϕ 2,L (Lx):

ψ 1,∞ (x) := lim L→∞ ψ 1,L (x), ψ 2,∞ (x) := lim L→∞ ψ 2,L (x).
The extra term -µ + µ ψ 2,∞ ψ 1,∞ arises because of the mutations between morphs. The hard part is to compute the value of ψ 2,∞ ψ 1,∞ . Let us first assume that r u and r v are constant (i.e., the environment is homogeneous): r u (x) ≡ r u and r v (x) ≡ r v . Then the eigenfunctions ψ 1 and ψ 2 are independent of x, so the system (7) becomes:

-(r u -µ + λ 2 )ψ 1 -µψ 2 = k λ ψ 1 -(r v -µ + λ 2 )ψ 2 -µψ 1 = k λ ψ 2 ,
where ψ 1 and ψ 2 are real numbers (instead of functions). Solving this system, with the constraints that ψ 1 > 0 and ψ 2 > 0, yields:

ψ 2,∞ ψ 1,∞ = 1 2µ r v -r u + (r u -r v ) 2 + 4µ 2 .
Then, when r u and r v are constant, the expression of j (C.1) becomes:

j(k) := 1 0 k - 1 2 r u + r v -2µ + (r u -r v ) 2 + 4µ 2 dx. (C.2)
Now we would like to extend this result to the case when r u and r v are not necessarily constant. In fact, as the period grows, the environment becomes more and more homogeneous. This suggests that the expression (C.2) of j, which holds when r u and r v are constant, should also hold for nonconstant r u and r v . This is the following conjecture. Let us write j(k) := 1 0 k -1 2 r u (x) + r v (x) -2µ + (r u (x) -r v (x)) 2 + 4µ 2 dx.

Then

c 2 m (L → ∞) = inf λ>0 j -1 (λ) λ .
This expression generalises the one we proved above for the particular form of r u and r v that was the main focus of this study. This new general expression is quite complicated, because we need to consider the inverse of the function j. Still, is is possible to find some qualitative properties.

Dependence of the speed on the mutation rate. We are interested in the variations of the speed c 2 m (L → ∞) in terms of the mutation rate, so we will use the notations j(k, µ) and c 2 m (L → ∞)(µ) for clarity. We have:

∂ ∂µ j(k, µ) = 1 0 1 - 2µ 2 √ (r u (x)-r v (x)) 2 +4µ 2
2 k -1 2 r u (x) + r v (x) -2µ + (r u (x) -r v (x)) 2 + 4µ 2 dx.

Since (r u (x) -r v (x)) 2 + 4µ 2 ≥ 4µ 2 = 2µ, we conclude that ∂ ∂µ j(k, µ) ≥ 0. Now, (6) implies that k, µ) .

c 2 m (L → ∞)(µ) = inf k k j(
We conclude that µ → c 2 m (L → ∞)(µ) is a nonincreasing function.

When the diffusion terms are different. If the diffusion terms are different for u and v, say D u and D v , then our conjecture implies that the formula for j becomes:

j(k) := 1 √ D u 1 0 k - 1 2 r u (x) + r v (x) + λ 2 D ′ -2µ + (r u (x) -r v (x) + λ 2 D ′ ) 2 + 4µ 2 dx,
with D ′ = D v -D u . We have not been able to turn this expression into an explicit formula for the spreading speed.

With one specialist and one generalist. Assume that u represents a specialist morph that is well-adapted on (0, 1/2) and ill-adapted on (1/2, 1), and that v represents a generalist morph that is everywhere equally adapted. This can be modeled by replacing the function r v (x) by a constant r v (x) ≡ r v , and by letting r u takes two values R + and R -over (0, 1/2) and (1/2, 1) respectively such that R -< r v < R + . Then our conjecture implies that the expression for the speed is:

c 2 m (L → ∞) = 2k m √ k m -A + √ k m -B ,
where

A = 1 2 R + + r v -2µ (R + -r v ) 2 + 4µ 2 , B = 1 2 R -+ r v -2µ (R --r v ) 2 + 4µ 2 ,
and

k m = 2 3 A + B + (A + B) 2 + 3 AB 2 -A 2 B A -B .
Appendix D. Technical lemmas.

Lemma 1. For all λ > 0 and L > 0, the principal eigenvalue k λ in (7) satisfies

R + + R - 2 + λ 2 D < k λ < R + + λ 2 D.
Proof. First, adding the two equations in (7) and integrating over (0, L), we get:

k λ < R + + λ 2 D. (D.1)
Second, dividing the two equations in (7) by ϕ 1 and ϕ 2 respectively, integrating by parts over (0, L), and using the periodicity of ϕ 1 , ϕ 2 we get:

       D L 0 |ϕ ′ 1 | 2 ϕ 2 1 + λ 2 D L + L 0 r u L (x)dx + µ L 0 ϕ 2 ϕ 1 -L = k λ L, D L 0 |ϕ ′ 2 | 2 ϕ 2 2 + λ 2 D L + L 0 r v L (x)dx + µ L 0 ϕ 1 ϕ 2 -L = k λ L, in R. (D.2)
Adding the two equations, we obtain:

2D L 0 |ϕ ′ 1 | 2 ϕ 2 1 + |ϕ ′ 2 | 2 ϕ 2 2 +2λ 2 D L+L(R + +R -)+µ L 0 ϕ 2 ϕ 1 + ϕ 2 ϕ 1 -2L = 2k λ L.
(D.3) Note that ϕ 2 /ϕ 1 + ϕ 2 /ϕ 1 ≥ 2 as ϕ 1 , ϕ 2 > 0. Thus

k λ > R + + R - 2 + λ 2 D. (D.4)
Lemma 2. Let λ ∈ I L (see (B.3)). We have

2µ + 2k λ -δ -R + -R -> 0.
Proof. Using (D.4), we obtain

2µ + 2k λ -δ -R + -R -> 2µ + 2λ 2 D -(R + -R -) 2 + 4 µ 2 ,
and for λ ∈ I L , 2λ

2 D > R + -R -so 2µ + 2k λ -δ -R + -R -> R + -R -+ 2µ -(R + -R -) 2 + 4 µ 2 > 0.
Lemma 3. Let λ ∈ I L . We have (k λ -R + + µ)(k λ -R -+ µ) -µ 2 ̸ = 0.
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 1 Figure 1: Schematic representation of the model in a spatially periodic environment.Morphs u and v have specialized interactions with their hosts: morph u has fitness R + on host 1 and R -on host 2, and conversely morph v has fitness R -on host 1 and R + on host 2 (R + > R -). The horizontal arrow signifies spatial propagation of the morphs through the environment.

Figure 2 :

 2 Figure 2: Solutions of the main system (1), µ > 0 vs µ = 0. The parameter values are R + = 2, R -= 0, D = 1, µ = 0.15, L = 100 and the initial condition u(0, x) = v(0, x) = 1 for x ≤ 1 and u(0, x) = v(0, x) = 0 for x > 1. The solutions are plotted at time t = 100.

Figure 3 :

 3 Figure 3: Theoretical and simulated speeds in terms of the mutation parameter µ and spatial period L. The circles indicate the maximum values of c 2 m sim , for each L. The leftmost points (µ = 0, squares) indicate the numerical value of the speed c 1 m sim . The parameter values areR + = 2, R -= 0, D = 1, leading to c 1 m (L → 0) = 2, c 2 m (L → 0) = 2, c 1 m (L → ∞) ≈ 2.18, c 2 m (L → ∞) = 2√ 2 ≈ 2.83 as µ → 0, see Table2.

  = 2 D (R + + R -).
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This always holds if R + + R -> 0. If R + + R -< 0 (so R + > 0 > R -), this becomes:

.

If we pass to the limit µ → 0, this condition becomes R + > 0, and if we pass to the limit µ → ∞, this condition becomes R + + R -> 0.

Arbitrary L, with µ → 0. We denote by (ψ µ 1 , ψ µ 2 ) the principal eigenfunctions in (A.1)-(A.2) and k µ 0 := k 2 m 0 the associated principal eigenvalue. We have:

The functions ψ µ 1 and ψ µ 2 are bounded. Using the so-called Schauder estimates, we obtain that as µ → 0, the functions ψ µ 1 and ψ µ 2 converge to functions ψ 0 1 and ψ 0 2 in a strong sense. Thus, taking µ → 0, the mutation term disappears and we obtain:

If we pass to the limit L → 0, this leads to the condition for persistence R + + R -> 0, and with µ → 0, this leads to the condition for persistence R + > 0.

Arbitrary L, with µ → ∞. With the same notations as in the previous paragraph, multiplying by ψ µ 1 the equation satisfied by ψ µ 1 and integrating by parts, we get:

Without loss of generality, we can assume that 1 0 (ψ µ 1 ) 2 = 1, and using the upper bound for k µ 0 obtained above (in the limit L → ∞), we get that the right-hand side in (A.6) is bounded independently of µ. Moreover, by uniqueness and symmetry of the eigenvalue problem, we have ψ µ 2 (x) = ψ µ 1 (1 -x) for all x. Thus, the Cauchy-Schwarz inequality implies that the integral

As the other term in the lefthand side of (A.6) is negative, and the right-hand side is bounded, this implies that, as

Adding the two lines (A.1)-(A.2), we obtain:

Thus, taking µ → ∞ in the last equation gives:

Therefore, the principal eigenfunction ψ ∞ 1 is constant and the corresponding principal eigenvalue is

This formula is independent of L, and therefore remains unchanged if we pass to the limit L → 0 or L → ∞.

Appendix B. Spreading speed, proofs of the results of Table 2.

Arbitrary L, with µ → 0. We denote by (ψ µ 1 , ψ µ 2 ) the solution of the principal eigenvalue problem (7) and we let k µ λ be the associated principal eigenvalue. We focus on the first line:

The functions ψ µ 1 and ψ µ 2 are bounded. Using the so-called Schauder estimates, we obtain that as µ → 0, the functions ψ µ 1 and ψ µ 2 converge to functions ψ 0 1 and ψ 0 2 in a strong sense. Thus, taking µ → 0 in (B.1), the mutation term disappears and we obtain:

(Dψ 0 1 ) ′′ + 2λ D (ψ 0 1 ) ′ + (λ 2 D + r u L (x))ψ 0 1 = k 0 λ ψ 0 1 . This is precisely the eigenvalue problem defining k 1 m λ , such that the spreading speed with a unique morph with growth rate r u L is given by the Gärtner-Freidlin formula (e.g. Berestycki et al., 2005)

Thus lim

The limits L → 0 and L → ∞ therefore corresponds to the known limits in the onemorph setting, see [START_REF] El Smaily | Homogenization and influence of fragmentation in a biological invasion model[END_REF] and [START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF].

Arbitrary L, with µ → ∞. We use the same notations as the previous paragraph.

Multiplying by ψ µ 1 the equation satisfied by ψ µ 1 and integrating by parts, we get:

Without loss of generality, we can assume that L 0 (ψ µ 1 )) 2 = 1, and Lemma 1 implies that the right-hand side in (B.2) is bounded independently of µ. Moreover, by uniqueness and symmetry of the eigenvalue problem, we have ψ µ 2 (x) = ψ µ 1 (L -x) for all x. Thus, the Cauchy-Schwarz inequality implies that the integral L 0 (ψ µ 2 -ψ µ 1 )ψ µ 1 is negative. As the other term in the left-hand side of (B.2) is negative, and the right-hand side is bounded, this implies that, as µ → ∞,

Adding the two lines of (7), we obtain:

Therefore, as µ → +∞,

Therefore, the principal eigenfunction ψ ∞ 1 is also constant and the corresponding principal eigenvalue is

Using the Gärtner-Freidlin formula (6), we get:

This formula is independent of L, and therefore remains unchanged if we pass to the limit L → 0 or L → ∞.

Arbitrary µ, with L → 0. The homogenization results in Griette and Matano (2021) (Theorem 2.20) show that the spreading speed c 2 m converges to the speed that would be obtained in a homogeneous environment where r u L and r v L would be replaced by their spatial average (R + + R -)/2. In this last case, the solution of the eigenvalue problem (7) is a constant eigenfunction and the eigenvalue is k 0 λ = λ 2 D + (R + + R -)/2. Using the Gärtner-Freidlin formula (6), we get:

This formula is independent of µ, and therefore remains unchanged if we pass to the limit µ → 0 or µ → ∞.

Proof. The equation (k -R + + µ)(k -R -+ µ) -µ 2 = 0 admits two roots k ± = R + +R - 2 -µ ± δ 2 . Lemma 2 implies that k λ > k + > k -, so k λ cannot be a root of the equation.
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