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Abstract

How does the spatial heterogeneity of landscapes interact with the adaptive
evolution of populations to influence their spreading speed? This question arises
in agricultural contexts where a pathogen population spreads in a landscape com-
posed of several types of crops, as well as in epidemiological settings where a virus
propagates among individuals with distinct immune profiles. To address it, we
introduce an analytical method based on reaction-diffusion models. We focus on
spatially periodic environments with two distinct patches, where the dispersing
population consists of two specialized morphs, each potentially mutating to the
other. We present clear formulas for the speed together with criteria for per-
sistence, accounting for both rapidly and slowly varying environments, as well
as small and large mutation rates. Altogether, our analytical and numerical re-
sults yield a comprehensive understanding of persistence and spreading dynamics.
Notably, compared to a situation without mutations or to a single morph prop-
agating in a heterogeneous landscape, the introduction of mutations to a second
morph with reverse specialization, while consistently impeding persistence, can
significantly increase speed, even if the mutation rate between the two morphs is
very small. Additionally, we find that the amplitude of the spatial fragmentation
effect is significantly amplified in this case. This has implications for agroe-
cology, emphasizing the higher importance of landscape structure in influencing
adaptation-driven population dynamics.

Keywords: expansion speed; adaptation; mutation; heterogeneity; reaction-diffusion

1 Introduction

As computational advancements and machine learning-based modeling transform var-
ious scientific domains, a pivotal question emerges: Are traditional analytical ap-
proaches, such as reaction-diffusion models, still pertinent in spatial ecology?
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Reaction-diffusion models have several features that have contributed to their con-
tinued use since the early 20th century. From the point of view of the trade-off between
generality, realism, and precision introduced by Levins (1966), reaction-diffusion models
have the advantage of generality, in the sense of applicability to a large number of sys-
tems. They remain interpretable, due to their mechanistic nature striving to represent
the system based on biological and physical processes. Following the principle of parsi-
mony, which states that the model should be “as simple as possible but as complex as
necessary” (Sun et al., 2016), these KISS (for “Keep It Simple, Stupid” Axelrod, 1997)
models appear to be favorably positioned in terms of the bias-variance trade-off when
the goals are theoretical. Moreover, one of the major aspects that has contributed to the
success of reaction-diffusion approaches in spatial ecology is that their results can some-
times be expressed in the form of simple mathematical expressions. The most famous
example is the Fisher-KPP model in a homogeneous one-dimensional environment. In
the context of this model, a population that is initially confined to a limited area will
spread with a speed c = 2

√
r D. This very simple formula provides valuable insight

into the effects of the intrinsic growth rate (r) and the spatial diffusion parameter (D)
on the speed at which the population spreads. This formula has had a considerable
impact on theoretical ecology (e.g. Skellam, 1951; Mollison, 1991; Okubo and Levin,
2002), whether in describing biological invasions or epidemiological phenomena. One
can wonder if obtaining so simple formulas remains feasible as the model becomes more
realistic.

The study of local adaptation and its role in driving population dynamics in hetero-
geneous environments has received considerable attention, both from an experimental
and a theoretical perspective, see Kawecki and Ebert (2004) and references therein. Lo-
cal adaptation is a process whereby subpopulations evolve, through Darwinian selection,
to become better adapted to their local environment (Williams, 2018). In the absence of
forces beyond Darwinian selection, genotype-environment (G x E) interactions should
cause each local population to adapt to its specific environmental conditions, regardless
of the conditions present in the other regions of the space. We consider here the case
of an asexual population expanding its spatial range in a heterogeneous environment.
Then, several factors can prevent the population from reaching the local adaptive op-
timum, and can influence the spreading speed of the population. These factors include
the mutation load (i.e. the reduction in the average fitness of a population due to the
accumulation of deleterious mutations Kimura and Maruyama, 1966; Martin and Gan-
don, 2010), and migration of individuals from other regions of space (Débarre et al.,
2013). In addition to these evolutionary effects, the amplitude and spatial distribution
of heterogeneities also contribute to the overall picture, as they are known to impact
the spreading speed in non-adaptive contexts (Shigesada and Kawasaki, 1997; Beresty-
cki et al., 2005b). In this work, we propose a method to characterize analytically the
spreading speed in models involving both spatial heterogeneity of the environment and
adaptive evolution of the population.

The motivation for this work stems from the shift from an intensive cropping system
supported by uniform agricultural landscapes to the agroecology paradigm, where crop
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diversification plays a central role to ensure the stability of yields (Gascuel-Odoux
et al., 2022; Caquet et al., 2020; Food and Agriculture Organization of the United
Nations, 2018; Beillouin et al., 2021). In particular, host diversity is known to influence
disease spread through various mechanisms (Keesing et al., 2006), one of which results
from the interplay between the dispersal and competition among pathogen genotypes
that adapt differentially to the various hosts present in the environment (Borg et al.,
2018). In this context, most studies emphasize the role of host diversity in shaping
pathogen evolution (Débarre and Gandon, 2010), pathogen diversity (Papäıx et al.,
2014), and the risk of disease persistence (Lively, 2010). However, it is interesting to
note that little effort has been dedicated to understanding how host diversity affects
the speed of disease spread. In heterogeneous spatially-periodic environments, and
with a unique morph (i.e., without adaptation), Fisher-KPP type models have also
seen some success, yielding numerous results on the connections between the spatial
structure of the environment, persistence, and spreading (Shigesada and Kawasaki,
1997; Cantrell and Cosner, 2003; Berestycki et al., 2005a,b). However, these connections
have generally only been described in a qualitative manner. In particular, the formula
for the spreading speed is not as explicit as the formula c = 2

√
r D when r(x) and

D(x) depend on the space variable x. One way to overcome this issue is to look at
the limiting cases of small and large periods L, which respectively correspond to highly
fragmented and low-fragmented environments. The case of small periods naturally leads
to a homogenization limit and a simple formula c(L → 0) = 2

√
⟨r⟩a ⟨D⟩h, where ⟨r⟩a

is the arithmetic mean of r(x) and ⟨D⟩h is the harmonic mean of D(x) over a period
cell (El Smaily et al., 2009). This formula already highlights a breaking of symmetry
between the effect of r and D on the spreading speed. It can be complemented by
studying the other limit, where the period length becomes very large, to better capture
the effect of heterogeneities (Hamel et al., 2010, 2011).

When adaptation occurs, the expanding population may consist of multiple morphs,
each specializing in a limited number of hosts. In this scenario, polymorphism in
life history traits among individuals, as discussed by (Elliott and Cornell, 2012) and
(Morris et al., 2019), has the potential to influence the invasion speed. Both studies
primarily focus on dispersal polymorphism and the complementarity between strategies
that invest in growth and those that invest in dispersal. However, they considered only
homogeneous environments. Our goal in this study is to examine the influence of
adaptation on the spreading speed of a species within a heterogeneous environment.
We specifically analyze scenarios in which the environment is periodic, consisting of
two distinct patches. The spreading population is made up of two unique morphs, each
specialized for one of the patch types. Crucially, part of the offspring of one morph
can mutate at birth to become the other morph. We anticipate that the interaction
between the two morphs will have a significant impact on the spreading speed. Some
parameters can exhibit dual effects, making it imperative to derive a straightforward
qualitative formula based on the parameters of the model. For instance, a higher
mutation rate is known to increase the mutation load and decrease the time needed for
local environment adaptation (Anciaux et al., 2019; Lavigne et al., 2020). Predicting
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the effect of the mutation rate on the spreading speed, therefore, becomes a complex
endeavor. Explicit analytic formulas will offer invaluable insight into the intertwined
roles of adaptive, demographic, and spatial factors.

Recent formulas have been derived (Griette and Matano, 2021), but they tend to
be abstract and provide limited ecological insight. In this study, we present straight-
forward and clear formulas for speed, accounting for both rapidly and slowly varying
environments, as well as for small and large mutation rates. The rapidly varying en-
vironment limit is a direct consequence of the results in Griette and Matano (2021).
In contrast, determining the speed for slowly varying environments is notably more
intricate and unveils some unexpected results, which stand as the cornerstone of our
research. Altogether, our formulas, complemented by insight from numerical simula-
tions, enhance our understanding of the specific impacts of the mutation rate, on the
one hand, and of the environmental fragmentation, on the other hand, on the expansion
of the population. In particular, our research reveals that allowing mutations between
the two morphs results in a sudden increase of the speed, with respect to the scenario
without mutations; this emerges as one of the primary and significant results of the
paper.

2 Material and methods

2.1 Model development

The model describes the spread of two distinct morphs of a single species within a
heterogeneous 1-dimensional environment composed of two types of patches. This sce-
nario mimics the propagation of pathogens in an environment with alternating hosts,
see Figure 1 for a schematic description of the model. The two morphs are differenti-
ated by their varying fitness levels (i.e. their growth rates), and interact through local
competition. Additionally, a portion of the offspring of one morph may switch to the
other morph through the process of mutation at birth. The spread of these morphs is
further influenced by spatial diffusion. We represent the overall dynamics of this system
with the following reaction-diffusion model:{

∂tu(t, x) = D∂xxu+ ruL(x)u− γL(x)u (u+ v) + µ (v − u),
∂tv(t, x) = D∂xxv + rvL(x) v − γL(x) v (u+ v) + µ (u− v),

t > 0, x ∈ R. (1)

In this context, x represents the spatial variable, while u(t, x) and v(t, x) are the popula-
tion densities of the two morphs. The periodic functions ruL(x) and r

v
L(x) are the growth

rates of the two morphs (which depend on the spatial position x). Additionally, D is
the spatial diffusion coefficient, which is constant in space and shared by both morphs,
and µ is a coefficient proportional to the mutation rate. Finally, γL(x) is a competition
coefficient. The environment, described by the functions ruL and rvL, is assumed to be
periodic with a period L, where one half [0, L/2) of the period cell corresponds to the
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first host, and the other half [L/2, L) corresponds to the second host. Namely,

ruL(x) = ru(x/L), rvL(x) = rv(x/L) and γL(x) = γ(x/L), (2)

where ru, rv and γ are 1-periodic functions. We assume that the two morphs have
distinct specializations. One morph has a higher growth rate (R+ > 0) on one of the
patches and a lower growth rate (R− ≤ R+) on the other patch, while the other morph
has the opposite specialization. In other words{

ruL(x) = R+ and rvL(x) = R− for x ∈ [0, L/2),
ruL(x) = R− and rvL(x) = R+ for x ∈ [L/2, L).

(3)

Host 1 Host 2 Host 1 Host 2

Morph
u

Morph
v

Mutation Competition

G×E interactions

Spatial propagation

One period L

ru = R−

rv = R+
ru = R+

rv = R−
ru = R−

rv = R+

Figure 1: Schematic representation of the model in a spatially periodic environment.
Morphs u and v have specialized interactions with their hosts: morph u has fitness R+

on host 1 and R− on host 2, and conversely morph v has fitness R− on host 1 and R+

on host 2 (R+ > R−). The horizontal arrow signifies spatial propagation of the morphs
through the environment.

Persistence of the population. In reaction-diffusion equations, the persistence of
the global population u+v is often determined by the sign of a principal eigenvalue that
indicates whether the state (u, v) = (0, 0) is stable or not (Cantrell and Cosner, 2003).
In our setting, as shown in Theorem 2.9 of Griette and Matano (2021), the persistence
or extinction of the population depends on the sign of k2m0 (“2m” stands for 2 morphs;
by contrast, k1m0 corresponds to the 1 morph case), the principal eigenvalue of an elliptic
operator L2m

0 (see Appendix A).
When we study the spreading properties, we always assume that k2m0 > 0, which

ensures the persistence of the population. In our framework, a simple sufficient condi-
tion for this is R++R− > 0 (see Appendix A). Depending on the value of L, i.e., on the
spatial fragmentation, and on the mutation term µ, we obtain more precise relations
between R+, R−, µ and k2m0 . We will describe them in Section 3.
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Spreading properties. In the case of a spatially homogeneous environment, i.e.,
when the coefficients do not depend on x, Girardin (2017) established the spreading
properties of the system (1). The recent results of Griette and Matano (2021) extend
these properties to systems with spatially periodic coefficients. Before going further on,
we need to introduce precisely the notion of spreading speed. The spreading speed to the
right (the spreading speed to the left could be considered as well) is the asymptotic rate
at which a species, initially concentrated in a finite spatial region, expands its spatial
range to the right-hand side of the 1-dimensional environment. It can be defined here in
the following way. If an observer travels to the right (i.e., towards increasing x values)
above that speed, the observer will see the total population density u(t, x) + v(t, x)
vanish. If the observer travels to the right below that speed, the observer will not
see the total population density vanish. In mathematical terms, we consider initial
conditions (u0, v0) which are nonnegative, not identically equal to (0, 0) and such that
(u0(x), v0(x)) = 0 for all x large enough. Then, c2m is the spreading speed associated
with the system (1) if

lim
t→∞

sup
x≥w′ t

u(t, x) + v(t, x) = 0 for all w′ > c2m,

lim inf
t→∞

inf
x≤w′′ t

u(t, x) + v(t, x) ̸= 0 for all w′′ < c2m.
(4)

Let us first focus on the particular case µ = 0: There are no mutations between the two
morphs. Since the speed depends on the linearization of the system at (0, 0) (Griette
and Matano, 2021), the competition term has no influence. With this assumption,
the spreading speed is the same as with a single morph (c2m = c1m), say u, in a
heterogeneous environment: ∂tu(t, x) = d ∂xxu + ruL(x)u − γL(x)u

2. In this case, the
existence of a spreading speed is well-known, as well as its dependence with respect to
the period L, as we mentioned in the Introduction. In particular, the limit of rapidly
oscillating environments (small values of L) has been studied extensively (El Smaily
et al., 2009; Kinezaki et al., 2006): the spreading speed converges to the speed in
a spatially averaged medium, where the growth rate is replaced by its mean value
(R+ + R−)/2. Namely, c1m(L → 0) =

√
2D (R+ +R−). The other limit, of slowly

oscillating environments, was studied in Hamel et al. (2010). Their results imply that

c1m(L→ ∞) = 4
√
D × (R+)2 + (R−)2 + (R+ +R−)

√
△

(R+ +R− + 2
√
△)

3
2

, (5)

with △ = (R+)2 + (R−)2 −R+R−. In cases where R− = 0, the expression simplifies to

c1m(L→ ∞) = (8/9)
√
3DR+ ≃ 1.53

√
DR+.

Hamel et al. (2011) also considered more general forms for the reaction and diffusion
coefficients. The dependence of the propagation velocity on the parameter L has also
been recently analyzed: the velocity has been found to be an increasing function of the
period L, first numerically for some specific examples in Shigesada and Kawasaki (1997);
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Kinezaki et al. (2003), then analytically for the general case in Nadin (2010). This set
of results provided a better understanding of the effect of resource fragmentation on the
rate of spread of a single-morph population, in the absence of adaptation. In particular,
because of the monotonicity of the spreading speed with respect to L, the difference
c1m(L → ∞) − c1m(L → 0) provides a quantitative measure of the potential effect of
fragmentation.

Our objective in this study is to explore the scenario where µ > 0. The existence
of a spreading speed follows from Griette and Matano (2021) (under the condition
for persistence k2m0 > 0). The results in Griette and Matano (2021) imply that this
spreading speed is characterized by the following formula:

c2m = min
λ>0

kλ
λ
, (6)

where kλ is the unique real number (principal eigenvalue) such that there exists a couple
of positive L-periodic functions (ϕ1, ϕ2) satisfying:{

Dϕ′′
1 + 2λD ϕ′

1 + λ2Dϕ1 + ruL(x)ϕ1 + µ(ϕ2 − ϕ1) = kλ ϕ1,
D ϕ′′

2 + 2λD ϕ′
2 + λ2Dϕ2 + rvL(x)ϕ2 + µ(ϕ1 − ϕ2) = kλ ϕ2,

in R. (7)

This type of “Freidlin-Gärtner” formula is classical in the scalar case (i.e., with one
morph Freidlin and Gärtner, 1979; Weinberger, 2002; Berestycki et al., 2008). For
systems such as (1), such a formula was first proved by Girardin (2017) when the
coefficients do not depend on x, and then extended by Griette and Matano (2021) to
the general case. This theoretical formula, however, provides limited ecological insight.
In this work, we derive explicit formulas for c2m, in the limit of rapidly varying (L→ 0)
and slowly varying environments (L→ ∞) and in the limit of small mutations (µ→ 0)
and large mutations (µ→ ∞).

Numerical computations. We present a novel algorithm designed to numerically
compute the speed c2m. Our approach involves a finite difference approximation of the
operator in (7), accounting for periodic conditions. Subsequently, we employ standard
matrix methods (SciPy and ARPACK libraries using the eigs function) to determine
the principal eigenvalue kλ for discrete λ values. This information is then used in
conjunction with the formula (6) to yield an approximate computation c2msim of c2m. A
Jupyter notebook is available at https://doi.org/10.17605/OSF.IO/7RTFK. It can
be easily launched on Google Colab, requiring no technical skills. We also developed a
basic finite difference algorithm to visualize the solutions of the system (1). It is used
here for illustrative purposes and is notably less accurate when compared to the other
code used for speed computation. This code is also available as Jupyter notebook (same
url).
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µ

L
L → 0 Arbitrary L L → ∞

µ = 0 R+ +R− > 0 k1m0 > 0 R+ > 0

µ → 0 R+ +R− > 0 k1m0 > 0 R+ > 0

Arbitrary µ R+ +R− > 0 k2m0 > 0 R+ > µ
1+(µ/(−R−))

or R+ +R− > 0

µ → ∞ R+ +R− > 0 R+ +R− > 0 R+ +R− > 0

Table 1: Criterion for persistence. The result remains unchanged whether the limit is
taken first in µ or L. Respectively, k1m0 and k2m0 correspond to the principal eigenvalues
that determine the persistence condition for a one-morph problem and a two-morph
problem, see formulas in Appendix A. The condition R+ > µ/(1 + (µ/(−R−)) is valid
when R− < 0; otherwise persistence always holds for R+ > R− > 0.

3 Main results

Persistence. We are equipped to provide a precise and quantitative criterion for per-
sistence across a wide range of limits involving small or large periods and mutation
rates. The outcomes are succinctly summarized in Table 1 and substantiated in Ap-
pendix A. Most of these results are intuitive and are direct consequences of the Rayleigh
formula, see (A.3)-(A.4) in Appendix A.

In the scenario of rapidly varying environments (L→ 0), the application of homog-
enization techniques allows the replacement of ruL and rvL by their spatial mean value
(R+ + R−)/2, resulting in the convergence of k2m0 to (R+ + R−)/2. As the period L
increases, k2m0 also increases and converges as L→ +∞ towards

1

2

√
(R+ −R−)2 + 4µ2 − µ+ (R+ +R−)/2,

which leads to the condition R+ > µ/[1 + (µ/(−R−))] for persistence. The limit value
of k2m0 as L → +∞ is the principal eigenvalue for a homogeneous environment where
ruL = R+ and rvL = R−: in the case of very large periods, the influence of spatial
variations on persistence becomes negligible. We can observe from formulas (A.3)-(A.4)
in Appendix A, that k2m0 increases with L and decreases with D. Additionally, k2m0
decreases as µ increases. This implies that the impact of the mutation load outweighs
other plausible beneficial effects of mutation. Consequently, as far as the population
persistence is concerned, the potential to mutate into an alternative morph with a
distinct adaptive profile consistently proves unfavorable (i.e., k2m0 < k1m0 when µ > 0).
It is worth noting that the instances of µ = 0 and µ → 0 are similar; there exists no
abrupt shift in persistence behavior at µ = 0, even when L→ ∞.

We notice that under our assumptions, where the growth rates ru and rv of the
two morphs are symmetric (i.e. they mirror each other), the order of the limits taken
with respect to µ and L can be interchanged in Table 1 without altering the outcomes.
Moreover, the limits L → 0 and µ → ∞ lead to the same homogenization result.
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This actually conceals differences in the effects of these two limit transitions, which
are elucidated in the proofs presented in Appendix A. The case of L → 0 corresponds
to spatial homogenization (where ru and rv are replaced by their respective spatial
averages), whereas the case of µ→ ∞ corresponds to homogenization between the two
morphs, but in a local spatial context (where ru(x) and rv(x) are replaced at each point
x by their average value (ru(x)+rv(x))/2). The limits would be different if we broke the
symmetry between ru and rv; the formulas, however, would be much more complicated.

Spreading speed. We obtain an analytical charaterization of the spreading speed in
rapidly (L→ 0) and slowly (L→ ∞) varying environments, see Table 2 and Appendix B
for technical details. In particular, we prove that, for arbitrary µ,

c2m(L→ 0) =
√
2D(R+ +R−), (8)

and that

c2m(L→ ∞) =

√
2D
(
R+ +R− +

√
(R+ −R−)2 + 4µ2 − 2µ

)
. (9)

Interestingly, although the model with two morphs is more intricate, the limiting spread-
ing speed as L → +∞ is given by a formula (9) which seems simpler than the corre-
sponding formula for the one morph model, see (5). In the limit L → ∞, we observe
that c2m is a decreasing function of the mutation coefficient: the highest speeds are
achieved when µ → 0. In the limit µ → 0, c2m → 2

√
DR+, which corresponds to the

speed of propagation of a single morph in a homogeneous and favourable environment
(i.e., with constant growth rate R+). Interestingly, this speed is much larger than in
the case µ = 0, see (5). This is more obvious in the case R− = 0: when µ = 0 we
have c2m(L→ ∞) = c1m(L→ ∞) = (8/9)

√
3DR+ ≈ 1.54

√
DR+, to be compared to

the limit 2
√
DR+ of c2m(L → ∞) as µ → 0, which is 30% larger. Thus, the function

µ 7→ c2m(L → ∞)(µ) admits a discontinuity at µ = 0. Figure 2 illustrates solutions
of the system (1), both with µ > 0 and with µ = 0, starting from the same compactly
supported initial condition. The figure shows that the propagation is indeed faster
when µ > 0.

Figure 3 gives a precise numerical description of the relationship between the speed
c2m and the parameters µ and L. It shows that, even if this discontinuity does not
appear for finite values of L, it results in a significant jump in speed for small values of
µ. This sudden increase is particularly pronounced as L increases, demonstrating that
the presence of a second morph may hold a more significant influence under such cir-
cumstances. The speed culminates at an optimum mutation rate, and after the optimal
µ value, the speed becomes a decreasing function of µ, highlighting the dominance of
the unfavorable emergence of ill-adapted mutants (mutation load). The optimal µ value
exhibits a tendency to decrease as L is increased, indicating that this mutation load
effect arises sooner in low-fragmented environments. Consistent with our knowledge in
the case of a single morph (Shigesada and Kawasaki, 1997; Kinezaki et al., 2003; Nadin,
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µ
L

L → 0 Arbitrary L L → ∞

µ = 0
√

2D(R+ +R−) c1m c1m(L → ∞), see (5)

µ → 0
√

2D(R+ +R−) c1m µ → 0 then L → ∞: c1m(L → ∞), see (5)

L → ∞ then µ → 0: 2
√
DR+

Arbitrary µ
√

2D(R+ +R−) Fig. 3

√
2D
(
R+ +R− +

√
(R+ −R−)2 + 4µ2 − 2µ

)
µ → ∞

√
2D(R+ +R−)

√
2D(R+ +R−)

√
2D(R+ +R−)

Table 2: Spreading speed c2m. Except for the limit (L, µ) → (+∞, 0), the results
remain unchanged whether the limit is taken first in µ or L. The notation c1m stands
for the spreading speed when there is only one morph.

Figure 2: Solutions of the main system (1), µ > 0 vs µ = 0. The parameter
values are R+ = 2, R− = 0, D = 1, µ = 0.15, L = 100 and the initial condition
u(0, x) = v(0, x) = 1 for x ≤ 1 and u(0, x) = v(0, x) = 0 for x > 1. The solutions are
plotted at time t = 100.
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Figure 3: Theoretical and simulated speeds in terms of the mutation param-
eter µ and spatial period L. The circles indicate the maximum values of c2msim, for
each L. The leftmost points (µ = 0, squares) indicate the numerical value of the speed
c1msim. The parameter values are R+ = 2, R− = 0, D = 1, leading to c1m(L → 0) = 2,
c2m(L → 0) = 2, c1m(L → ∞) ≈ 2.18, c2m(L → ∞) = 2

√
2 ≈ 2.83 as µ → 0, see

Table 2.

2010), we also observe in Figure 3 that the spreading speed increases with the period
L, beginning at c2m(L → 0) and reaching its maximum at c2m(L → ∞). However, we
observe that the range of variation, as indicated by the difference between the dashed
and solid lines in Figure 3, is much more important in this context compared to the case
of a single morph, where the difference is between the dashed and dotted lines in Fig-
ure 3. This also follows from the results in Table 2. For instance, in the particular case
R− = 0 (as in Figure 3), the table shows that the maximum amplitude of variation as L
is increased is c1m(L→ ∞)− c1m(L→ 0) = ((8/9)

√
3−

√
2)
√
DR+ ≈ 0.13

√
DR+ in

the case of one morph, vs c2m(L→ ∞)−c2m(L→ 0) = (2−
√
2)

√
DR+ ≈ 0.59

√
DR+

in the case of two morphs, for small µ.
When µ tends towards infinity, the spreading speed c2m(µ → ∞) the spreading

speed converges to
√

2D (R+ +R−), signifying yet another homogenization limit. The
system operates as though there were a single morph with a uniform growth rate of
(R+ + R−)/2. Similar to our earlier observations on persistence, this homogenization
remains spatially local. A large mutation rate induces the replacement of the growth
rates ru and rv at each spatial point x by their averaged value (ru(x) + rv(x))/2.

Let us now state a conjecture for a general formula describing the limit spreading
speed as L approaches infinity, considering arbitrary 1-periodic functions ru and rv.
This means that we no longer assume these functions to be piecewise constant or to
mirror each other. The idea is to adapt the results presented in Hamel et al. (2011),
which addressed the limit as L tends to infinity for the critical invasion speed c1m in
scenarios involving only one morph. This concept is elaborated upon in Appendix C,
where we aim at establishing a formula applicable when both ru and rv are spatially
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constant and then extend it to accommodate scenarios where these functions are not
necessarily constant. Our argument is founded on the observation that as the period
becomes large, an individual should die before it manages to reach locations where
the values of ru and rv deviate significantly from their values at the place of birth of
the individual. Consequently, throughout its lifespan, an individual encounters nearly
constant values of ru and rv. This leads us to propose the following conjecture.

Assume that ru and rv are arbitrary 1-periodic functions, and that persistence occurs
(e.g.,

∫ 1

0
ru + rv > 0). Define

j(k) :=

∫ 1

0

√
k − 1

2

[
ru(x) + rv(x)− 2µ+

√
(ru(x)− rv(x))2 + 4µ2

]
dx.

Then

c2m(L→ ∞) =
√
D inf

λ>0

j−1(λ)

λ
. (10)

For instance, consider the scenario where ru and rv alternately take two values,
denoted again as R+ and R−, such that ru(x) = R+ if and only if rv(x) = R−. In
this case, we obtain formula (9). It is important to note that this result does not
depend on the positions and sizes of the patches where ru = R+ in relation to those
where ru = R−. This suggests that formula (9) should remain valid under more general
assumptions than our initial ones.

Although the formula in (10) seems quite complex, it allows us to establish that
c2m(L → ∞) should be a decreasing (or nonincreasing) function of µ in the general
case. Furthermore, it enables us to explore other biological scenarios, such as variations
in diffusion terms, as discussed in Elliott and Cornell (2012); Morris et al. (2019) in
the spatially homogeneous case, or the comparison between generalist and specialist
strategies, as detailed in Appendix C.

4 Discussion

In this study, by using the period length as a proxy for the fragmentation of the envi-
ronment, and by considering a simplified scenario involving a population made up of
two morphs, we examined the intertwined influences of habitat heterogeneity, fragmen-
tation, and adaptation. Our analytical and numerical results clarify how these various
factors affect the persistence and spatial propagation of the population. Notably, the
introduction of mutations always leads to a decreased ability of persistence with re-
spect to the setting without mutations. Conversely, the introduction of mutations may
lead to an increased spreading speed. In the broader context of population dynamics
literature, our findings align with the results of Elliott and Cornell (2012) and Morris
et al. (2019). These studies focused on the impact of varying growth rate R and diffu-
sion rate D on the spreading speed of a system made up of two morphs, typically an
R-specialist (with a high growth rate R+ and low diffusion rate D−) and a D-specialist
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(with a low growth rate R− < R+ and high diffusion rate D+ > D−) in a spatially
homogeneous environment. They observed that, for some combinations of values of
R and D, and with a low mutation rate between the two morphs, the system could
spread faster when both morphs were present than when only one morph was present.
This unexpected outcome appears to arise from the synergistic effect of the growth
rate of the R-specialist and the diffusion rate of the D-specialist during expansion.
Our results demonstrate that these synergetic effects are indeed common under various
model assumptions. The “faster speed” induced by mutation we also observed can be
interpreted as the population exploiting the best morph at each spatial point.

When we observe habitats with minimal fragmentation (L→ ∞), there is a discon-
tinuity in speed with respect to the parameter µ at µ = 0. This means that introducting
a second morph with reverse specialization leads to a significantly higher speed, even
if the mutation rate between the two morphs is very small. This result aligns with
the idea that large host patches favor the selection of specialists that thrive on their
preferred hosts (Papäıx et al., 2013). Therefore, the mutation rate should be greater
than 0 to allow the emergence of each morph in each newly colonized patch but as
small as possible to minimize the mutation load from the appearance of ill-adapted
morphs. We have encapsulated this effect in an analytical formula (eq. (9)) that, given
the complexity of the model, is very simple (it is even simpler than the formula (5) that
describes the spreading speed in habitats with minimal fragmentation with only one
morph). Given that c2m is an increasing function of the period L, as observed in our
numerical simulations, our results encompass the entire spectrum of spreading speed
variation, contingent on environmental fragmentation. This range can be quantified
analytically by the difference between c2m(L → ∞) and c2m(L → 0), thereby offering
a quantitative measure of the potential impact of the fragmentation: it decreases as
µ increases and is maximal as µ → 0. In this limiting scenario, the potential impact
of the fragmentation amounts to 2

√
DR+ −

√
2D (R+ +R−). Therefore, it is much

more important than in the one-morph setting (or µ = 0): For example, in the partic-
ular case where R− = 0 (no population growth on the unfavorable host), the potential
effect of the fragmentation is multiplied by a factor of more than 4 (see Figure 3 and
the comments below the figure) with two morphs, compared to the one-morph setting.
This shows that the effect of the environmental fragmentation on the spreading speed
is stronger in the presence of adaptation. The cultivation of mixtures of susceptible
(R+ > 0) and resistant (R− = 0) cultivars has been extensively studied in the litera-
ture (Mundt, 2002; Borg et al., 2018; Rimbaud et al., 2021). While several studies have
highlighted the role of spatial structure among host genotypes in influencing disease
spread (Papäıx et al., 2014; Skelsey et al., 2005), our results suggest that in scenarios
where pathogens can adapt to different hosts, landscape configuration significantly in-
fluences the outcome. Therefore, landscape design can play a pivotal role in efforts to
slow down pathogen spread.

The pronounced increase in speed with the introduction of mutations becomes more
evident as L grows (lower fragmentation), indicating that the presence of a second
morph might have more influence under such conditions. Beyond the optimal value
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of the mutation parameter µ, the spreading speed becomes a decreasing function of
µ, highlighting the dominance of the unfavorable emergence of ill-adapted mutants
(mutation load). The optimal µ value exhibits a tendency to decrease as L is increased.
This illustrates the dual nature of the impact of mutations on the spreading speed
with respect to the fragmentation of the environment: (i) mutations allow to speed
up the population spread to adapt to new environments, proving beneficial in highly
fragmented settings (small L), while (ii) they can also give rise to a large mutation
load, resulting in recurrent introduction of ill-adapted phenotypes, leading to decreased
speeds in less fragmented environments (large L). This can also be interpreted through
the trade-off between generalist and specialist morphs. It has been established that high
migration rates between two patches (Débarre and Gandon, 2010) or highly fragmented
environments (Papäıx et al., 2013) tend to favor generalist strategies. These strategies
correspond to populations that are moderately adapted to both patches. Here, in
highly fragmented environments, a higher optimal value of µ appears to suggest the
same principle, as the limit µ→ ∞ yields the same results as a one-morph model with
averaged parameters (refer to the following paragraph for details). As fragmentation
decreases, specialists are favored, and the value of µ that optimizes the spreading speed
decreases towards 0 as L→ ∞.

For clarity and to achieve simpler formulas, we only considered a scenario where
the growth rates of the two morphs mirror each other (ru = R+ when rv = R− and
vice versa). However, the methodology introduced in this study paves the way for
more complex situations, such as when R+ and R− have different values depending on
the morph. In such cases, we would get different homogenization limits depending on
whether we consider highly fragmented environments (L → 0, spatial homogenization
limit) or very high mutation rates (µ→ ∞, local homogenization limit where ru and rv

are replaced by their mean value (ru+ rv)/2 at each spatial point). In the specific case
we considered, both limits are equal. We also proposed a conjecture for the limiting
propagation speed in cases of minimal fragmentation (L → ∞) with general growth
rates and potentially different diffusion terms between morphs. This formula suggests
that our result (9) for the spreading speed in low-fragmented environments is valid
under slightly more general assumptions. Additionally, it could allow future works
to consider other scenarios than the interaction between two specialist morphs, for
example, the case of a specialist morph associated with a generalist, or the case of a D-
specialist paired with an R-specialist, as seen in Elliott and Cornell (2012) and Morris
et al. (2019), but in the presence of spatial heterogeneities (see some calculations in
Appendix C).

If the two-morph system has allowed us to identify certain key aspects related to
the interactions between spatial heterogeneities and adaptation, in many real situations,
mutations can lead to a multitude of morphs. An extension of our work is to consider,
as in the approaches of Alfaro et al. (2013, 2017); Peltier (2020); Alfaro and Peltier
(2022), a population structured in space, via the variable x, and in phenotypic traits,
via another variable θ, and to assume a diffusive effect of mutations on phenotypes,
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leading to a model of the form:

∂tu(t, x, θ) = D∂xxu+ µ∂θθu+ rL(x, θ)u− u

∫
u(t, x, s) ds, (11)

where rL(x, θ) is again L−periodic in x, and describes the suitability of the phenotype
θ to the local condition. A major technical challenge will be to show that there is an
asymptotic propagation speed and that this speed satisfies a Gärtner-Freidlin formula
of the form (6). As in the present study, we can then examine the various limits L→ 0,
L → ∞, µ → 0 and µ → ∞ to get more explicit insight into the intertwined effects of
spatial heterogeneities and adaptation.

In the context of our initial inquiry — regarding the relevance of traditional analyt-
ical approaches in the era of computational advancements and machine learning-based
modeling — the results of this study offer a resounding affirmation of the continued
significance of reaction-diffusion models in spatial ecology. While computational and
data-driven methods present powerful tools for understanding complex systems, the
insights derived from analytical models, as showcased in our investigation, offer clar-
ity, intuition, and foundational understanding that is often challenging to extract from
purely numerical or machine-learned models.

Appendix A. Population persistence, proofs of the

results of Table 1.

Theorem 2.9 of Griette and Matano (2021) shows that a necessary and sufficient con-
dition for persistence is k2m0 > 0, where k2m0 is the principal eigenvalue of the operator
L2m

0 :

L2m
0 : (ϕ1, ϕ2) 7→ (Dϕ′′

1 + ruL(x/L)ϕ1 + µ(ϕ2 − ϕ1), Dϕ
′′
2 + rvL(x/L)ϕ2 + µ(ϕ1 − ϕ2))

with periodicity conditions. In other words, there is a couple of positive principal eigen-
functions (ϕ1, ϕ2) satisfying L2m

0 (ϕ1, ϕ2) = (k2m0 ϕ1, k
2m
0 ϕ2) with periodicity conditions.

Setting (ψ1, ψ2)(x) = (ϕ1, ϕ2)(Lx) one may also write:{
D
L2ψ

′′
1 +R+ψ1 + µ(ψ2 − ψ1) = k2m0 ψ1,

D
L2ψ

′′
2 +R−ψ2 + µ(ψ1 − ψ2) = k2m0 ψ2,

in [0, 1/2) (A.1)

and {
D
L2ψ

′′
1 +R−ψ1 + µ(ψ2 − ψ1) = k2m0 ψ1,

D
L2ψ

′′
2 +R+ψ2 + µ(ψ1 − ψ2) = k2m0 ψ2,

in [1/2, 1), (A.2)

where ψ1, ψ2 are 1-periodic.
The following Rayleigh formula is also available:

k2m0 = max
(ψ1,ψ2)∈E

Q(ψ1, ψ2), (A.3)
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where

Q(ψ1, ψ2) := −D

L2

∫ 1

0

[(ψ′
1)

2+(ψ′
2)

2] +

∫ 1

0

(ru ψ2
1 + r

v ψ2
2)+µ

(
2

∫ 1

0

ψ1 ψ2 − 1

)
, (A.4)

and

E :=
{
(ψ1, ψ2) ∈ H1

per(R)2,
∫ 1

0

ψ2
1 + ψ2

2 = 1
}

andH1
per(R) is the subspace of the Sobolev spaceH1

loc(R), made of 1−periodic functions.
For completeness, we also recall the criterion for persistence in the case of a unique

morph governed by the equation ∂tu(t, x) = d ∂xxu+ ruL(x)u− γL(x)u
2 (see Berestycki

et al., 2005a). In this case, the criterion is k1m0 > 0, where k1m0 is the principal
eigenvalue of the operator L1m

0 : (ψ, ψ2) 7→ D
L2ψ

′′
1 + ruL(x)ψ with periodicity conditions.

This principal eigenvalue can be characterized by the Rayleigh formula:

k1m0 = max
ψ∈G

(
−D

L2

∫ 1

0

(ψ′)2 +

∫ 1

0

ru ψ2

)
,

with G :=
{
ψ ∈ H1

per(R),
∫ 1

0
ψ2 = 1

}
.

Arbitrary µ, with L→ 0. Taking two constant functions ψ1 = ψ2 = 1/
√
2, we note

thatQ(ψ1, ψ2) =
∫ 1

0
ru+rv = (R++R−)/2. Thus (A.3) implies that k2m0 ≥ (R++R−)/2.

Conversely, as L→ 0, due to the first term in (A.4), the functions ψ1, ψ2 that realize the
maximum in (A.3) necessarily converge to constants. Maximizing Q over the couples of
constant functions in E, we conclude that limL→0 k

2m
0 = (R+ +R−)/2. This expression

is independent of µ, and therefore remains unchanged if we pass to the limit µ → 0 or
µ→ ∞.

Arbitrary µ, with L → ∞. Passing to the limit L → ∞ in (A.1)-(A.2) means
solving the system 

aR+ + µ(b− a) =

(
lim

L→+∞
k2m0

)
a,

bR− + µ(a− b) =

(
lim

L→+∞
k2m0

)
b,

(A.5)

with a, b > 0. This leads to:

lim
L→∞

k2m0 =
1

2

√
(R+ −R−)2 + 4µ2 − µ+ (R+ +R−)/2.

To determine when persistence holds, we solve lim
L→∞

k2m0 > 0, which is equivalent to√
(R+ −R−)2 + 4µ2 > 2µ− (R+ +R−).
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This always holds if R+ +R− > 0. If R+ +R− < 0 (so R+ > 0 > R−), this becomes:

R+ >
µ

1 + (µ/(−R−))
.

If we pass to the limit µ → 0, this condition becomes R+ > 0, and if we pass to the
limit µ→ ∞, this condition becomes R+ +R− > 0.

Arbitrary L, with µ → 0. We denote by (ψµ1 , ψ
µ
2 ) the principal eigenfunctions in

(A.1)-(A.2) and kµ0 := k2m0 the associated principal eigenvalue. We have:

D

L2
(ψµ1 )

′′ + ru(x)ψµ1 + µ(ψµ2 − ψµ1 ) = kµ0ψ
µ
1 .

The functions ψµ1 and ψµ2 are bounded. Using the so-called Schauder estimates, we
obtain that as µ → 0, the functions ψµ1 and ψµ2 converge to functions ψ0

1 and ψ0
2 in a

strong sense. Thus, taking µ→ 0, the mutation term disappears and we obtain:

D

L2
(ψ0

1)
′′ + ru(x)ψ0

1+ = k00ψ
0
1,

which is precisely the eigenvalue problem defining k1m0 . Thus

lim
µ→0

kµ0 = k1m0 .

If we pass to the limit L→ 0, this leads to the condition for persistence R+ +R− > 0,
and with µ→ 0, this leads to the condition for persistence R+ > 0.

Arbitrary L, with µ→ ∞. With the same notations as in the previous paragraph,
multiplying by ψµ1 the equation satisfied by ψµ1 and integrating by parts, we get:

− D

L2

∫ 1

0

((ψµ1 )
′)2 + µ

∫ 1

0

(ψµ2 − ψµ1 )ψ
µ
1 =

∫ 1

0

kµ0 (ψ
µ
1 )

2 −
∫ 1

0

ru(x)(ψµ1 )
2. (A.6)

Without loss of generality, we can assume that
∫ 1

0
(ψµ1 )

2 = 1, and using the upper bound
for kµ0 obtained above (in the limit L→ ∞), we get that the right-hand side in (A.6) is
bounded independently of µ. Moreover, by uniqueness and symmetry of the eigenvalue
problem, we have ψµ2 (x) = ψµ1 (1 − x) for all x. Thus, the Cauchy-Schwarz inequality

implies that the integral
∫ 1

0
(ψµ2 − ψµ1 )ψ

µ
1 is negative. As the other term in the left-

hand side of (A.6) is negative, and the right-hand side is bounded, this implies that, as
µ→ ∞, ∫ 1

0

(ψ∞
2 − ψ∞

1 )ψ∞
1 (x) dx = 0.

Since both functions ψ∞
1 and ψ∞

2 (·) = ψ∞
1 (1 − ·) are positive and share the same L2

norm, the Cauchy-Schwarz inequality implies that ψ∞
1 (·) ≡ ψ∞

2 (·). In other words,
ψµ1 − ψµ2 → 0. Adding the two lines (A.1)-(A.2), we obtain:

D

L2
(ψµ1 + ψµ2 )

′′ + ru(x)ψµ1 + rv(x)ψµ2 = kµ0 (ψ
µ
1 + ψµ2 ).
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Thus, taking µ→ ∞ in the last equation gives:

D

L2
(2ψ∞

1 )′′ + (R+ +R−)ψ∞
1 = 2 k∞0 ψ∞

1 .

Therefore, the principal eigenfunction ψ∞
1 is constant and the corresponding principal

eigenvalue is

lim
µ→∞

kµ0 =
R+ +R−

2
.

This formula is independent of L, and therefore remains unchanged if we pass to the
limit L→ 0 or L→ ∞.

Appendix B. Spreading speed, proofs of the results

of Table 2.

Arbitrary L, with µ → 0. We denote by (ψµ1 , ψ
µ
2 ) the solution of the principal

eigenvalue problem (7) and we let kµλ be the associated principal eigenvalue. We focus
on the first line:

(Dψµ1 )
′′ + 2λD (ψµ1 )

′ + (λ2D + ruL(x))ψ
µ
1 + µ(ψµ2 − ψµ1 ) = kµλψ

µ
1 . (B.1)

The functions ψµ1 and ψµ2 are bounded. Using the so-called Schauder estimates, we
obtain that as µ → 0, the functions ψµ1 and ψµ2 converge to functions ψ0

1 and ψ0
2 in

a strong sense. Thus, taking µ → 0 in (B.1), the mutation term disappears and we
obtain:

(Dψ0
1)

′′ + 2λD (ψ0
1)

′ + (λ2D + ruL(x))ψ
0
1 = k0λψ

0
1.

This is precisely the eigenvalue problem defining k1mλ , such that the spreading speed
with a unique morph with growth rate ruL is given by the Gärtner-Freidlin formula (e.g.
Berestycki et al., 2005)

c1m = min
λ>0

k1mλ
λ
.

Thus
lim
µ→0

c2m = c1m.

The limits L → 0 and L → ∞ therefore corresponds to the known limits in the one-
morph setting, see (El Smaily et al., 2009) and (Hamel et al., 2010).

Arbitrary L, with µ → ∞. We use the same notations as the previous paragraph.
Multiplying by ψµ1 the equation satisfied by ψµ1 and integrating by parts, we get:

−D

∫ L

0

((ψµ1 )
′)2 + µ

∫ L

0

(ψµ2 − ψµ1 )ψ
µ
1 =

∫ L

0

kµλ(ψ
µ
1 )

2 −
∫ L

0

(λ2D + ru(x))(ψµ1 )
2. (B.2)
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Without loss of generality, we can assume that
∫ L
0
(ψµ1 ))

2 = 1, and Lemma 1 implies that
the right-hand side in (B.2) is bounded independently of µ. Moreover, by uniqueness
and symmetry of the eigenvalue problem, we have ψµ2 (x) = ψµ1 (L− x) for all x. Thus,

the Cauchy-Schwarz inequality implies that the integral
∫ L
0
(ψµ2 − ψµ1 )ψ

µ
1 is negative.

As the other term in the left-hand side of (B.2) is negative, and the right-hand side is
bounded, this implies that, as µ→ ∞,∫ L

0

(ψ∞
2 − ψ∞

1 )ψ∞
1 (x) dx = 0.

Since both functions ψ∞
1 and ψ∞

2 (·) = ψ∞
1 (L − ·) are positive and share the same L2

norm, Cauchy-Schwarz inequality implies that ψ∞
1 (·) ≡ ψ∞

2 . In other words, ψµ1 −ψ
µ
2 →

0.
Adding the two lines of (7), we obtain:

D(ψµ1 + ψµ2 )
′′ + 2λD (ψµ1 + ψµ2 )

′ + λ2D (ψµ1 + ψµ2 ) + ru(x)ψµ1 + rv(x)ψµ2 = kµλ(ψ
µ
1 + ψµ2 ).

Therefore, as µ→ +∞,

(2Dψ∞
1 )′′ + 2λD (2ψ∞

1 )′ + λ2D (2ψ∞
1 ) + (ru(x) + rv(x))ψ∞

1 = k∞λ (2ψ∞
1 ).

Now note that ru(x) + rv(x) = R+ + R− is constant. Therefore, the principal eigen-
function ψ∞

1 is also constant and the corresponding principal eigenvalue is

k∞λ = lim
µ→∞

kµλ = λ2D +
R+ +R−

2
.

Using the Gärtner-Freidlin formula (6), we get:

lim
µ→∞

c2m = inf
λ>0

(
λD +

R+ +R−

2λ

)
=
√

2D(R+ +R−).

This formula is independent of L, and therefore remains unchanged if we pass to the
limit L→ 0 or L→ ∞.

Arbitrary µ, with L→ 0. The homogenization results in Griette and Matano (2021)
(Theorem 2.20) show that the spreading speed c2m converges to the speed that would
be obtained in a homogeneous environment where ruL and rvL would be replaced by their
spatial average (R+ + R−)/2. In this last case, the solution of the eigenvalue problem
(7) is a constant eigenfunction and the eigenvalue is k0λ = λ2D + (R+ + R−)/2. Using
the Gärtner-Freidlin formula (6), we get:

lim
L→0

c2m = inf
λ>0

(
λD +

R+ +R−

2λ

)
=
√
2D(R+ +R−).

This formula is independent of µ, and therefore remains unchanged if we pass to the
limit µ→ 0 or µ→ ∞.
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Arbitrary µ, with L→ ∞. This is the most involved case. We set

IL :=

(√
(R+ −R−)/2√

D
,

√
R+ +

√
(R+ −R−)/2√
D

)
. (B.3)

We begin by considering values of λ in IL.
Let us set (φ1(x), φ2(x)) = (eλx ϕ1(x), e

λx ϕ2(x)). The system (7) becomes{
Dφ′′

1 + ruL(x)φ1 + µ(φ2 − φ1) = kλφ1,

Dφ′′
2 + ruL(x)φ2 + µ(φ1 − φ2) = kλφ2,

in [0, L]. (B.4)

Writing this system on each interval where the coefficients are constants, we get:{
Dφ′′

1 +R+φ1 + µ(φ2 − φ1) = kλφ1,

Dφ′′
2 +R−φ2 + µ(φ1 − φ2) = kλφ2,

in [0, L/2), (B.5)

{
Dφ′′

1 +R−φ1 + µ(φ2 − φ1) = kλφ1,

Dφ′′
2 +R+φ2 + µ(φ1 − φ2) = kλφ2,

in [L/2, L). (B.6)

The functions φ1, φ2 are of class C1 on the whole space R, and are of class C2 on
the intervals (k, k + L/2) and (k + L/2, k + L), k ∈ Z, i.e., on the intervals where
the coefficients are constant. Without loss of generality, as the couple (φ1(x), φ2(x))
is defined up to a multiplicative constant, we may set φ1(0) = 1. Altogether, with the
periodicity and regularity conditions, we obtain the following constraints:

φ2(L) = eλLφ2(0),

φ′
1(L) = eλLφ′

1(0),
φ′
2(L) = eλLφ′

2(0),

lim
s→(L/2)−

φ1(s) = lim
s→(L/2)+

φ1(s),

lim
s→(L/2)−

φ2(s) = lim
s→(L/2)+

φ2(s),

lim
s→(L/2)−

φ′
1(s) = lim

s→(L/2)+
φ′
1(s),

lim
s→(L/2)−

φ′
2(s) = lim

s→(L/2)+
φ′
2(s),

(B.7)

and another constraint that we will treat separately:

φ1(L) = eλLφ1(0) = eλL. (B.8)

We directly solve the two systems (B.5) and (B.6) of two constant coefficient second
order linear homogeneous differential equations. Their general solution can be found,
e.g., in Kamke (2013). The characteristic equation has the form:

X4 − [(2kλ + 2µ−R+ −R−)/D]X2 + (kλ + µ−R+)(kλ + µ−R−)/D2 − µ2/D2 = 0.
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Under the conditions (kλ+µ−R+)(kλ+µ−R−)−µ2 ̸= 0 (which follows from λ ∈ IL,
see Lemma 3) and (R+ −R−)2 +4µ2 ̸= 0 (which is always satisfied), the characteristic
equation has four distinct roots ±Z1 and ±Z2, with:

δ :=
√
(R+ −R−)2 + 4µ2,

Z1 :=

√
2µ+ 2kλ − δ −R+ −R−

2D
,

Z2 :=

√
2µ+ 2kλ + δ −R+ −R−

2D
.

(B.9)

The solutions of (B.5) with the constraint φ1(0) = 1 are, for x ∈ (0, L/2),
φ1(x) = (1− A1 − A2 − A3)e

−Z1 x + A1e
Z1 x + A2e

−Z2 x + A3e
Z2 x,

φ2(x) =
R− −R+ + δ

2µ

[
(1− A1 − A2 − A3)e

−Z1 x + A1 e
Z1 x
]

+
R− −R+ − δ

2µ

[
A2e

−Z2 x + A3e
Z2 x
]
,

(B.10)

with A1, A2, A3 ∈ R. Lemma 2 shows that 2µ+ 2kλ − δ −R+ −R− > 0, which implies
that Z1, Z2 are real.

Similarly, the solutions of (B.6) are, for x ∈ (L/2, L),
φ1(x) = A4 e

−Z1 x + A5e
Z1 x + A6e

−Z2 x + A7e
Z2 x,

φ2(x) =
R+ −R− + δ

2µ

[
A4e

−Z1 x + A5 e
Z1 x
]
+
R+ −R− − δ

2µ

[
A6e

−Z2 x + A7e
Z2 x
]
,

(B.11)
with A4, A5, A6, A7 ∈ R.

Plugging the constraints (B.7) in (B.10) and (B.11), we observe that the coefficients
A1, . . . , A7 solve a linear system with 7 equations, for which we obtain an explicit
solution which leads to explicit (but very lengthy) expressions for φ1 and φ2. Using
Z1 < Z2, one may then write the last constraint (B.8) in the form

B1e
L(2Z1+2Z2+3λ) −B2e

L(2Z1+Z2+4λ) −B3e
L(3Z1+2Z2+2λ)

+ o(B1e
L(2Z1+2Z2+3λ) +B2e

L(2Z1+Z2+4λ) +B3e
L(3Z1+2Z2+2λ)) = 0, as L→ ∞, (B.12)

where B1, B2, B3 > 0 are bounded independently of L. See Supplementary Maple
notebook (pdf file available as Supplementary Material and code available at https:
//doi.org/10.17605/OSF.IO/7RTFK).

Let us show that the term exp[L(3Z1+2Z2+2λ)] dominates exp[L(2Z1+Z2+4λ)]
as L → ∞. Assume by contradiction that there exists C > 0 such that for all L > 0,
we have exp[L(2Z1+Z2+4λ)] ≥ C exp[L(3Z1+2Z2+2λ)]. Then, using (B.12), we get
that 2Z1 + 2Z2 + 3λ ∼ 2Z1 + Z2 + 4λ which implies that:

lim
L→∞

Z2 = λ. (B.13)

21

https://doi.org/10.17605/OSF.IO/7RTFK
https://doi.org/10.17605/OSF.IO/7RTFK


Coming back to the expression of Z2 in (B.9), and setting k∞λ := limL→∞ kλ, this shows
that k∞λ = λ2D + (R+ + R− − δ)/2 − µ. Thus, k∞λ < λ2D + (R+ + R−)/2, which
is in contradiction with the lower bound in Lemma 1. Thus, exp[L(3Z1 + 2Z2 + 2λ)]
dominates exp[L(2Z1 + Z2 + 4λ)] as L → ∞ and, with (B.12), we necessarily get
2Z1 + 2Z2 + 3λ ∼ 3Z1 + 2Z2 + 2λ. This implies that:

lim
L→∞

Z1 = λ. (B.14)

Using the expression of Z1 in (B.9), this shows that

k∞λ = λ2D +
1

2
(R+ +R− + δ)− µ. (B.15)

We note that this expression is consistent with the result of Lemma 1. We observe
that λ 7→ k∞λ is convex in IL and that λ 7→ k∞λ /λ reaches a (strict) minimum in IL
at λm =

√
(R+ +R− + δ − 2µ)/(2D). From Proposition 2.2 in Griette and Matano

(2021), we also know that λ 7→ kλ is strictly convex in R+. Thus λ 7→ k∞λ is convex in
R+. This implies that k∞λ /λ reaches its (unique) strict minimum in IL at λ = λm (this
is easily seen graphically, as k∞λ /λ reaches its minimum in R+ at values of λ such that
k∞λ = λ ∂λ(k

∞
λ )). Finally, this shows that

lim
L→∞

c2m = min
λ>0

k∞λ
λ

= min
λ∈IL

k∞λ
λ

=

√
2D
(
R+ +R− +

√
(R+ −R−)2 + 4µ2 − 2µ

)
.

(B.16)
Using this formula, we readily obtain the limits:

lim
µ→0

lim
L→∞

c2m = 2
√
DR+ and lim

µ→∞
lim
L→∞

c2m =
√

2D (R+ +R−).

Appendix C. A conjecture for a general formula for

the speed

We would like to adapt to our context the results of Hamel et al. (2011), who dealt
with the limit as L → ∞ of the spreading speed when there is only one morph. For
simplicity we assume that the diffusion coefficient is D = 1.

In the one-morph setting, Hamel et al. (2011) showed that the limit of the spreading
speed as L→ +∞ is

c1m(L→ +∞) = inf
λ>0

j̄−1(λ)

λ
,

where

j̄(k) =

∫ 1

0

√
k − r(x)dx,

Here, r plays the role of ru and rv. If we adapt their calculations to our case, we find
the same expression for the limiting speed c2m, but j̄(k) is replaced by

j(k) =

∫ 1

0

√
k −

(
ru(x)− µ+ µ

ψ2,∞(x)

ψ1,∞(x)

)
dx. (C.1)
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Here, the functions ψ1,∞ and ψ2,∞ are defined as the limits as L → ∞ of the principal
eigenfunctions ψ1,L(x) = ϕ1,L(Lx) and ψ2,L = ϕ2,L(Lx):

ψ1,∞(x) := lim
L→∞

ψ1,L(x), ψ2,∞(x) := lim
L→∞

ψ2,L(x).

The extra term −µ+µψ2,∞
ψ1,∞

arises because of the mutations between morphs. The hard

part is to compute the value of ψ2,∞
ψ1,∞

. Let us first assume that ru and rv are constant (i.e.,

the environment is homogeneous): ru(x) ≡ ru and rv(x) ≡ rv. Then the eigenfunctions
ψ1 and ψ2 are independent of x, so the system (7) becomes:{

−(ru − µ+ λ2)ψ1 − µψ2 = kλψ1

−(rv − µ+ λ2)ψ2 − µψ1 = kλψ2,

where ψ1 and ψ2 are real numbers (instead of functions). Solving this system, with the
constraints that ψ1 > 0 and ψ2 > 0, yields:

ψ2,∞

ψ1,∞
=

1

2µ

(
rv − ru +

√
(ru − rv)2 + 4µ2

)
.

Then, when ru and rv are constant, the expression of j (C.1) becomes:

j(k) :=

∫ 1

0

√
k − 1

2

[
ru + rv − 2µ+

√
(ru − rv)2 + 4µ2

]
dx. (C.2)

Now we would like to extend this result to the case when ru and rv are not necessarily
constant. In fact, as the period grows, the environment becomes more and more homo-
geneous. This suggests that the expression (C.2) of j, which holds when ru and rv are
constant, should also hold for nonconstant ru and rv. This is the following conjecture.
Let us write

j(k) :=

∫ 1

0

√
k − 1

2

[
ru(x) + rv(x)− 2µ+

√
(ru(x)− rv(x))2 + 4µ2

]
dx.

Then

c2m(L→ ∞) = inf
λ>0

j−1(λ)

λ
.

This expression generalises the one we proved above for the particular form of ru and rv

that was the main focus of this study. This new general expression is quite complicated,
because we need to consider the inverse of the function j. Still, is is possible to find
some qualitative properties.

Dependence of the speed on the mutation rate. We are interested in the vari-
ations of the speed c2m(L → ∞) in terms of the mutation rate, so we will use the
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notations j(k, µ) and c2m(L→ ∞)(µ) for clarity. We have:

∂

∂µ
j(k, µ) =

∫ 1

0

1− 2µ

2
√

(ru(x)−rv(x))2+4µ2

2

√
k − 1

2

[
ru(x) + rv(x)− 2µ+

√
(ru(x)− rv(x))2 + 4µ2

]dx.
Since

√
(ru(x)− rv(x))2 + 4µ2 ≥

√
4µ2 = 2µ, we conclude that

∂

∂µ
j(k, µ) ≥ 0.

Now, (6) implies that

c2m(L→ ∞)(µ) = inf
k

k

j(k, µ)
.

We conclude that µ 7→ c2m(L→ ∞)(µ) is a nonincreasing function.

When the diffusion terms are different. If the diffusion terms are different for u
and v, say Du and Dv, then our conjecture implies that the formula for j becomes:

j(k) :=
1√
Du

∫ 1

0

√
k − 1

2

[
ru(x) + rv(x) + λ2D′ − 2µ+

√
(ru(x)− rv(x) + λ2D′)2 + 4µ2

]
dx,

with D′ = Dv − Du. We have not been able to turn this expression into an explicit
formula for the spreading speed.

With one specialist and one generalist. Assume that u represents a specialist
morph that is well-adapted on (0, 1/2) and ill-adapted on (1/2, 1), and that v repre-
sents a generalist morph that is everywhere equally adapted. This can be modeled by
replacing the function rv(x) by a constant rv(x) ≡ rv, and by letting ru takes two values
R+ and R− over (0, 1/2) and (1/2, 1) respectively such that R− < rv < R+. Then our
conjecture implies that the expression for the speed is:

c2m(L→ ∞) =
2km√

km − A+
√
km −B

,

where

A =
1

2

(
R+ + rv − 2µ

√
(R+ − rv)2 + 4µ2

)
,

B =
1

2

(
R− + rv − 2µ

√
(R− − rv)2 + 4µ2

)
,

and

km =
2

3

(
A+B +

√
(A+B)2 + 3

AB2 − A2B

A−B

)
.
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Appendix D. Technical lemmas.

Lemma 1. For all λ > 0 and L > 0, the principal eigenvalue kλ in (7) satisfies

R+ +R−

2
+ λ2D < kλ < R+ + λ2D.

Proof. First, adding the two equations in (7) and integrating over (0, L), we get:

kλ < R+ + λ2D. (D.1)

Second, dividing the two equations in (7) by ϕ1 and ϕ2 respectively, integrating by parts
over (0, L), and using the periodicity of ϕ1, ϕ2 we get:

D

∫ L

0

|ϕ′
1|2

ϕ2
1

+ λ2DL+

∫ L

0

ruL(x)dx+ µ

(∫ L

0

ϕ2

ϕ1

− L

)
= kλ L,

D

∫ L

0

|ϕ′
2|2

ϕ2
2

+ λ2DL+

∫ L

0

rvL(x)dx+ µ

(∫ L

0

ϕ1

ϕ2

− L

)
= kλ L,

in R. (D.2)

Adding the two equations, we obtain:

2D

∫ L

0

(
|ϕ′

1|2

ϕ2
1

+
|ϕ′

2|2

ϕ2
2

)
+2λ2DL+L(R++R−)+µ

(∫ L

0

(
ϕ2

ϕ1

+
ϕ2

ϕ1

)
− 2L

)
= 2kλ L.

(D.3)

Note that ϕ2/ϕ1 + ϕ2/ϕ1 ≥ 2 as ϕ1, ϕ2 > 0. Thus

kλ >
R+ +R−

2
+ λ2D. (D.4)

Lemma 2. Let λ ∈ IL (see (B.3)). We have

2µ+ 2kλ − δ −R+ −R− > 0.

Proof. Using (D.4), we obtain

2µ+ 2kλ − δ −R+ −R− > 2µ+ 2λ2D −
√

(R+ −R−)2 + 4µ2,

and for λ ∈ IL, 2λ
2D > R+ −R− so

2µ+ 2kλ − δ −R+ −R− > R+ −R− + 2µ−
√

(R+ −R−)2 + 4µ2 > 0.

Lemma 3. Let λ ∈ IL. We have (kλ −R+ + µ)(kλ −R− + µ)− µ2 ̸= 0.
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Proof. The equation (k − R+ + µ)(k − R− + µ) − µ2 = 0 admits two roots k± =
R++R−

2
− µ ± δ

2
. Lemma 2 implies that kλ > k+ > k−, so kλ cannot be a root of the

equation.
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Débarre, F. and S. Gandon (2010). Evolution of specialization in a spatially continuous
environment. Journal of Evolutionary Biology 23 (5), 1090–1099.
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