

1 Investigation of ice detachment by a liquid jet on various 2 submerged surfaces for the development of ice slurry generators 3 without mechanical scraping

4 Walid SAMAH^(1, 2, *), Pascal CLAIN^(1, 2), François RIOUAL⁽²⁾, Laurence FOURNAISON⁽²⁾ and
5 Anthony DELAHAYE⁽²⁾.

6 ⁽¹⁾ Leonard de Vinci Pôle Universitaire, Research Center, 92916 Paris La Défense, France.

7 ⁽²⁾ Université Paris-Saclay, INRAE, FRISE, 92761 Antony, France.

8 * Corresponding author: Walid SAMAH, walid.samah@inrae.fr, postal address: INRAE, FRISE, 1 Rue Pierre
9 Gilles de Gennes, 92160 Antony, France.

10 **Abstract:** Ice slurry is an alternative method to reduce the quantity and emission of greenhouse refrigerants, as
11 well as control electrical energy consumption. However, the production of ice slurry requires the use of scraped-
12 surface generators, which are costly to maintain and consume high mechanical energy. Therefore, studying the
13 icephobic behavior of surfaces is of interest to significantly reduce ice adhesion and facilitate detachment without
14 the need for mechanical scrapers. This study focuses on the growth, adhesion, and detachment phenomena of ice
15 by liquid jets on different types of surfaces (hydrophilic, hydrophobic, and superhydrophobic) immersed in a
16 10 wt.% ethanol/water mixture. A liquid jet is used to detach the ice layer from the surfaces, with a velocity ranging
17 from 0 to 2.87 m s⁻¹, and the surface temperature varies from 25 °C to approximately -9 °C. The results show that
18 ice adheres less to hydrophilic and hydrophobic surfaces compared to superhydrophobic surfaces. The use of
19 PTFE-treated aluminum surfaces (hydrophobic) reduces the required flow velocity to detach the ice layer by half
20 compared to untreated aluminum surfaces (hydrophilic). An ANSYS® Fluent numerical model was developed to
21 simulate the evolution of turbulent velocities of immersed liquid jets, and a semi-empirical model was designed to
22 estimate the detachment forces of soft ice from hydrophilic surfaces (untreated aluminum). Two types of ice
23 detachment from surfaces were identified: adhesive detachment and cohesive detachment.

24 **Keywords:** Ice slurry generator; Superhydrophobic; Icephobic; Ice adhesion; Ice detachment; Liquid jet.

25 1. Introduction

26 The upcoming energy and climate crisis is pushing us to seek new ways to optimize energy while
27 reducing the impact on the environment. This crisis is driven by the increase in global energy
28 consumption, particularly in the refrigeration sector, where electricity consumption represents about
29 20% of global consumption. Without considering alternative measures, this proportion will continue to
30 rise, especially with global warming. Conventional systems of cold production using refrigerant gases
31 have a significant impact on energy consumption and the environment. Secondary refrigeration offers
32 an effective solution to significantly reduce the amount of refrigerant gas used, as the cold is transported
33 by a neutral fluid called secondary fluid to the place of use. When this secondary fluid contains a phase
34 change material (PCM) [1–3], such as suspended ice particles (ice slurry), electrical energy can be
35 optimized through thermal storage [4–6]. Ice slurries consist of ice particles suspended in an aqueous
36 solution with an average diameter of 1 mm or smaller [7]. Transporting cold using ice slurries is a cost-
37 effective and energy-efficient method because the ice slurry can be stored for extended periods.

38 There are several technologies for cold storage using ice, including ice harvesting, external ice-on-
39 coil fusion systems, internal ice-on-coil fusion systems, encapsulated ice systems, and ice slurry [8].
40 These systems, based on Cold Thermal Energy Storage (CTES) using the latent heat of fusion of water
41 (335 kJ kg⁻¹), allow storing thermal energy in the form of ice during periods of low cooling demand, to
42 be later released when demand is higher [8–11].

43 Afsharpanah et al. [9] conducted a numerical study to examine the charging performance of a thermal
44 energy storage device based on ice. This device consists of a small cuboid container equipped with two
45 rows of serpentine tubes with connecting plates. Designed as a backup cooling system for domestic

46 refrigerators in developing countries, this device aims to compensate for thermal load during frequent
47 power outages in those regions and to preserve food during such times.

48 The authors' [9] study highlights key parameters that influence the charging performance of the ice
49 storage device. The results show that certain dimensions and characteristics of the system can be
50 optimized to improve the charging rate, which could be beneficial for cooling backup applications in
51 developing countries, especially during frequent power outages. These interesting findings pave the way
52 for potential future improvements in the design and use of such domestic energy storage, contributing
53 to better food preservation and increased energy efficiency in refrigeration systems.

54 Ice slurry is used in many fields such as medical care, the food industry, firefighting, air conditioning
55 [2], and other industrial applications [12].

56 There are several ice slurry generators, which can be classified into two categories [13,14]:

- 57 ➤ Generators with moving components that are directly related to the extraction of ice from
58 the surface (scraped or brushed surface generator) [15] or the transformation of ice blocks
59 into ice slurry by grinding (falling film generator), etc. [13,14].
- 60 ➤ Generators without moving parts such as the supercooling generator, direct contact ice slurry
61 generator [16,17], and vacuum ice slurry generator [18], etc. [14].

62 Most ice slurry generators without moving parts, excluding the ice slurry generator using the
63 supercooling phenomenon, are at the prototype or laboratory study technology readiness level (TRL),
64 with a TRL between 1 and 5 [14]. The most industrially advanced generators with a moving component
65 are scraped or brushed surface generators, while the most advanced generators without a moving
66 component are ice slurry generators that utilize the supercooling phenomenon.

67 However, these two types of generators have disadvantages:

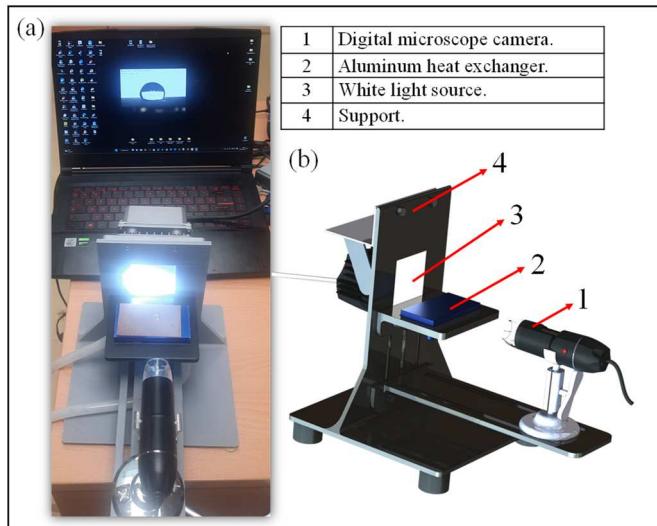
- 68 ➤ The ice slurry generator using the supercooling phenomenon can be blocked because of the
69 uncontrolled breakdown of the supercooling inside the generator, as well as the formation and
70 agglomeration of the ice inside the device, thus resulting in discontinuous production of ice
71 slurry.
- 72 ➤ Generators with scraped or brushed surfaces have disadvantages such as low energy efficiency
73 (additional mechanical energy consumption for the rotation of the scrapers) and high
74 maintenance costs due to the wear of the scrapers [14].

75 To address these drawbacks, researchers working in the refrigeration industry have developed new
76 experimental approaches to optimize ice slurry production without using moving components. These
77 approaches include: the production of ice slurry by hydro scraping with intermittent flow and reduced
78 cooling energy at the time of ice detachment [19], the use of smooth and/or low surface energy materials
79 such as nylon 11 or polytetrafluoroethylene (Teflon® or PTFE) to reduce ice adhesion and facilitate ice
80 detachment by flow [20,21], the use of additives to make the ice morphology softer (porous ice or ice
81 with needle-shaped crystals), resulting in its reduced contact surface with the exchanger walls and thus
82 decreasing its adhesion to the surface [22], and the use of icephobic or superhydrophobic coatings to
83 increase the supercooling degree in supercooling generators [23–30].

84 However, none of these methods are ready for industrial use, and there is a lack of visual analysis to
85 better understand the phenomenon of ice detachment from surfaces. For example, studies of ice slurry
86 production by hydro scraping in a PTFE or nylon 11 helical tube heat exchanger (HCHX) [20,21], as
87 well as in steel tube heat exchangers [19], have been performed with compact tube heat exchangers that
88 are not transparent. This lack of visibility makes it difficult to establish an empirical or semi-empirical
89 relationship between flow velocity and ice detachment. In addition, these tubular heat exchangers often
90 experience clogging problems due to ice agglomeration in the tubes, making it difficult to study ice
91 detachment. Although Zhao et al. [22] focus on visualization, their study does not provide a complete

92 visualization of ice detachment by flow because it is only based on the decrease in ice thickness, rather
93 than the lengthwise detachment of the ice from the surface. These studies deserve further investigation
94 with the visualization of ice detachment phenomena on the surface by flow (also called hydro-scraping
95 or by the hydrodynamic effect). The variation of flow velocity, surface temperature, and surface states
96 (hydrophilic, hydrophobic, superhydrophobic) are also parameters to consider in order to better
97 understand ice adhesion and detachment phenomena.

98 The present work is the first study on the ice detachment by a liquid jet with variable velocities on
99 immersed surfaces. The main objective of this study is to understand the phenomena of growth,
100 adhesion, and detachment of ice by flow on different types of surfaces (different wettability and surface
101 conditions). It aims at optimizing the ice slurry production method to develop a new method for ice
102 slurry production without moving components. To achieve these objectives, three types of surfaces
103 (hydrophilic, hydrophobic, and superhydrophobic) were studied in a transparent rectangular device
104 placed on a loop circulating a 10 wt.% ethanol/water mixture. This device is also equipped with a heat
105 exchanger for crystallization and a rectangular nozzle for liquid jet generation. This study focuses on
106 understanding the effect of temperature and surface condition on the growth and detachment of ice on a
107 given surface. Additionally, it examines the effect of increasing liquid jet velocity on ice detachment to
108 select surfaces with less adhesion and seek the most optimal conditions. The originality of this study lies
109 in the visualization of ice growth and detachment phenomena by a liquid jet (flow) on submerged
110 surfaces and in the evaluation of the ice detachment length (L_D) along a surface as a function of the flow
111 velocity. This is done to establish an empirical relationship and to understand the ice detachment
112 phenomena in immersion. Thus, an ANSYS® Fluent numerical model was developed to simulate the
113 evolution of turbulent velocities of immersed liquid jets along the heat exchanger surface for comparison
114 with experimental results.

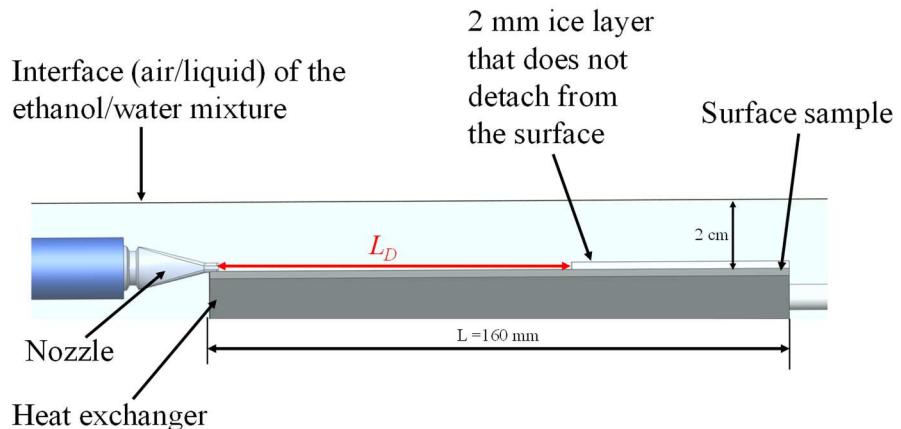

115 **2. Materials and methods**

116 The objective of this study is to better understand the phenomena of ice adhesion and detachment in
117 immersion on several types of surfaces with different wettability and surface states to develop a new ice
118 slurry generator without moving components. Therefore, two devices were developed. Firstly, a device
119 to measure contact angles (CA) on the studied surfaces, and secondly, a device to identify the surfaces
120 that allow optimal ice detachment by shear flow (liquid jet) of a 10 wt.% ethanol/water mixture through
121 a rectangular nozzle. This section is composed of four subsections: the first describes the experimental
122 setups for measuring contact angles; the second describes the experimental setups for the study of ice
123 growth and detachment by flow; the third describes the experimental protocol for the ice detachment
124 setup; and the fourth sub-section describes the numerical model developed using ANSYS Fluent 2021
125 R1 to simulate the evolution of turbulent liquid jet velocities in immersion. The aim of this simulation
126 is to make a comparison with experimental results and to understand why, at a certain speed, the ice no
127 longer detaches itself from the surface studied. The overall objective is to establish an empirical
128 relationship between jet velocity variation and ice detachment lengths (L_D).

129 **2.1 Experimental set-up for wettability and roughness analysis**

130 An original goniometer was developed for wettability analysis (contact angle measurement) on
131 different surfaces and was presented in detail in a previous work [28]. The device is shown in Figure 1.
132 This goniometer is equipped with a USB CMOS digital microscope camera from Chengstore with
133 640 x 480 resolution and x1600 zoom, a white light source, an aluminum heat exchanger to maintain
134 the temperature of the samples at a fixed value, and a circulating cryostat bath to control the surface
135 temperature of the heat exchanger. The camera is connected to a computer to measure the contact angle
136 (CA) using the IC Measure V2.0.0.286 software. Roughness analysis of the three surface types
137 (hydrophilic, hydrophobic, and superhydrophobic) was performed using a KEYENCE VHX-

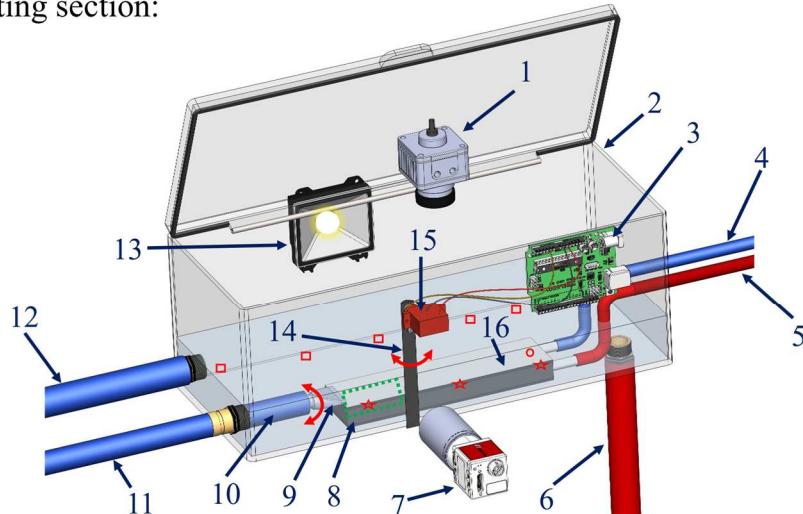
138 7000N/VHX-970N digital microscope. The results of the contact angle and roughness measurements
139 are presented in the results section.



140
141 **Figure 1** – Contact angle measuring device, (a) real image of the goniometer; (b) design image of the goniometer on
142 SOLIDWORKS.

143 Three AW1050H24 aluminum surface samples are used to represent different wetting and surface
144 states: hydrophilic, hydrophobic, and superhydrophobic, to characterize their ability to reduce ice
145 adhesion. The first surface is an untreated aluminum surface. The second surface of the same material
146 (aluminum) is treated with a 13 μm thick PTFE adhesive tape from REKALARO. This tape is made of
147 a PTFE-coated fiberglass fabric, which gives it additional properties of tear, tensile, and puncture
148 resistance. The third surface is treated with a commercial superhydrophobic "Ultra Ever Dry" (UED)
149 coating applied in two layers by spraying, the preparation process of which is described in detail in an
150 earlier study [28].

151 **2.2 Experimental device of ice detachment study**


152 To investigate the detachment of the ice layer on the three surfaces described in subsection 2.1, a
153 system was developed for and presented in Figure 2. This system consists of a BEWINNER aluminum
154 heat exchanger (component 8 in Figure 3) with dimensions 0.16 m x 0.04 m x 0.012 m (length, width,
155 height), which is insulated on all sides, except for the top side where the surface samples are fixed with
156 thermal paste. To remove the ice on the surface, a liquid jet is projected onto the surface through an
157 ARIANA flat nozzle (component 9 in Figure 3) with a rectangular (S_N) outlet section measuring
158 30 mm x 2 mm. The entire system is immersed in a 10 wt.% ethanol/water mixture with an immersion
159 depth of 2 cm between the surface sample and the air/liquid interface. The ice detachment length (L_D) is
160 defined as the maximum distance between the nozzle outlet section and the remaining ice layer on the
161 surface at the furthest point.

162
163 **Figure 2** – Schematic representation of the ice detachment length L_D by a liquid jet flow along the surface sample.

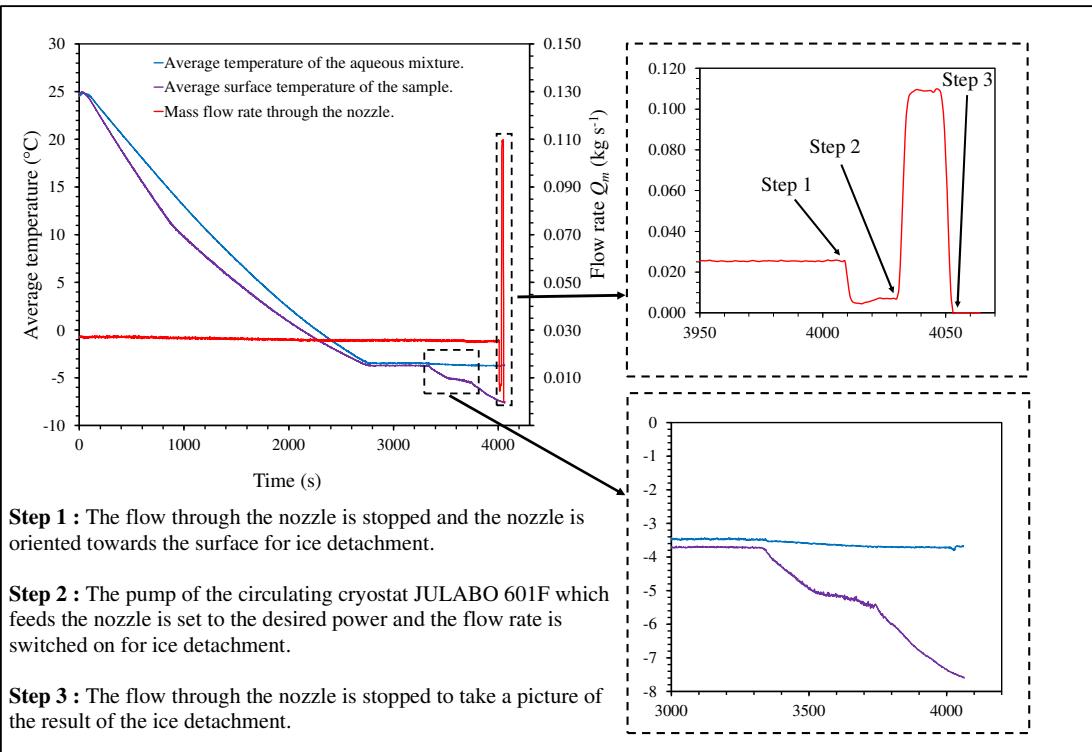
164 The experimental setup shown in Figure 2 is placed in a transparent box made of
 165 Polymethylmethacrylate (PMMA), which is identified as component 2 in Figure 3. The dimensions of
 166 the box are 0.34 m x 0.146 m x 0.127 m (length, width, height). This entire setup is called the surface
 167 testing section, and it includes a high-speed camera (component 7 in Figure 3), specifically the
 168 monochrome camera AOS Cesyco PROMON U750, which has a recording speed of 750 frames per
 169 second and a KOWA zoom lens with a fixed resolution of 640 x 480. The section viewed by this camera
 170 is shown in Figure 3 as a green dashed square, clearly representing the observed region. The video
 171 recording of the ice layer formation and its detachment by the flow is performed using the AOS Imaging
 172 Studio software version 4.7.2.4. Additionally, a second digital camera is placed above the exchanger to
 173 take pictures after the ice detachment (component 1 in Figure 3). The ice detachment length, L_D , is
 174 measured using IC Measure software version 2.0.0.286. To remove the dew that forms on the surface of
 175 the PMMA box during the cooling of the mixture and for better visualization of the formation and
 176 detachment of the ice layer by the liquid jet, a servo motor (component 15 in Figure 3) equipped with a
 177 wiper (component 14 in Figure 3) is installed. The servo motor is controlled by an ELEGOO UNO R3
 178 controller board (component 3 in Figure 3), which is programmed to allow the wiper to make a round
 179 trip every 4 seconds with an opening angle of 120°. The nozzle is fed by the pump integrated into the
 180 circulating cryostat (component III in Figure 4) through a filling tube (components 11 and 10 in
 181 Figure 3), with an adjustable mass flow rate from 0 to 0.167 kg s⁻¹. Finally, the PMMA box is
 182 continuously fed through a filling tube (component 12 in Figure 3) that connects to an external pump
 183 component (component IV in Figure 4) that takes liquid from the circulating cryostat (component III in
 184 Figure 4) with a constant mass flow rate of 0.151 kg s⁻¹ during experiments.


Surface testing section:

1	Digital camera.
2	Polymethylmethacrylate (PMMA) box 0.34 m x 0.146 m x 0.127 m (length, width, height).
3	ELEGOO UNO R3 controller board.
4	50 wt.% ethanol-water mixture inlet.
5	50 wt.% ethanol-water mixture outlet.
6	Liquid mixture outlet.
7	AOS Cesyco PROMON U750 high speed monochrome camera and KOWA zoom lens . Image resolution 640 x 480
8	Bewinner aluminum heat exchanger 0.16 m x 0.04 m x 0.012 m (length, width, height).
9	ARIANA flat nozzle with 0.03 m x 0.002 m (width, height) outlet section.
10	Nozzle swivel tube.
11	Nozzle supply tube.
12	Filling tube of the PMMA box with the liquid mixture.
13	A-LED LIGHTING 15 Watt.
14	Wiper.
15	Servo motor SG90.
16	Surface sample.

Figure 3 – Detailed schematic of the surface testing section, highlighting its components that make it up (component I of Figure 4)

The measurement of temperatures on the surface testing section is carried out using several T-type thermocouples with a measurement uncertainty of ± 0.03 °C. These thermocouples are connected to a KEYSIGHT Model DAQ970A data acquisition system connected to a computer. A thermocouple is placed on the surface sample approximately 150 mm from the nozzle outlet section, shown in Figure 3 by a red circle. The purpose of placing a single thermocouple on the sample surface is to minimize disturbance during ice formation and detachment. Tests were performed to verify the homogeneity of the temperature along the sample surface and the average difference over several points that does not exceed ± 0.5 °C. This result validates the use of a single thermocouple on the surface. Three thermocouples are placed between the surface sample (component 16 in Figure 3) and the heat exchanger (component 8 in Figure 3) and are represented in Figure 3 by red stars. Five thermocouples are placed in the surface testing section to measure the temperature of the aqueous mixture at different locations, represented in Figure 3 by red squares.

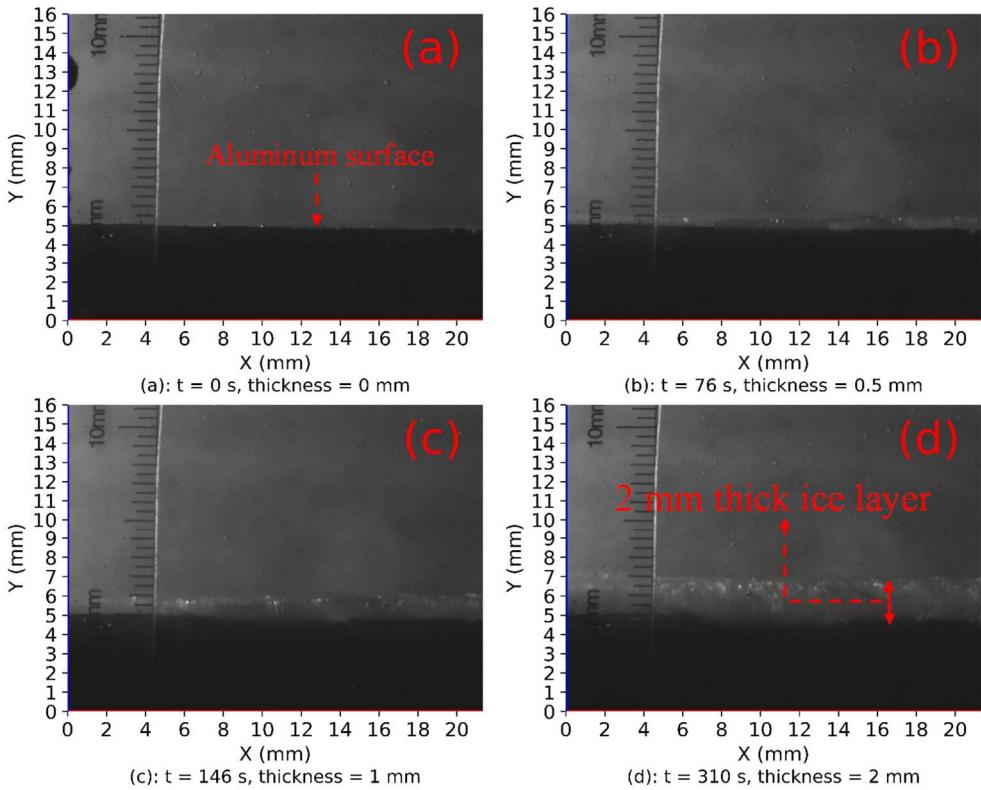


200
201
202 **Figure 4** – Schematic of the experimental setup to study ice detachment by flow on different surfaces: (a) top view;
(b) perspective view.

203 Figure 4 shows the complete experimental setup of ice detachment by shear flow. This device is
204 composed of a surface testing section (component I in Figure 4), two circulating cryostats JULABO
205 model FP50-HE (component II in Figure 4) and 601F (component III in Figure 4), a Grundfos pump
206 model ALPHA1 25-40 180 (component IV in Figure 4), and an ABB Coriolis mass flow rate meter
207 model FCM2000 MC23 (component V in Figure 4). The entire setup is placed in a climate chamber at
208 a fixed temperature of 13 °C to improve the efficiency of the two circulating cryostats and for reducing
209 heat losses of the experimental setup.

210 **2.3 Experimental parameters and protocols**

211 The experimental protocol for the study of ice growth and detachment by flow (liquid jet) is as
212 follows: first, the pump (component IV in Figure 4) feeding the surface testing section (system shown
213 in Figure 3) is turned on and set at a mass flow rate of 0.151 kg s^{-1} , establishing a water level of 2 cm
214 above the heat exchanger. Then, a circulation of the aqueous mixture is established at a constant mass
215 flow rate of 0.025 kg s^{-1} through the tube feeding the nozzle. As shown in Figure 5, which represents
216 the evolution of the mass flow rate through the nozzle, as well as the temperature of the aqueous mixture
217 (10 wt.% ethanol/water) and the untreated aluminum surface during cooling.



218
219
220
221

Figure 5– Example of evolution of the mass flow rate through the nozzle and the average temperature of the aqueous mixture (10 wt.% ethanol/water mixture) and the average temperature of the untreated aluminum surface (hydrophilic) during the cooling process.

222 The purpose of maintaining the flow in the tube feeding the nozzle (components 11 and 10 in
223 Figure 3) is to avoid heating of the liquid mixture at the time of the jet projection for the detachment of
224 the ice layer. Indeed, if the flow is stopped, since the ambient temperature is fixed at 13 °C, heating of
225 the liquid can occur in the tube feeding the nozzle. The nozzle (component 9 in Figure 3) is oriented at
226 about 80° upwards to avoid disturbing the formation of the ice layer. Then, the temperature of the two
227 circulating cryostats (components III and II in Figure 4) that supply the heat exchanger and the surface
228 testing section, respectively, is set to an initial temperature of 25 °C. Then, the temperature of the two
229 circulating cryostats is lowered to achieve stable surface sample and aqueous mixture temperatures at a
230 value of -3.6 °C before crystallization, as shown in Figure 5. Once the surface and liquid mixture
231 temperature are stabilized at -3.6 °C, the sample surface temperature is then lowered to a desired value
232 to initiate crystallization. In the case of Figure 5, the desired surface temperature was -8 °C.
233 Crystallization occurs at the phase change temperature of -4.8 °C to form a 2 mm ice layer on the surface
234 sample immersed in the 10 wt.% ethanol/water mixture, as shown in Figure 6. In Figure 6, the ice layer
235 formation takes about 310 seconds on the untreated aluminum surface. The thickness of the ice layer is
236 set to 2 mm so as not to penalize the heat transfer and to avoid the problem of temperature control.

237
238
239
240
241
242

243
244
245 **Figure 6** – Evolution of the ice layer thickness that forms on an untreated aluminum surface in a
10 wt.% ethanol/water mixture at a surface temperature set at -8°C , (a): before crystallization; (d): after crystallization.

246 During these experiments, temperature and mass flow rate recording through the nozzle are activated
247 using KEYSIGHT software. The high-speed camera (component 7 in Figure 3) is activated to record
248 video of the ice layer formation and its detachment by the flow, and the wiper (component 14 in
249 Figure 3) is turned on to avoid condensation problems. After the ice layer is formed, the flow of the
250 aqueous mixture through the nozzle is stopped, and then the nozzle is directed horizontally towards the
251 surface sample under investigation (downwards) so that the shear flow loosens the ice layer (step 1 in
252 Figure 5). Next, the mass flow rate through the nozzle is adjusted to the desired value (in Figure 5, the
253 set flow rate is 0.109 kg s^{-1} , which corresponds to a flow velocity of 1.83 m s^{-1} at the nozzle outlet), and
254 the flow rate is turned on so that the liquid jet exiting the nozzle loosens the ice layer, as shown in Step
255 2 of Figure 5. Finally, the filling pump (component IV in Figure 4) and the cryostat circulation pump
256 (component III in Figure 4) are turned off (step 3 in Figure 5) when the ice layer no longer detaches
257 from the surface. A picture of the surface is taken with a camera (component 1 in Figure 3), and the ice
258 detachment length (L_d) is measured using IC Measure image processing software version 2.0.0.286.

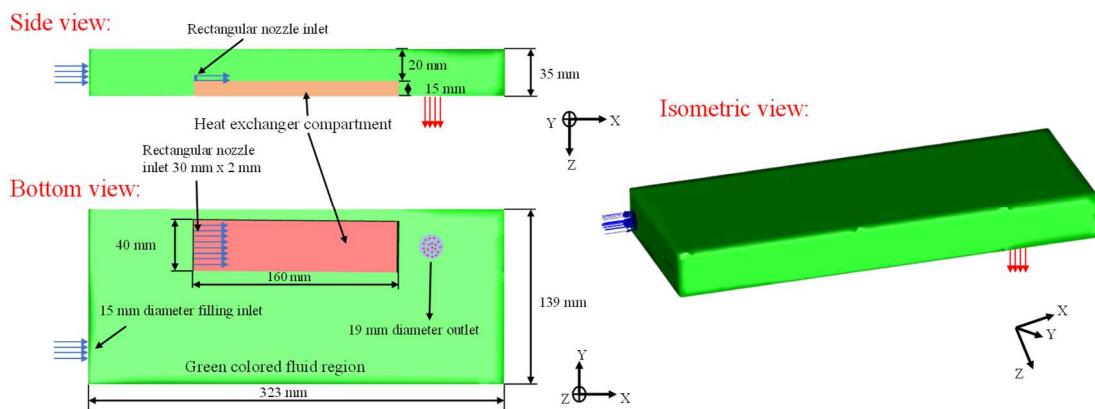
259 **2.4 Numerical model for the turbulent jet velocity evolution simulation in immersion**

260 A numerical model is developed to simulate the evolution of the velocity of a turbulent jet in
261 immersion using the ANSYS® FLUENT 2021 R1 software. Several authors have already investigated
262 hydrodynamic phenomena of turbulent liquid jets in immersion, both experimentally and numerically.
263 However, these works do not specifically address the detachment of ice in immersion [31–33]. The
264 objective of our numerical study is to track the evolution of the velocities of the turbulent liquid jet in
265 immersion along the surface of the untreated aluminum sample and does not take account for ice
266 formation and detachment. In our experiment, after the ice detachment, the liquid jet is not immediately
267 stopped; instead, it is allowed to continue for a period of time to ensure that the ice layer no longer
268 detaches and to observe a phenomenon in a steady-state regime. Our simulation hypothesis focuses
269 solely on the evolution of liquid jet velocities over a plane plate within a water-ethanol binary mixture

270 without ice layer, due to the lack of data on ice adhesion forces. The purpose of these simulations is to
 271 uncover the reasons behind the detachment of the ice layer at a specific length for each studied velocity,
 272 aiming to comprehend the detachment phenomenon. The ultimate goal is to establish a relationship
 273 between the experimentally determined ice detachment length (L_D) and the numerically determined
 274 maximum turbulent jet length (L_{max}), at which the liquid jet velocity reaches the minimum velocity at
 275 which ice detachment does not occur.

276 The Reynolds number of turbulent liquid jets in these simulations is calculated with equation (Eq.1):

$$277 \quad R_e = \frac{\rho_l V_N D_H}{\mu} \quad \text{Eq. (1)}$$

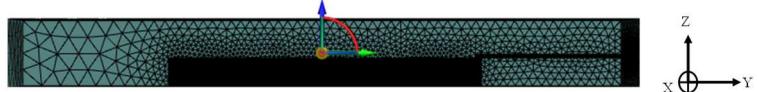

277 Where D_H is the hydraulic diameter of the nozzle, which is 0.00375 m, $\rho_l = 983.4 \text{ kg m}^{-3}$ is the
 278 density of the 10 wt.% ethanol/water mixture at the liquid temperature, which is set at -3.6°C , V_N is the
 279 turbulent velocities at the nozzle outlet (ranging from 1.4 to 2.87 m s $^{-1}$), and $\mu = 0.001889 \text{ Pa s}$ is the
 280 dynamic viscosity of the 10 wt.% ethanol/water mixture at the liquid temperature, which is set at
 281 -3.6°C . The results of the Reynolds number R_e are shown in Table 1. The value of the Reynolds number
 282 R_e is greater than 2300, so the velocity of the liquid jet, ranging from 1.4 to 2.87 m s $^{-1}$, is in the turbulent
 283 regime.

284 **Table 1** – Reynolds number of turbulent velocities at the nozzle outlet.

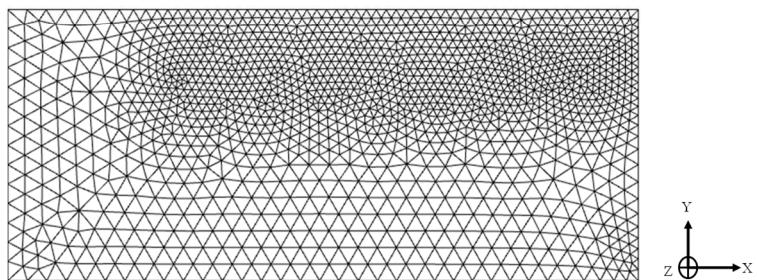
Velocity in nozzle outlet (m s $^{-1}$)	Reynolds R_e (f)
2.87	5545
2.45	4783
2.04	3983
1.87	3651
1.62	3163
1.40	2733

285 **2.4.1 Geometry, boundary conditions and meshing**

286 The fluid domain geometry of the surface testing section (Figure 3) has been modeled using
 287 ANSYS® SpaceClaim 3D CAD Modeling Software, as illustrated in Figure 7. The dimensions of the
 288 geometry and the specifics of the boundary conditions have also been provided in the same Figure.
 289 Table 2 summarizes the boundary conditions that have been defined in the Fluent software. The mesh
 290 was created using Fluent mesh software. It is a hybrid mesh consisting of tetrahedral and hexacore
 291 meshes, as shown in Figure 8.


292 **Figure 7** – 3D geometry of the fluid domain of the surface testing section drawn on ANSYS® SpaceClaim 3D CAD
 293 Modeling Software.
 294

295


Table 2 – Boundary conditions declared in the Fluent software.

Positions	Boundary conditions
Filling inlet	Velocity Inlet (inlet velocity fixed at 0.86 m s^{-1} during all simulations).
Rectangular nozzle inlet	Velocity Inlet (The velocities studied range from 1.4 to 2.87 m s^{-1}).
Outlet	Pressure Outlet
Walls	No-slip wall conditions

Side view:

Top view:

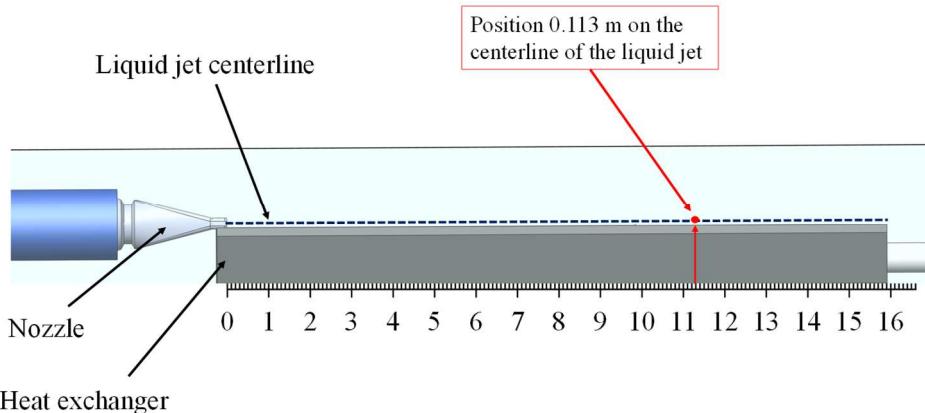
Figure 8 – Fluid domain mesh image of the surface testing section drawn on ANSYS® Fluent meshing software.

2.4.2 Numerical discretizations

301 The ANSYS® Fluent 2021 R1 software was used to perform a 3D steady-state simulation of a
 302 turbulent liquid jet in immersion. The turbulence model chosen was the k-epsilon Realizable with
 303 Enhanced Wall Treatment. The Coupled algorithm was used to couple the velocity and pressure. The
 304 spatial Second Order discretization scheme was used to discretize the pressure, while First Order
 305 Upwind was used for the momentum, turbulent kinetic energy, and turbulent dissipation energy.
 306 ANSYS® Fluent's default relaxation values were used for the parameters of pressure, density, body
 307 force, and turbulent viscosity, with 0.3 for the momentum and 0.7 for turbulent kinetic energy and
 308 turbulent dissipation energy. The computational results were considered convergent when the residual
 309 was less than 10^{-6} for all equations and stabilized. The analyzed results are presented in subsection 3.3.1.

2.4.3 Grids Sensitivity and Model Validation

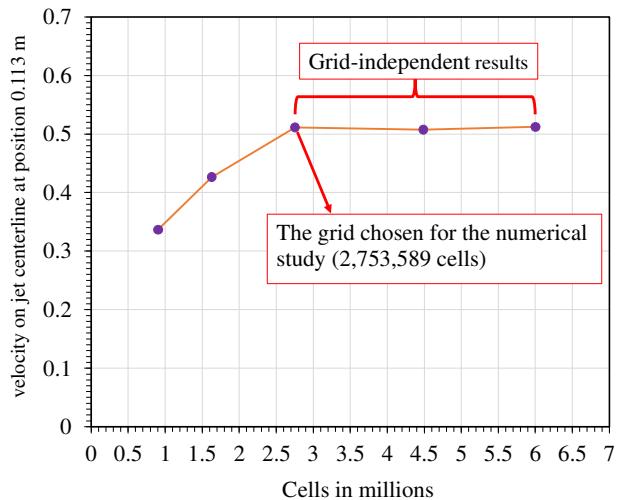
311 The grid independence has been carefully examined to ensure the reliability of the numerical
 312 simulation results. For this purpose, five different grids were analyzed to observe the solution's
 313 evolution, result stability, and grid sensitivity. The grid sets used consisted of 905,060 cells (grid 1);
 314 1,628,877 cells (grid 2); 2,753,589 cells (grid 3); 4,485,553 cells (grid 4); and 6,001,644 cells (grid 5).
 315


316 In the mesh test simulation, the liquid jet velocity at the nozzle outlet is set at 1.4 m s^{-1} . During its
 317 evolution, this velocity decreases until reaching lower speeds for the detachment of the ice, which has
 318 already been experimentally determined (see section 3.3). For instance, in the experimental case where
 319 the liquid jet velocity is set at 1.4 m s^{-1} , the ice detachment length is 0.116 m at a temperature of $-6 \text{ }^{\circ}\text{C}$
 320 (see Table 3), and the experimentally found ice non-detachment velocity is 0.51 m s^{-1} (see Figure 22).
 321

322 The parameter evaluated during the mesh sensitivity test simulations is the jet velocity along the
 323 central line at position 0.113 m (see Figure 9, with the nozzle outlet considered as the origin), where the

324 jet velocity reaches values at which detaching the ice layer is no longer possible experimentally at a
 325 speed of 0.51 m s^{-1} (see Figure 23 and Table 3). The results of the effect of increasing the number of
 326 mesh elements on the solution evolution are presented in Figure 10. It is worth noting that, according to
 327 this figure, the results are independent of the grid size for a number of elements greater than 2,753,589
 328 cells.

329


330 Considering the simulation's accuracy and computational efficiency, the final number of cells for this
 331 study was set to 2,753,589 to reduce the computation time, as using 6,001,644 cells would result in a
 332 24-hour calculation time.

333

334 **Figure 9** – Spatial representation of the position 0.113 m on the central line of the liquid jet, where the velocity is calculated
 335 to test grid independence.

336

337

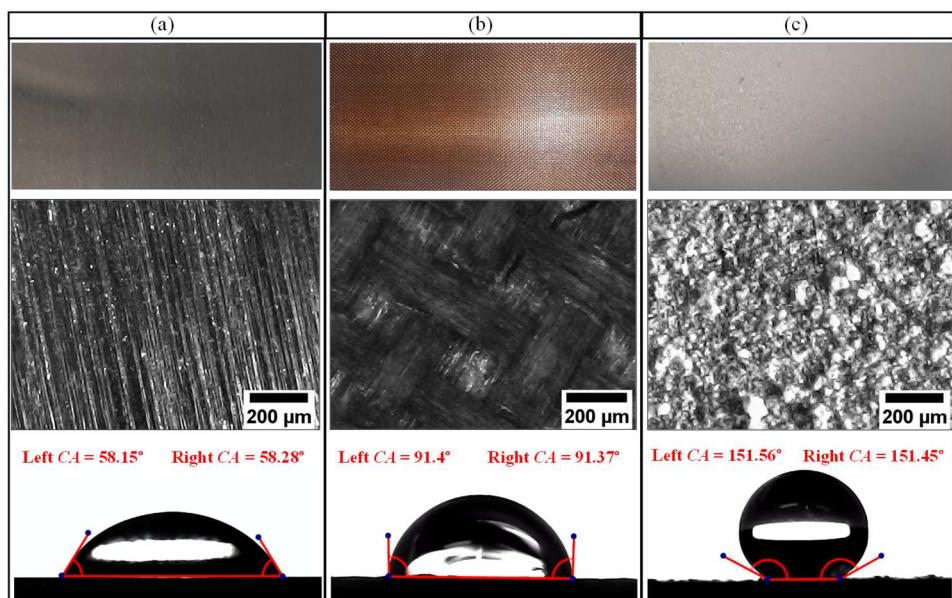
338 **Figure 10** – Evolution of liquid jet velocity result on its central line at the position 0.113 m as a function of the number of
 339 grid cells studied.

340

3. Results and discussions

341 In this section, the results were analyzed and discussed regarding the effect of temperature, surface
 342 conditions (roughness and wetting properties) on the growth, adhesion, and detachment of the ice layer
 343 by the flow. The objective is to better understand these phenomena in immersion to determine the
 344 optimal conditions for ice slurry production.

345

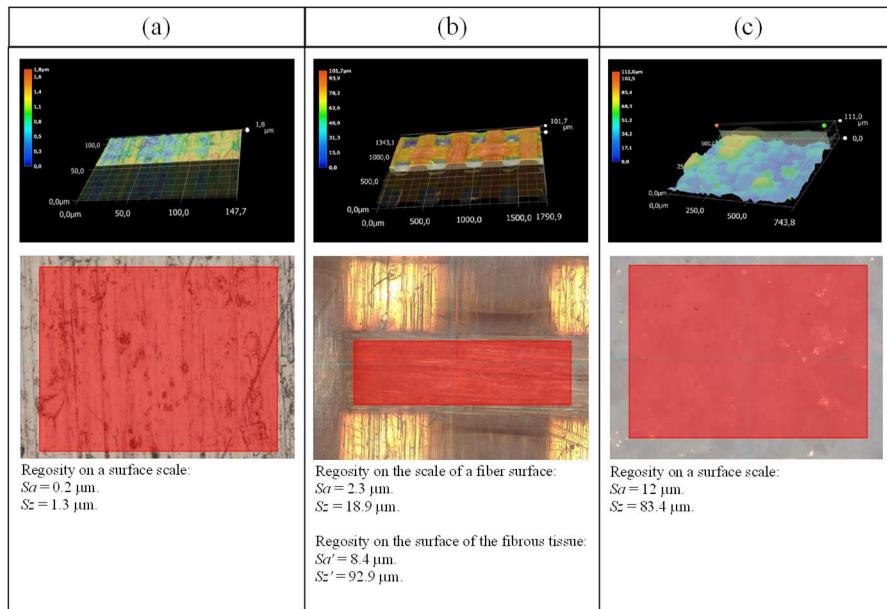

3.1 Wettability and surface roughness characterization

346

Surface wettability is divided into three categories [34,35]:

347 ➤ hydrophilic surfaces are characterized by a contact angle (*CA*) with a drop of water of less than
 348 90°.
 349 ➤ hydrophobic surfaces are characterized by a contact angle of greater than 90° and less than 150°.
 350 ➤ Superhydrophobic surfaces are characterized by a contact angle of greater than 150° and a
 351 contact angle hysteresis *CAH* < 10°.

352 Three types of AW1050H24 aluminum surfaces (hydrophilic (reference), hydrophobic, and
 353 superhydrophobic) were characterized to determine their ability to reduce ice adhesion. The liquid drop
 354 volume used for characterization is 8.4 μL of a 10 wt.% ethanol/water mixture, this volume being neither
 355 too large to avoid crushing of the drop by gravity effect nor too small to avoid surface tension effects.
 356 Measurements are repeated 4 times at an ambient temperature of 23 °C to verify the non-variation of the
 357 contact angle, the uncertainty is about $\pm 1^\circ$. The first surface is made of untreated (hydrophilic) aluminum
 358 and exhibits an average contact angle (average of left and right contact angles) of 58.21°, as shown in
 359 Figure 11 (a), while this surface forms an average contact angle of 82.36° with a drop of deionized water
 360 [28,29]. The second aluminum surface (same material) which is treated with the 13 μm thick PTFE
 361 adhesive tape presents an average contact angle of 91.38°, as shown in Figure 11 (b). The third surface,
 362 which is treated with the commercial superhydrophobic coating "Ultra Ever Dry" (UED), exhibits an
 363 average contact angle of 151.50°, as shown in Figure 11 (c). This coating was already characterized in
 364 a previous study with a deionized water drop of 8.4 μL , with an average contact angle of 157.59° in the
 365 Cassie state [28,29].

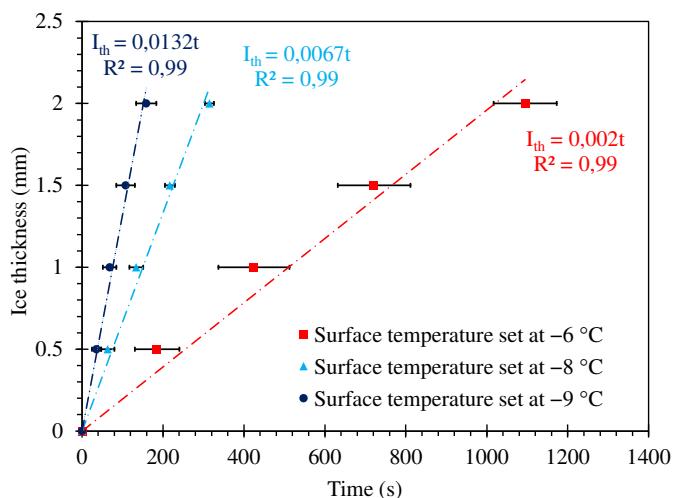


366
 367 **Figure 11** – Microscopic images and contact angles of the three types of surfaces studied, (a) hydrophilic "untreated
 368 aluminum"; (b) hydrophobic "aluminum treated with PTFE adhesive tape"; (c) superhydrophobic "aluminum treated with
 369 UED coating".

370 The roughness analysis of the three types of surfaces studied was performed using a KEYENCE
 371 VHX-7000N/VHX-970N digital microscope. Figure 12 presents the results of the measurement of the
 372 surface roughness parameter *S_a*, which is the arithmetic mean height. This parameter *S_a* extends the *R_a*
 373 parameter (arithmetic mean height of a line) to a surface, while the surface roughness *S_z* represents the
 374 maximum height. This *S_z* parameter is defined as the sum of the maximum peak height value and the
 375 greatest well depth in the defined area. As seen in Figure 12 (a), the untreated aluminum (hydrophilic)
 376 surface has the lowest surface roughness (*S_a* = 0.2 μm and *S_z* = 1.3 μm). The aluminum surface treated
 377 with PTFE adhesive ribbon (hydrophobic) has a double surface roughness, one at the scale of a single
 378 fiber (*S_a* = 2.3 μm and *S_z* = 18.9 μm) and the other at the scale of fibrous tissue surface (*S_{a'}* = 8.4 μm
 379 and *S_{z'}* = 92.2 μm), as shown in Figure 12 (b). The aluminum surface treated with UED coating
 380 (superhydrophobic), as shown in Figure 12 (c), has the highest surface roughness (*S_a* = 12 μm and

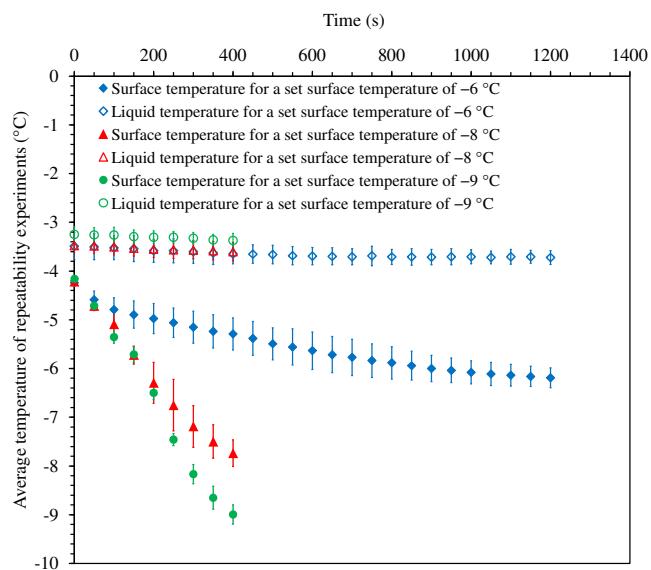
381 $S_z = 83.4 \mu\text{m}$) compared to the surface roughness of the untreated aluminum and the surface roughness
 382 of a single fiber of the PTFE tape.

383


384
 385 **Figure 12** – Results of the measurement of surface roughness parameters "Sa" and "Sz" of the three types of surfaces studied:
 386 (a) hydrophilic; (b) hydrophobic and (c) superhydrophobic.

387 **3.2 Ice growth kinetics**

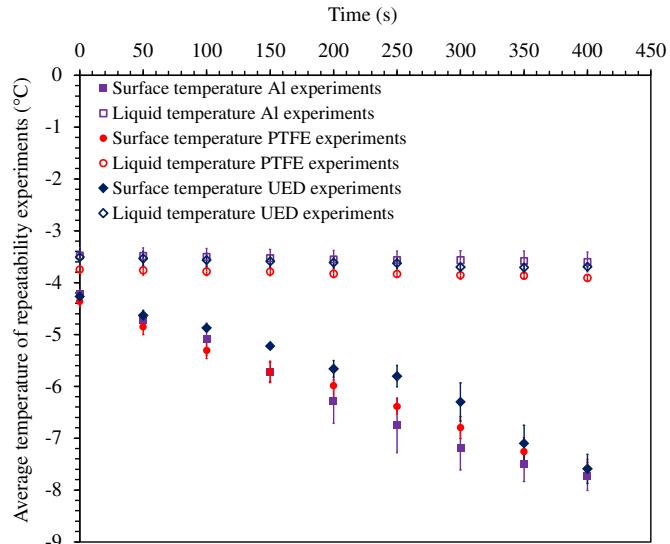
388 The effect of decreasing surface temperature on ice type and ice growth kinetics on the untreated
 389 aluminum surface was examined. In addition, the effects of surface roughness on ice growth kinetics
 390 were also analyzed on three types of surfaces: hydrophilic (untreated aluminum), hydrophobic
 391 (aluminum treated with PTFE adhesive tape), and superhydrophobic (aluminum treated with UED
 392 coating).


393 **3.2.1 Temperature effect on ice growth kinetics**

394 Figure 13 shows the growth kinetics of an ice layer up to 2 mm thick on an untreated aluminum
 395 surface (hydrophilic) as a function of time for different surface temperatures set at -6°C , -8°C and
 396 -9°C . In addition, Figure 14 shows the evolution of the temperature of the surface and of the
 397 10 wt.% ethanol/water mixture in the surface testing section for different target surface temperatures
 398 (-6°C , -8°C and -9°C).

399

400 **Figure 13** – Growth kinetics of an ice layer up to 2 mm thick on an untreated aluminum surface as a function of time for
 401 different surface temperatures set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$.
 402

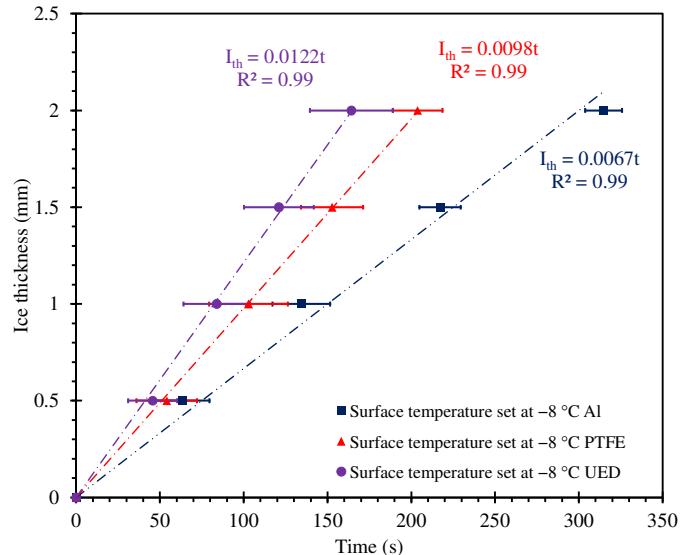


403 **Figure 14** – Evolution of the temperature of the liquid mixture and of the untreated aluminum surfaces during the cooling
 404 process for three target surface temperatures of $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$.
 405

406 Figure 13 clearly indicates that a decrease in surface temperature leads to an increase in the ice layer
 407 growth rate, as the heat flux increases with the decrease in surface temperature. Furthermore, the
 408 standard deviations for the $-6\text{ }^{\circ}\text{C}$ case are significant, as shown in Figure 14, because the maximum
 409 surface temperature is $-6\text{ }^{\circ}\text{C}$ and the average liquid temperature is $-3.60\text{ }^{\circ}\text{C}$. The average temperature
 410 between the surface and the liquid gives a value close to the phase change temperature, and in this case,
 411 it is difficult to pass the energy barrier necessary for crystallization. Furthermore, the standard deviation
 412 of the surface temperature in repeatability experiments is significant. This is due to the formation of an
 413 ice layer on the surface, which acts as an insulation and therefore causes variability in the surface
 414 temperature.

415 3.2.2 Effect of surface condition on ice growth kinetics

416 Figure 15 shows the analysis of the temperature evolution of the three surfaces: hydrophilic
 417 (untreated aluminum) as "Al", hydrophobic (aluminum treated with Teflon® coating) as "PTFE", and
 418 superhydrophobic (aluminum treated with Ultra Ever Dry) as "UED", and the temperature of the
 419 10 wt.% water-ethanol mixture as a function of time during the surface cooling process. These
 420 temperatures are plotted for a surface temperature between $-4.10\text{ }^{\circ}\text{C}$ and a final temperature of $-8\text{ }^{\circ}\text{C}$,
 421 between which a layer of ice with a maximum thickness of 2 mm is generated. It is observed that the
 422 temperature variation of the ethanol/water mixture is stable for the three surfaces (Al, PTFE and UED),
 423 with a standard deviation of less than $\pm 0.25\text{ }^{\circ}\text{C}$. Concerning the surface temperature the standard
 424 deviation does not exceed $\pm 0.6\text{ }^{\circ}\text{C}$.

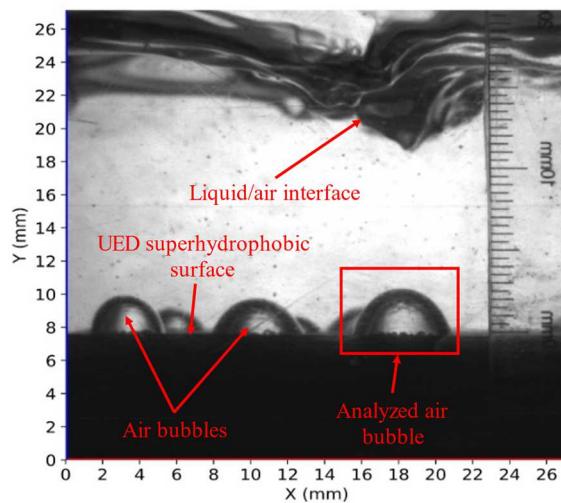


425
426 **Figure 15** – Evolution of the temperature of the liquid mixture and the three types of surfaces studied during the surface
427 cooling process.

428 Figure 16 shows the ice growth kinetics as a function of time for the three types of surfaces and for
429 a target surface temperature of -8°C . The results indicate that ice growth is faster on the
430 superhydrophobic UED surface when compared to the PTFE and Al surfaces, even though the surface
431 temperature of the UED surface is slightly warmer than the others. Additionally, ice growth is slower
432 on the Al surface when compared to the PTFE surface. The aluminum surface treated with the UED
433 superhydrophobic coating increases the crystallization rate due to its higher roughness ($Sa = 12 \mu\text{m}$, as
434 described in section 3.1). This value is significantly higher than PTFE ($Sa = 2.3 \mu\text{m}$ and $Sa' = 8.4 \mu\text{m}$)
435 and untreated aluminum ($Sa = 0.2 \mu\text{m}$), providing more nucleation sites on this superhydrophobic UED
436 surface. Indeed, roughness contributes to lowering the energy barrier for crystallization, as already
437 demonstrated in the article by Cao et al. [36]. The authors studied various superhydrophobic coatings
438 based on nanoparticle-polymer composites with diameters $D_p = 20 \text{ nm}, 50 \text{ nm}, 100 \text{ nm}, 1 \mu\text{m}$, and 20
439 μm , with contact angles ranging from 143° to 158° , and a contact angle hysteresis of 2° and 4° . The
440 authors analyzed the effect of nanoparticle size in the superhydrophobic coating on the free energy
441 barrier. They noticed that the energy barrier for nucleation continuously decreases with an increase in
442 the size of particles in the superhydrophobic coating (increase in roughness) [36].

443

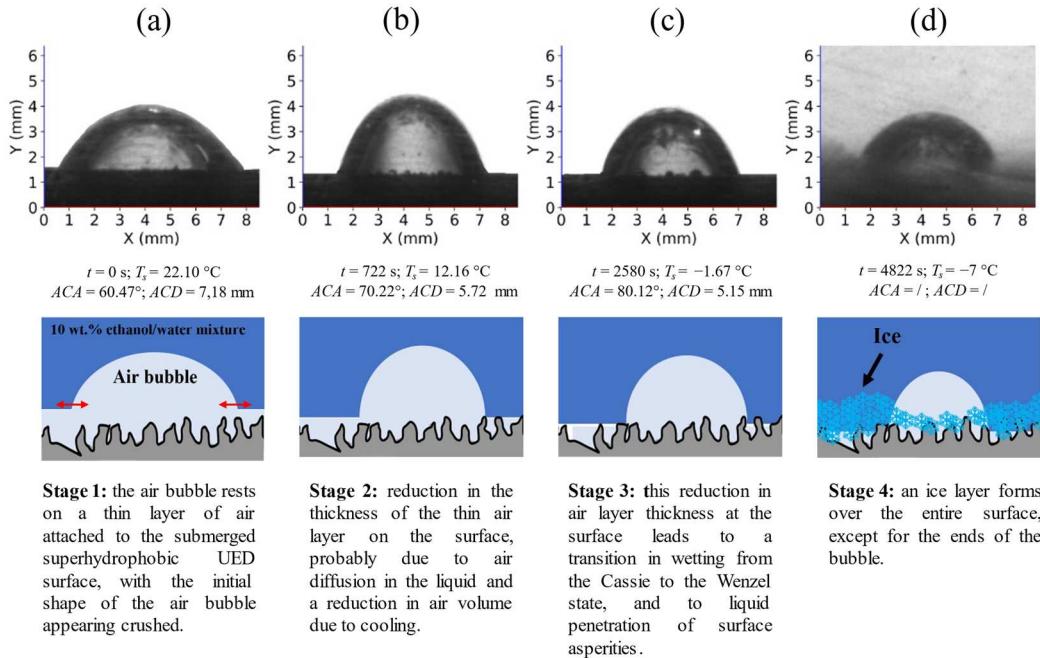
444



445
446

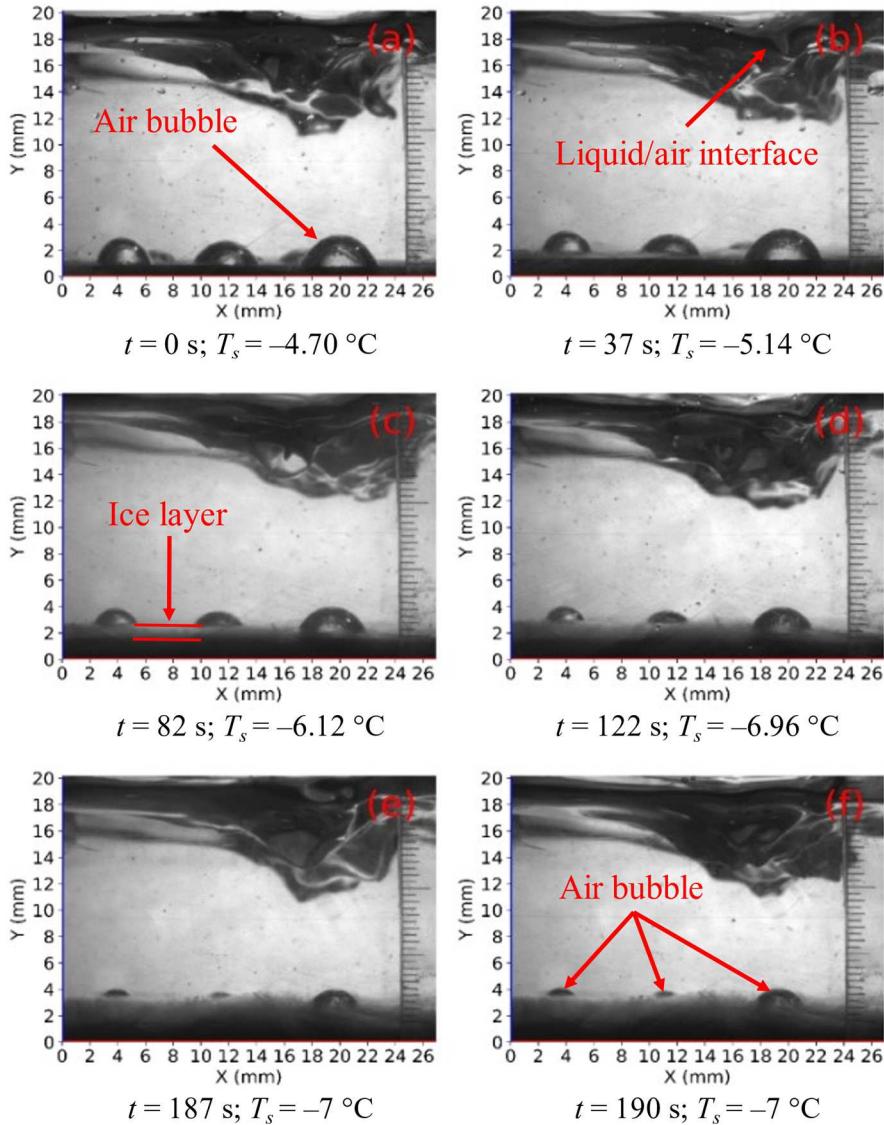
Figure 16 – Ice growth kinetics as a function of time for a target surface temperature of $-8\text{ }^{\circ}\text{C}$ on the three surface types.

447 However, the PTFE surface has a double roughness due to its texture (glass fiber) of Sa' about $8.4\text{ }\mu\text{m}$
448 and a roughness on the fiber surface ($Sa = 2.3\text{ }\mu\text{m}$). This double roughness also serves as a nucleation
449 site, explaining why crystallization is faster on the PTFE surface compared to the untreated aluminum
450 surface, which is characterized by a roughness of $Sa = 0.2\text{ }\mu\text{m}$. The surface roughness plays an important
451 role in influencing the crystallization rate of the ice by providing increasing the surface area available
452 for crystallization. This leads to a higher crystallization rate due to the increased number of nucleation
453 sites available for crystals.


454 The behavior of submerged superhydrophobic surfaces is aerophilic, meaning that they trap air in
455 their roughness when submerged [37]. Initially, the immersed UED superhydrophobic surface is covered
456 with a thin layer of air visible as a silvery mirror-like reflection, which is the signature of the presence
457 of an air layer adhering to the surface. During the cooling process, the silvery mirror reflection becomes
458 clearer and less reflective (seen by the naked eye), and then disappears when reaching low negative
459 temperatures ($-6\text{ }^{\circ}\text{C}$). These experiments aim to understand the wetting behavior of the UED
460 superhydrophobic surface under immersion with surface cooling and understand why the silver mirror
461 color reflectivity effect that disappears during surface cooling. Figure 17 shows the air bubbles placed
462 with a pipette on the UED superhydrophobic surface in immersion to verify and understand the physical
463 phenomena of wetting transition in immersion with surface cooling.

464

465
466

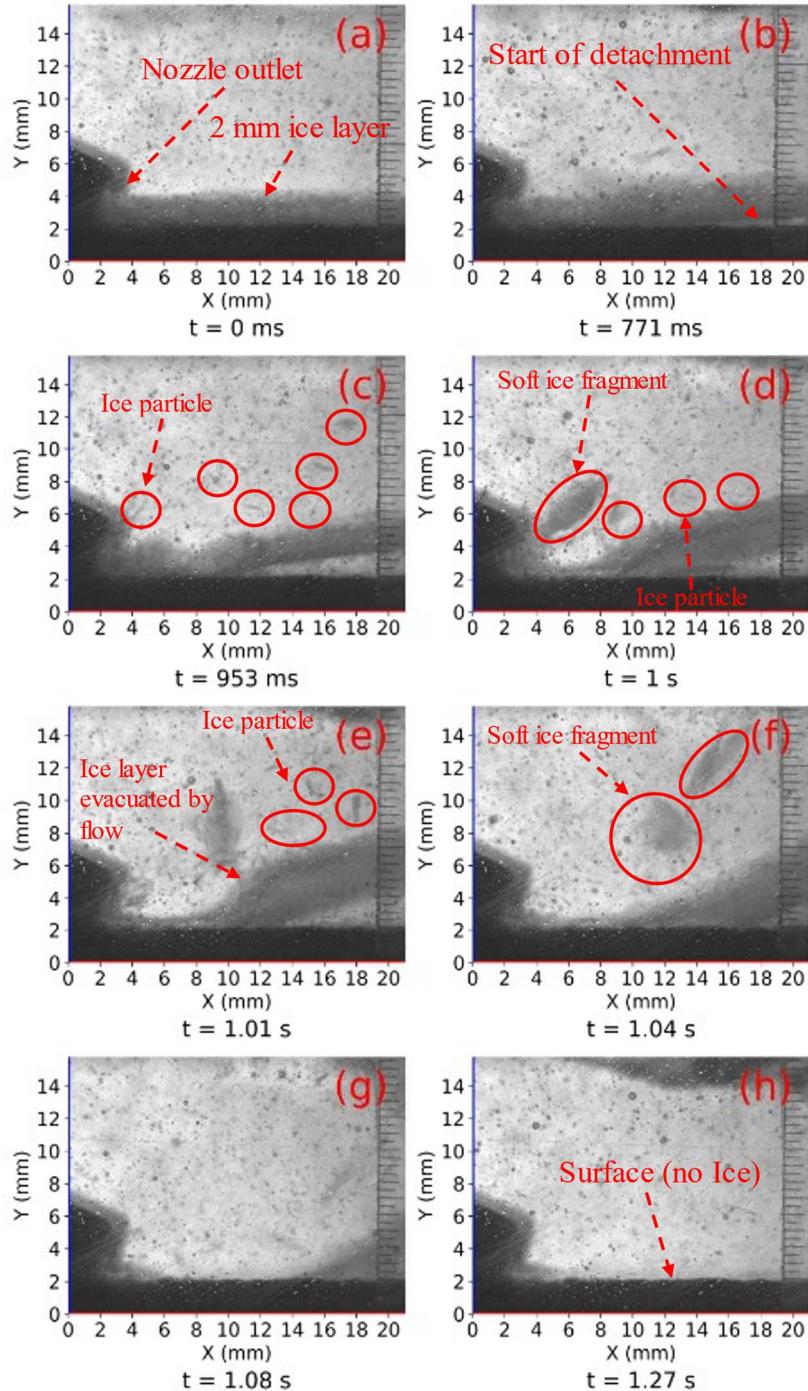

Figure 17 – Air bubbles deposited on the superhydrophobic UED surface immersed in a 10 wt.% ethanol/water mixture during the cooling process, the surface temperature T_s is 3.97 °C which corresponds to time $t = 1622$ s.

467
468
469
470

Figure 18 – Real image of the air bubble without background and schematic model illustrating the wetting transition on a UED superhydrophobic surface immersed in a 10 wt.% ethanol/water mixture during the surface cooling process. T_s is the surface temperature, ACA represents the air bubble contact angle, and ACD represents the air bubble contact diameter.

471 Figure 18 shows the real images and a schematic model explaining the behavior of air bubbles and
472 the wetting transition when immersed in a 10 wt.% ethanol/water mixture on a cooled superhydrophobic
473 UED surface. This model is considered original because no previous study has verified this wetting
474 behavior in immersion and at low temperature. When the air bubble is deposited at a temperature of
475 22.10 °C on the immersed superhydrophobic UED surface, as shown in Figure 18 (a), the initial shape
476 of the air bubble appears to be squashed. This air bubble has an ACA air contact angle of 60.47° and an
477 ACD air contact diameter (air bubble base diameter) of 7.18 mm. At this temperature of 22.10°, the air
478 bubble slides from left to right across the surface due to its contact with the thin layer of air and the
479 agitation of the mixture caused by the flow. As the surface temperature decreases, the silvery mirror
480 color becomes less visible, indicating a reduction in the thickness of the thin layer of air on the surface,
481 likely due to air diffusion into the liquid and a decrease in air volume due to cooling. This decrease in
482 the thickness of the air layer on the surface leads to a decrease in the contact diameter of the air bubble
483 (ACD = 5.72 mm) and an increase in its contact angle (ACA = 70.22°) due to buoyancy forces lifting the
484 bubble vertically, as shown in Figure 18 (b). In the end, a layer of ice forms over the entire surface,
485 except for the ends of the bubbles which remain in contact with the cooled superhydrophobic surface
486 due to the lack of contact between the liquid and this cooled surface, as shown in Figure 18 (d). Figure
487 19 shows the process of ice layer formation on the surface of the UED in the presence of air bubbles.
488 After the transition from the Cassie wetting state to the Wenzel state, ice forms across the entire surface
489 except at the locations of air bubbles in immersion, which isolate the liquid from the cold UED surface.

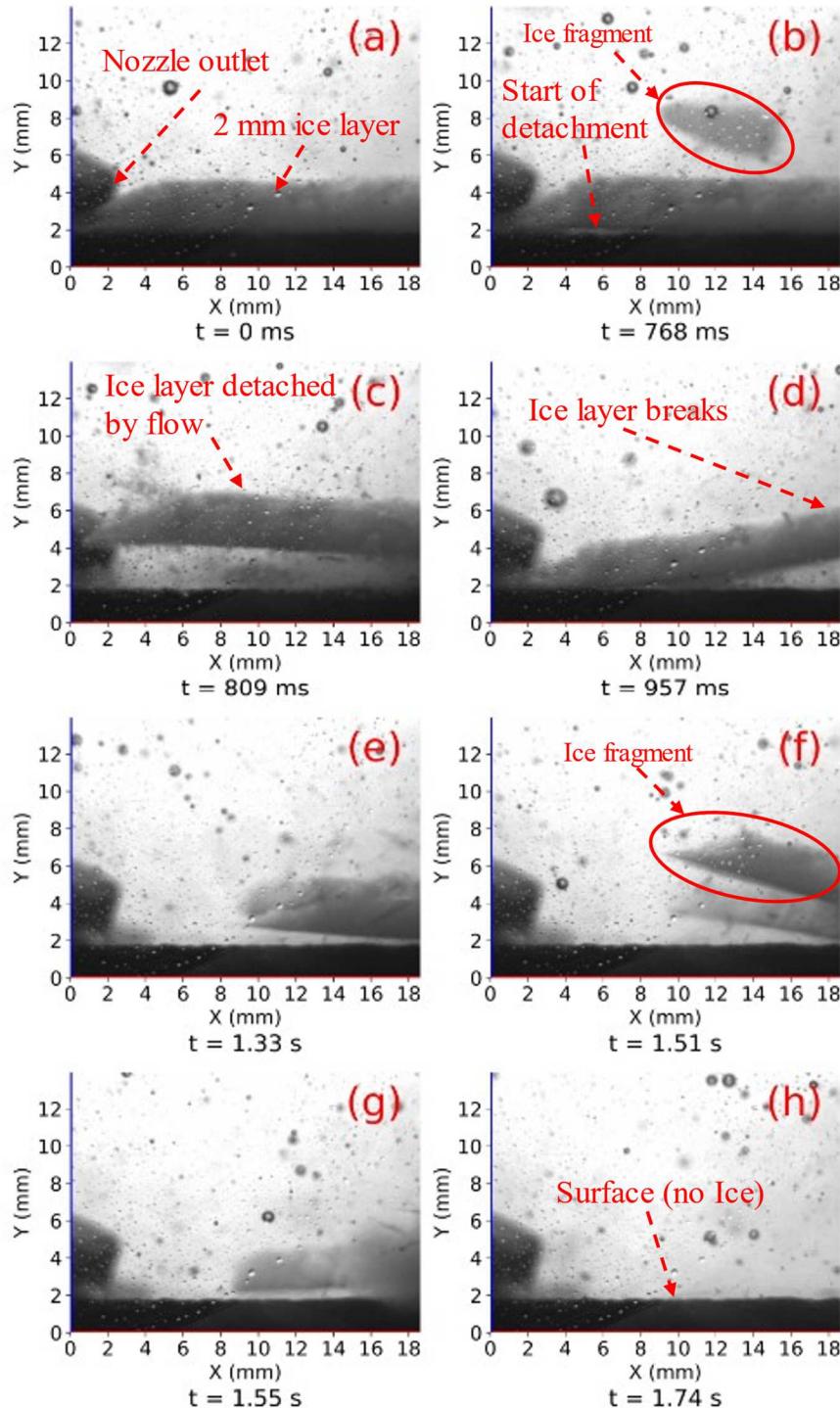
490
491 **Figure 19** – Formation of a 2 mm ice layer on the UED superhydrophobic surface in a 10 wt.% ethanol/water mixture.


492 **3.3 Ice detachment length evolution**

493 In this subsection, the evolution of L_D on the three types of surfaces: hydrophilic (untreated
494 aluminum), hydrophobic (aluminum treated with PTFE adhesive tape), and superhydrophobic
495 (aluminum treated with a UED superhydrophobic coating) was studied.

496 **3.3.1 Temperature effect on ice detachment length**

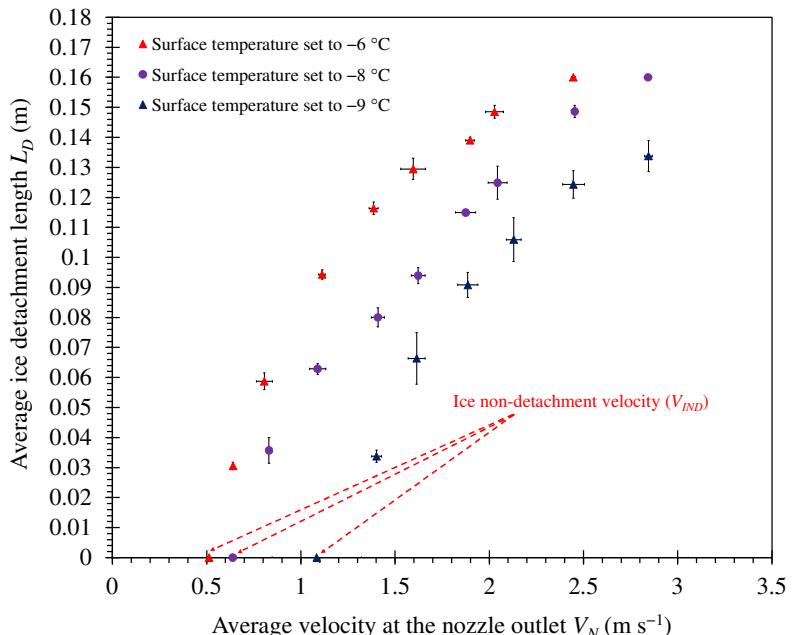
497 The experimental results presented in Figure 20 show the detachment of a 2 mm thick ice layer on
498 an untreated aluminum surface. The surface temperature was set at -6°C , and the liquid velocity at the
499 nozzle outlet (V_N), which was oriented horizontally towards the surface, was 1.62 m s^{-1} . The detachment
500 process lasted about 1.27 s, and the type of detachment was identified as adhesive, meaning the ice
501 detached from the surface without leaving any residue. The ice was characterized as soft, with needle-
502 like crystals due to the presence of ethanol. After detachment, the ice broke into small particles, as shown
503 in the images in Figure 20 (c) and 20 (e). Chemical additives have an effect on the morphology of the
504 ice; for example, seawater (brine) results in porous ice [14,20–22,38]. These additives change the nature
505 of the ice, making it soft, and the ice crystals often take on the shape of needles, reducing the contact
506 surface of the ice with the solid surface. If pure water is used to produce the ice, it will have a hard


507 texture [22,28]. In the case of a surface temperature set at -8°C , ice detachment and ice appearance are
 508 similar to those observed at a surface temperature of -6°C .

509
 510 **Figure 20** – Image of ice layer detachment on an untreated aluminum surface for a surface temperature set at -6°C and an
 511 average velocity at the nozzle outlet V_N of 1.62 m s^{-1} .

512 Figure 21 shows the results of detaching a 2 mm thick ice layer from an untreated aluminum surface
 513 at a surface temperature set at -9°C . The average liquid velocity at the nozzle outlet is 1.62 m s^{-1} , which
 514 is identical to the -6°C case described earlier. The ice detachment process took approximately 1.74 s,
 515 slightly longer than in the -6°C case. As with the -6°C case, the type of detachment observed was
 516 adhesive, where the ice layer fully detached from the surface without leaving any residue, as depicted
 517 in Figures 21 (c)-(f). However, the ice layer does not detach easily, and the ice is hard, in contrast to the
 518 soft ice observed at -6°C . The detachment of the ice layer at a temperature of -9°C occurred in large

519 hard fragments rather than small particles, as shown in Figure 21 (f). This ice hardening is due to the
 520 effect of low temperature, which accelerates the crystallization process, leading to a densification of the
 521 ice layer. This effect of temperature has already been observed in a previous study with a 10 wt.%
 522 aqueous urea solution [22].

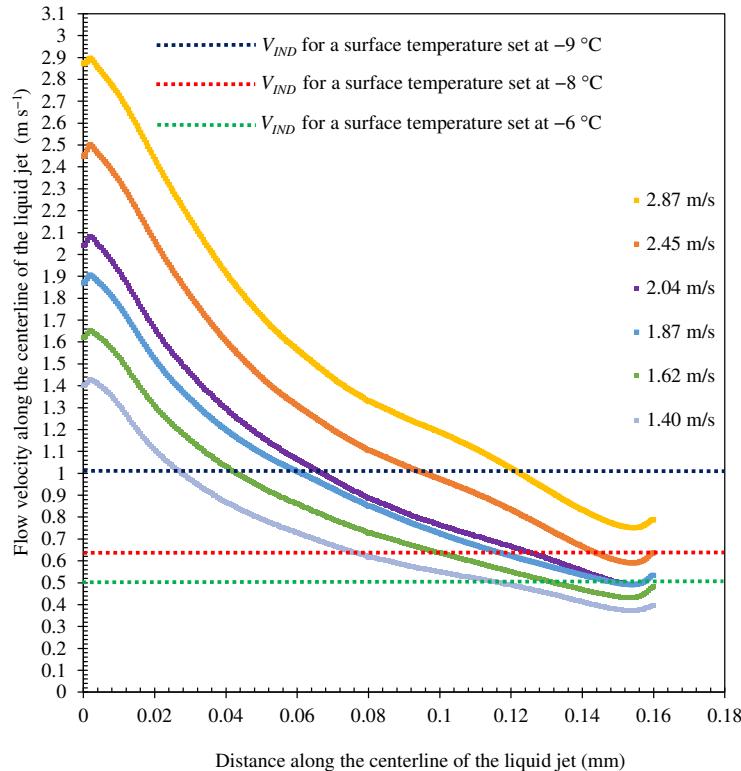

523
 524 **Figure 21** – Image of ice layer detachment on an untreated aluminum surface for a surface temperature set at $-9\text{ }^{\circ}\text{C}$ and an
 525 average velocity at the nozzle outlet of 1.62 m s^{-1} .

526 Figure 22 shows the variation of the ice detachment length L_D as a function of the average liquid
 527 velocity at the nozzle outlet along a 0.16 m long surface. In our experiments, the mass flow rate ranges
 528 from 0 to 0.17 kg s^{-1} . This implies a flow velocity at the nozzle outlet ranging from 0 to 2.87 m s^{-1} . The

529 experiments were conducted on an untreated aluminum surface (hydrophilic) at three different surface
 530 temperatures ($-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$). In our experiments, we calculated the flow velocity V_N at the
 531 nozzle outlet using the following equation (Eq. 2):

$$V_N = \frac{Q_m}{\rho_l S_N} \quad \text{Eq. (2)}$$

532 Where Q_m is the mass flow rate, ρ_l is the density of the mixture, and S_N is the outlet cross-sectional
 533 area of the nozzle. As shown in Figure 22, the limit velocity of ice non-detachment V_{IND} , i.e., the velocity
 534 below which there is no detachment of ice from the surface, is 0.51 m s^{-1} , 0.64 m s^{-1} , and 1.08 m s^{-1} for
 535 surface temperatures set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$, and $-9\text{ }^{\circ}\text{C}$, respectively. The ice detachment length decreases
 536 with decreasing surface temperature due to an increase in ice adhesion strength, which is a well-known
 537 trend in the literature [14,22,39]. At $-6\text{ }^{\circ}\text{C}$ and $-8\text{ }^{\circ}\text{C}$, the required velocity V_N to detach the ice over the
 538 entire surface is 2.45 m s^{-1} and 2.87 m s^{-1} , respectively. However, for the $-9\text{ }^{\circ}\text{C}$ surface temperature
 539 case, the detachment length is limited to 0.133 m , and the maximum velocity V_N in our experiments does
 540 not exceed 2.87 m s^{-1} , which prevents us from detaching ice along the entire surface length. The standard
 541 deviations on the $-9\text{ }^{\circ}\text{C}$ curve are larger due to the production of a hard ice layer (see Figure 21)
 542 compared to the soft ice layer produced at surface temperatures of $-6\text{ }^{\circ}\text{C}$ and $-8\text{ }^{\circ}\text{C}$ (as shown in Figure
 543 20), resulting in the detachment of large hard fragments from the surface and leading to the variability
 544 of the detachment length over the three repeatability experiments. An analysis of error propagation for
 545 measurements of various parameters, such as liquid jet velocities and ice detachment lengths (L_D), has
 546 been conducted. The absolute uncertainties are estimated using the Student's distribution with a 95%
 547 confidence interval [40]. The measurement errors for liquid jet velocities and ice detachment lengths
 548 (L_D) in Figure 22 are presented in Tables A1, A2, and A3 of Appendix A.



549
 550 **Figure 22** – Evolution of the ice detachment length L_D as a function of the average velocity at the nozzle outlet for an
 551 untreated aluminum surface, for the three surface temperatures set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$.

552 3.3.1.1 Numerical and experimental comparison on the ice detachment length

553 Figure 23 shows the results of ANSYS® Fluent numerical simulations using the numerical method
 554 described in subsection 2.4. It shows the evolution of the local velocity of the turbulent jet (for flow
 555 velocities at the nozzle outlet V_N from 1.4 m s^{-1} to 2.87 m s^{-1}) from the nozzle outlet which is at the 0 m
 556 position to the 0.16 m position of the untreated aluminum surface (along the nozzle centerline). The

557 dashed lines represent the limit velocity of ice non-detachment V_{IND} , determined previously from the
 558 velocity at the nozzle outlet (see Figure 22), for the cases of surface temperatures set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$, and
 559 $-9\text{ }^{\circ}\text{C}$, which are 0.51 m s^{-1} , 0.64 m s^{-1} , and 1.08 m s^{-1} , respectively. The purpose of this numerical
 560 model is to determine the maximum length, L_{Max} , for which the local velocity of the liquid jet reaches
 561 the limit velocity of ice non-detachment V_{IND} , and compare it with the experimentally ice detachment
 562 length determined previously, L_D . According to Figure 23, the local velocity of the jet increases after
 563 passing through the nozzle outlet due to the decrease in jet pressure, resulting in a slight increase in
 564 velocity. This velocity then decreases along the jet axis (along the surface). Near the 0.16 m position,
 565 there is an increase in velocity due to the discharge outlet (as seen in component 6 of Figure 3), which
 566 causes a flow acceleration.

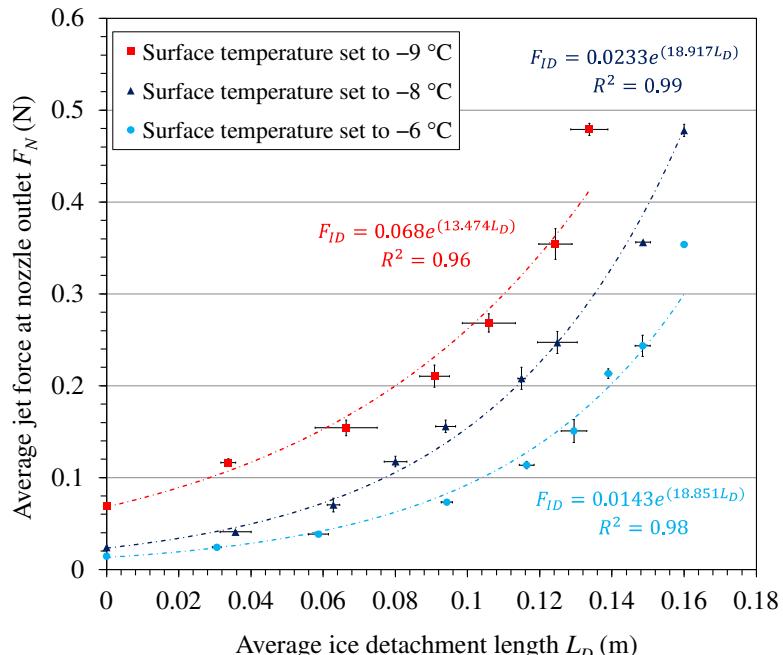
567
 568 **Figure 23** – Evolution of the numerical turbulent velocities of the liquid jet along its centerline for an untreated aluminum
 569 surface and for the three surface temperatures fixed at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$.

570 Table 3 presents a comparison of the numerical results obtained with ANSYS® Fluent, which show
 571 the maximum length, L_{Max} , for which the local velocity of the liquid jet reaches the limit velocity of ice
 572 non-detachment (V_{IND}), and the experimental ice detachment length, L_D , for the three surface
 573 temperatures set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$, and $-9\text{ }^{\circ}\text{C}$.

574
 575 **Table 3** – Comparison between the maximum numerical length L_{Max} for which the local velocity of the liquid jet reaches the
 576 limit velocity of ice non-detachment (V_{IND}), and the experimental ice detachment length L_D at different surface temperatures
 577 set at $-6\text{ }^{\circ}\text{C}$, $-8\text{ }^{\circ}\text{C}$ and $-9\text{ }^{\circ}\text{C}$.

Velocity at nozzle outlet V_N (m s ⁻¹)	Reynolds (f)	Surface temperature $-6\text{ }^{\circ}\text{C}$		Surface temperature $-8\text{ }^{\circ}\text{C}$		Surface temperature $-9\text{ }^{\circ}\text{C}$	
		L_{Max} NUM (m)	L_D EXP (m)	L_{Max} NUM (m)	L_D EXP (m)	L_{Max} NUM (m)	L_D EXP (m)
2.87	5545	0.16	0.16	0.16	0.16	0.114	0.133
2.45	4783	0.16	0.16	0.144	0.148	0.083	0.124
2.04	3983	0.146	0.148	0.126	0.124	0.058	0.105
1.87	3651	0.144	0.139	0.117	0.114	0.05	0.09
1.62	3163	0.128	0.129	0.100	0.093	0.035	0.066
1.40	2733	0.113	0.116	0.077	0.080	0.021	0.033

578


579 It can be seen in Table 3 that the relative differences between the L_{Max} lengths of the numerical
 580 simulations (NUM) and the L_D lengths of the experimental results (EXP) for the case of surface
 581 temperatures set at -6 $^{\circ}\text{C}$ and -8 $^{\circ}\text{C}$, are not significant, i.e. with a maximum difference (relative
 582 deviation) less than 8%, which indicates the validation of our numerical model for the case of these two
 583 surface temperatures. Indeed, the positions found numerically for which the local velocity of the liquid
 584 jet reaches the ice non-detachment velocity (V_{IND}) are very close to the ice detachment positions found
 585 experimentally. This can be explained by the fact that in these two cases of surface temperature fixed at
 586 -6 $^{\circ}\text{C}$ and -8 $^{\circ}\text{C}$, the ice produced and detached is soft and the detachment stops at the position where
 587 the liquid jet velocity reaches the ice non-detachment velocity. However, for the case of the surface
 588 temperature fixed at -9 $^{\circ}\text{C}$ (see Table 3), the relative deviations are very large, above 8%. In this case
 589 the numerical model is not able to predict the position of the ice non-detachment velocities because in
 590 this case the ice detaches in large hard fragments in a less repeated way, which results in a very high
 591 relative deviation. Therefore, our numerical model is only valid in the case where the detached ice is
 592 soft for the -6 $^{\circ}\text{C}$ and -8 $^{\circ}\text{C}$ surface temperature cases.

593 3.3.1.2 Evaluation of liquid jet force on ice detachment

594 In this part, an evaluation of the liquid jet force is presented along with an empirical model to estimate
 595 the effect of this force on the evolution of the ice detachment length L_D on the untreated aluminum
 596 surface for the three surface temperatures set at -6 $^{\circ}\text{C}$, -8 $^{\circ}\text{C}$, and -9 $^{\circ}\text{C}$. The force of the jet at the
 597 nozzle outlet F_N can be calculated using the following equation (Eq.3):

$$598 F_N = Q_m V_N = \rho_l S_N V_N^2 = 2P_D S_N \quad \text{Eq. (3)}$$

598 Where ρ_l is the density of the fluid, Q_m is the mass flow rate at nozzle outlet, S_N is the nozzle outlet
 599 cross-section, $P_D = 0.5\rho_l V_N^2$ is the dynamic pressure at the nozzle outlet, and V_N is the flow velocity at
 600 the nozzle outlet.

601
 602 **Figure 24** – Evolution of the jet force at the nozzle outlet for ice detachment F_{ID} as a function of the ice detachment length
 603 L_D for an untreated aluminum surface and this for the three cases of surface temperature fixed at -6 $^{\circ}\text{C}$, -8 $^{\circ}\text{C}$ and -9 $^{\circ}\text{C}$.

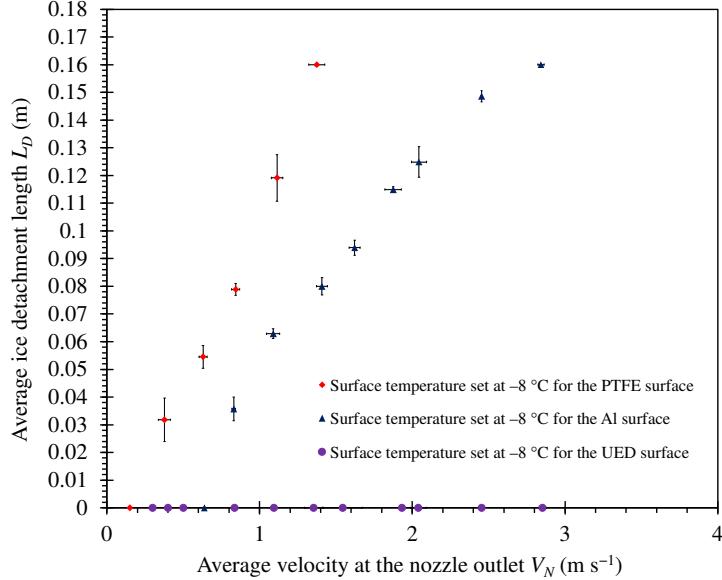
604 Figure 24 shows the liquid jet force at the nozzle outlet as a function of the ice detachment length
 605 obtained with equation (Eq.3) for the case of the untreated aluminum surface with surface temperature

606 variation. It can be observed that the force of the liquid jet at the nozzle outlet for ice detachment F_{ID}
 607 (Force Ice Detachment) varies with the ice detachment length and has an exponential curve. Using this
 608 curve, a force model of the form shown in Equation (Eq.4) is obtained:

$$F_{ID} = F_0 \exp(kL_D) \quad \text{Eq. (4)}$$

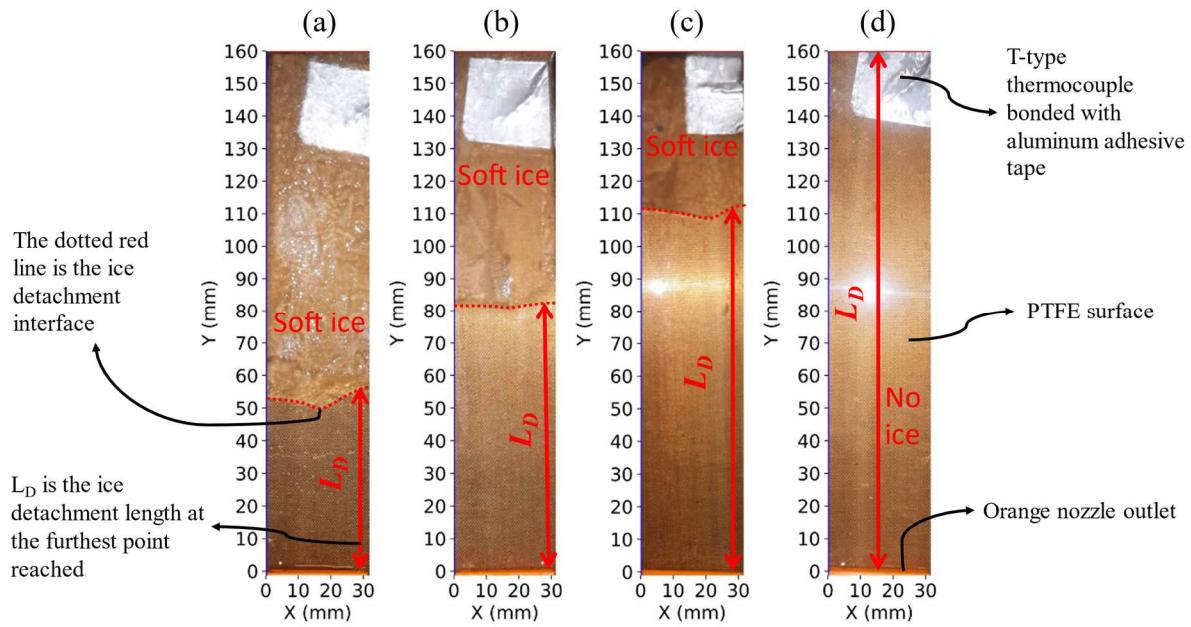
609 Where F_0 represents the force below which there is no ice detachment, L_D the ice detachment length
 610 which varies between 0 and 0.16 m, and k a constant that depends on several experimental parameters
 611 such as surface temperature, immersion level, jet force dissipation, and configuration geometry. This
 612 model provides minimum force F_0 values required for ice detachment, as well as maximum values F_{Max}
 613 for full surface ice detachment, for each temperature, as shown in Table 4:

614 **Table 4** – Minimum, maximum force for ice detachment for each investigated surface temperature.


Temperature (°C)	Minimum forces F_0 (N)	Minimum velocities V_0 (V_{IND}) (m s ⁻¹)	Maximum forces F_{Max} (N)	Maximum velocities V_{Max} (m s ⁻¹)	L_D EXP (m)
- 6	0.014	0.51	0.35	2.44	0.16
- 8	0.023	0.64	0.48	2.84	0.16
- 9	0.068	1.08	0.48	2.84	0.133

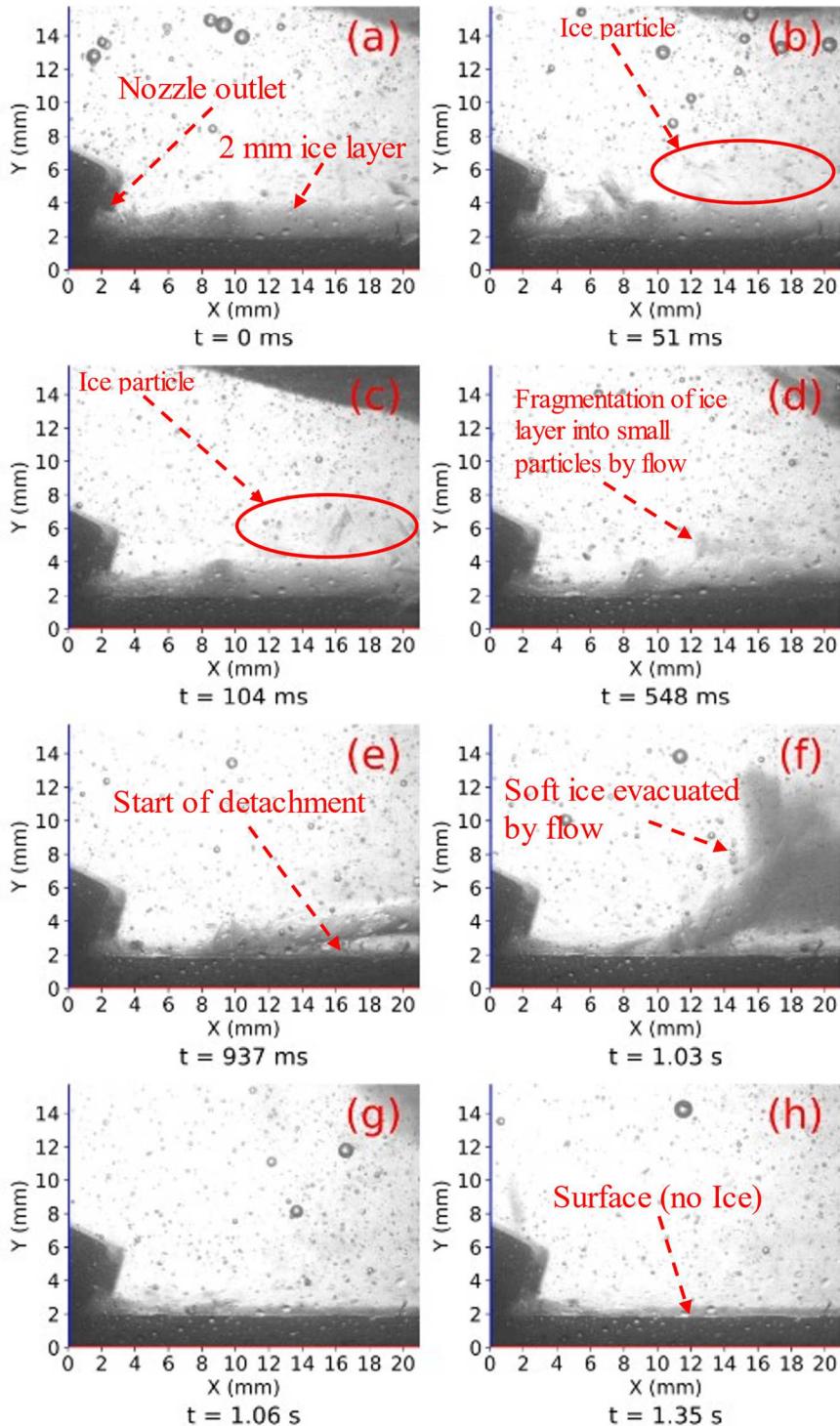
615 Table 4 shows that the force required to detach the ice from the entire surface of the untreated
 616 aluminum samples is 0.35 N, when the surface temperature is set at - 6 °C, and 0.48 N when the surface
 617 temperature is set at - 8 °C and - 9 °C. This low force is due to the porosity of the ice layer which reduces
 618 the adhesion of the ice to the surface, which may be caused by the presence of ethanol in the aqueous
 619 mixture.

620 As the surface temperature decreases, the force required to detach the ice increases, due to the
 621 hardness of the ice and its strong adhesion. It is difficult to compare these experimental forces with
 622 literature results [41–43]. Several factors, such as the presence of microcracks, roughness, quasi-liquid
 623 micro-layers, etc., affect the adhesion of ice to the surface [14]. Furthermore, this study focuses on the
 624 adhesion of ice produced with a water-ethanol mixture, which reduces the adhesion force of the ice to
 625 the surface. Indeed, the nature of ice differs from that of pure water. The presence of ethanol makes the
 626 ice softer and more porous, even causing the formation of needle-shaped crystals, which reduces its
 627 contact with the surface and, consequently, its adhesion. A critical review of the development of a
 628 common standard for ice adhesion and different methods of measuring ice adhesion forces was
 629 published by Rønneberg et al. [39]. The authors suggest that the measured adhesion forces are very
 630 sensitive to both the measurement method and the ice type.


631 3.3.2 *Surface condition effect on ice detachment length*

632 In Figure 25, the experimental results are presented for comparing the evolution of the detachment
 633 length of the 2 mm thick ice layer (L_D) as a function of the average velocity at the nozzle outlet V_N for a
 634 surface temperature fixed at - 8 °C. The results are presented for all three surface samples. Error
 635 propagation analysis was performed to assess absolute uncertainties, using Student's distribution with a
 636 95% confidence interval [40]. The resulting measurement errors for liquid jet velocities and ice
 637 detachment lengths (L_D), shown in Figure 25, are documented in Tables B1 and B2 in Appendix B.

638
639 **Figure 25** – Evolution of the ice detachment length L_D as a function of the average velocity of the aqueous mixture at the
640 nozzle outlet V_N for three types of investigated samples: untreated aluminum "Al" (hydrophilic), aluminum treated with a
641 Teflon® tape "PTFE" (hydrophobic), and aluminum treated with the Ultra Ever Dry coating "UED" (superhydrophobic).


642 In Figure 25, it can be observed that there is no visible ice layer detachment on the aluminum surface
643 treated with the UED superhydrophobic coating, as shown in Figure 28, for all flow velocities studied.
644 This result is consistent with the data published in the literature, which indicates that superhydrophobic
645 surfaces do not reduce ice adhesion [41,44]. This is due to the transition from the Cassie state to the
646 Wenzel state, resulting in mechanical interlocking, as demonstrated by Chen et al. [41]. The explanation
647 for this result is the effect of the high roughness of the UED superhydrophobic surface, which is
648 characterized by the roughness parameter Sz of 83.4 μm , as described in subsection 3.1. This value is
649 significantly higher than that of PTFE (18.9 μm) and untreated aluminum (1.3 μm). The increase in
650 surface roughness leads to an increase in the contact area and the number of potential anchor sites for
651 the ice layer [45]. Four mechanisms can explain the phenomenon of ice adhesion to a surface, as
652 described in a review article published by Samah et al. [14]: the mechanical mechanism, the chemical
653 mechanism, the electrostatic mechanism, and the boundary layer mechanism [46–48]. For the case of
654 the untreated (hydrophilic) aluminum surface, it is noted that there is no visible ice detachment on the
655 surface below a velocity V_{IND} of 0.64 m s^{-1} . To detach all the ice along the 160 mm (0.16 m) exchanger,
656 a velocity V_N of 2.87 m s^{-1} is required. On the aluminum surface treated with PTFE adhesive ribbon, the
657 limit velocity of ice non-detachment V_{IND} is equal to 0.15 m s^{-1} , which is four times less than the limit
658 velocity of ice non-detachment V_{IND} on the untreated aluminum surface. To detach all the ice along the
659 heat exchanger, a velocity V_N of about 1.37 m s^{-1} is required (see Figure 26 (d)), which is half that of the
660 untreated aluminum surface, although the roughness parameter Sz of PTFE, which is 18.9 μm , is much
661 higher than that of the untreated aluminum surface, which is about 1.3 μm . This result indicates that
662 Teflon® (PTFE) exhibits good ice-repellent characteristics (low ice adhesion) compared to the untreated
663 aluminum surface (hydrophilic) and the UED treated aluminum surface (superhydrophobic). This result
664 is consistent with the results of Brooks et al. [20,21], and the results of ice adhesion tests on Teflon®
665 (PTFE) by Fillion et al. [49]. PTFE is currently one of the best icephobic materials reducing ice adhesion
666 forces due to its low dielectric permittivity of about ≈ 2.1 [50]. In conclusion, the use of a Teflon®
667 (PTFE) coating or tape for ice slurry generation will reduce the amount of energy required to detach the
668 ice from the surface, provided that the Teflon® coating or tape is thin enough to not penalize heat transfer.

669
670 **Figure 26** – Example of 4 experiments of the measurement of the ice detachment length " L_D " (m) for the case of an
671 aluminum surface treated with the PTEF adhesive ribbon for a surface temperature fixed at -8 °C: (a) $V_N = 0.64$ m s⁻¹ and
672 $L_D = 0.057$ m; (b) $V_N = 0.86$ m s⁻¹ and $L_D = 0.083$ m; (c) $V_N = 1.08$ m s⁻¹ and $L_D = 0.113$ m; (d) $V_N = 1.41$ m s⁻¹ and
673 $L_D = 0.16$ m.

674 In order to illustrate the icephobic behavior of Teflon® (PTFE), Figure 26 presents the evolution of
675 the ice detachment length (L_D) on the aluminum surface treated with Teflon® (PTFE) ribbon for different
676 flow velocities and a fixed surface temperature of -8 °C. The measurement of the ice detachment length
677 is taken at the point of maximum detachment. It can be seen in this figure that the area where the ice is
678 detached has no ice residue (see also Figure 27), which is consistent with adhesive detachment. The
679 detached ice is soft (needle-like crystals), allowing it to disintegrate into large fragments into particles
680 under the effect of the flow agitation.

681
682
683
684
685
686

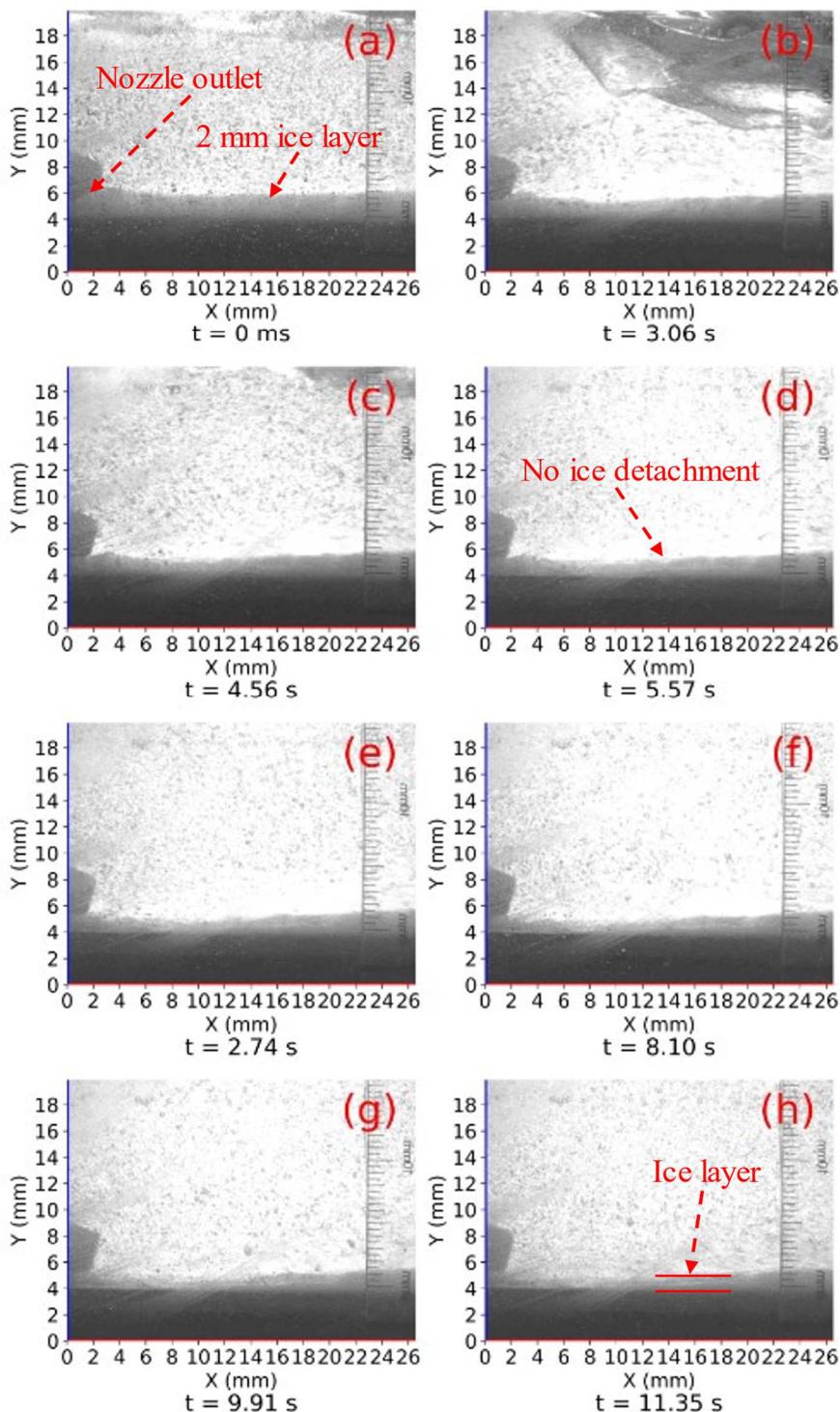

687
688
689

Figure 27 – Image of the ice layer detachment on an aluminum surface treated with PTFE ribbon for a set surface temperature of -8°C and an average nozzle exit velocity of 2 m s^{-1} .

690 The high-speed camera images in Figures 27 and 28 show the ice layer detachment on the aluminum
691 surface treated with PTFE adhesive tape and on the aluminum surface treated with Ultra Ever Dry
692 "UED" coating, respectively, for a flow velocity of 2 m s^{-1} .

693 As shown in Figure 27, the detachment of the ice from the PTFE surface is adhesive, i.e., the entire
694 ice layer detaches from the surface without leaving any ice residue. This ice layer is soft, so it
695 disintegrates into ice particles under the agitation of the flow. After 1.35 seconds, the entire ice layer

696 detaches from the PTFE surface. The ice detaches in the same way on the untreated aluminum surface
697 with adhesive detachment.

698
699 **Figure 28** – Image of the ice layer detachment on an aluminum surface treated with UED superhydrophobic coating for a set
700 surface temperature of $-8\text{ }^{\circ}\text{C}$ and an average nozzle exit velocity of 2 m s^{-1} .

701 In the case of the aluminum surface treated with UED superhydrophobic coating, no adhesive
702 detachment was observed on the surface for all flow velocities studied (see Figure 25). This is due to
703 the roughness of the UED superhydrophobic surface, which is much greater than that of the PTFE-
704 treated (hydrophobic) or untreated (hydrophilic) aluminum surfaces, as previously explained. However,

705 after 9.91 seconds, a reduction in ice thickness was observed near the nozzle outlet due to ice crystal
706 breakup within the ice layer (see Figure 28). This type of ice breakup is referred to as cohesive
707 detachment, as the ice does not completely detach from the surface. Notably, the aluminum surface
708 treated with the UED superhydrophobic coating exhibited higher ice adhesion compared to the
709 aluminum treated with PTFE adhesive tape (hydrophobic) and untreated (hydrophilic).

710 **4. Conclusions and outlook**

711 In conclusion, this study aimed to understand the adhesion and detachment mechanisms of a 2 mm
712 thick ice layer on different surfaces (hydrophilic, hydrophobic, and superhydrophobic) using a liquid jet
713 with variable speeds under immersion conditions in a 10 wt.% ethanol/water mixture. The ultimate goal
714 was to develop a method of ice slurry production without the need for mechanical scrapers. The key
715 findings and implications of the study are summarized as follows:

- 716 1. Surface Temperature and Ice Growth: The study observed that the growth rate of the ice
717 layer increased as the surface temperature decreased. Notably, the nature of the ice produced
718 at different temperatures (-6 °C, -8 °C, and -9 °C) exhibited variations, with softer ice
719 forming at -6 °C and -8 °C, which can easily disintegrate into ice particles, and harder ice
720 forming at -9 °C, which is more resistant to disintegration into ice particles.
- 721 2. Surface Roughness and Ice Growth: The research revealed that increasing surface roughness
722 created more nucleation sites, resulting in faster ice growth rates. Specifically, the
723 superhydrophobic surface treated with UED exhibited the fastest ice growth, followed by the
724 surface treated with PTFE, while the untreated aluminum surface showed the slowest
725 growth.
- 726 3. Adhesion and Detachment Mechanisms: Surface roughness is a key factor influencing ice
727 adhesion, as higher roughness leads to stronger mechanical adhesion of ice to surfaces.
728 However, the case of aluminum surfaces treated with PTFE adhesive ribbon shows lower ice
729 adhesion due to its low dielectric constant. The jet velocities required for soft ice detachment
730 on the entire PTFE surface are two times lower than on untreated aluminum surfaces. This
731 indicates that PTFE exhibits effective icephobic properties, reducing ice adhesion compared
732 to untreated aluminum surfaces and those treated with superhydrophobic UED.
- 733 4. Modes of ice detachment: Adhesive detachment on low-roughness surfaces (untreated
734 aluminum and PTFE adhesive tape-treated surfaces). Cohesive detachment on rougher
735 surfaces, such as aluminum surfaces treated with UED superhydrophobic coating.

736 From a comprehensive perspective, applying a PTFE coating or adhesive ribbon to the ice slurry
737 generator can reduce the energy required to remove ice from a surface. However, further investigation
738 is needed to assess the durability and resistance of these coatings under low-temperature immersion
739 conditions, especially when used in ice slurry generators for the food sector to ensure food safety.
740 Moreover, future studies should examine ice adhesion on different surfaces using various methods such
741 as centrifugation or shear, incorporating different mixtures to evaluate the effect of additives like ethanol
742 and glycol in water on the nature of ice and its adhesion to surfaces.

743 **Acknowledgements**

744 The authors would like to thank the National Research Institute for Agriculture, Food, and the
745 Environment (INRAE) and De Vinci Research Center (DVRC) for their financial support of ice slurry
746 research.

747 **References**

748 [1] Z. Youssef, A. Delahaye, L. Huang, F. Trinquet, L. Fournaison, C. Pollerberg, C. Doetsch, State
749 of the art on phase change material slurries, *Energy Convers. Manag.* 65 (2013) 120–132.
750 <https://doi.org/10.1016/j.enconman.2012.07.004>.

751 [2] A.N. Leiper, E.C. Hammond, D.G. Ash, D.J. McBryde, G.L. Quarini, Energy conservation in ice
752 slurry applications, *Appl. Therm. Eng.* 51 (2013) 1255–1262.
753 <https://doi.org/10.1016/j.applthermaleng.2012.11.044>.

754 [3] P.W. Griffiths, P.C. Eames, Performance of chilled ceiling panels using phase change material
755 slurries as the heat transport medium, *Appl. Therm. Eng.* 27 (2007) 1756–1760.
756 <https://doi.org/10.1016/j.applthermaleng.2006.07.009>.

757 [4] A. Kumar, S.K. Yadav, A. Mahato, A. Kumar, On-demand intermittent ice slurry generation for
758 subzero cold thermal energy storage: Numerical simulation and performance analysis, *Appl.*
759 *Therm. Eng.* 161 (2019) 114081. <https://doi.org/10.1016/j.applthermaleng.2019.114081>.

760 [5] J. Bellas, I. Chaer, S.A. Tassou, Heat transfer and pressure drop of ice slurries in plate heat
761 exchangers, *Appl. Therm. Eng.* 22 (2002) 721–732. [https://doi.org/10.1016/S1359-4311\(01\)00126-0](https://doi.org/10.1016/S1359-4311(01)00126-0).

763 [6] V. Kapsalis, D. Karamanis, Solar thermal energy storage and heat pumps with phase change
764 materials, *Appl. Therm. Eng.* 99 (2016) 1212–1224.
765 <https://doi.org/10.1016/j.applthermaleng.2016.01.071>.

766 [7] P.W. Egolf, M. Kauffeld, From physical properties of ice slurries to industrial ice slurry
767 applications, *Int. J. Refrig.* 28 (2005) 4–12. <https://doi.org/10.1016/j.ijrefrig.2004.07.014>.

768 [8] I. Dincer, M.A. Rosen, Thermal energy storage: systems and applications, John Wiley & Sons,
769 2021.

770 [9] F. Afsharpanah, K. Pakzad, S.S. Mousavi Ajarostaghi, M. Arıcı, Assessment of the charging
771 performance in a cold thermal energy storage container with two rows of serpentine tubes and
772 extended surfaces, *J. Energy Storage.* 51 (2022) 104464.
773 <https://doi.org/10.1016/j.est.2022.104464>.

774 [10] F. Afsharpanah, S.S. Mousavi Ajarostaghi, M. Arıcı, Parametric study of phase change time
775 reduction in a shell-and-tube ice storage system with anchor-type fin design, *Int. Commun. Heat*
776 *Mass Transf.* 137 (2022) 106281. <https://doi.org/10.1016/j.icheatmasstransfer.2022.106281>.

777 [11] F. Afsharpanah, M. Izadi, F.A. Hamedani, S.S. Mousavi Ajarostaghi, W. Yaici, Solidification of
778 nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure,
779 *Case Stud. Therm. Eng.* 39 (2022) 102421. <https://doi.org/10.1016/j.csite.2022.102421>.

780 [12] M. Kauffeld, M.J. Wang, V. Goldstein, K.E. Kasza, Ice slurry applications, *Int. J. Refrig.* 33
781 (2010) 1491–1505. <https://doi.org/10.1016/j.ijrefrig.2010.07.018>.

782 [13] E. Stamatiou, J.W. Meewisse, M. Kawaji, Ice slurry generation involving moving parts, *Int. J.*
783 *Refrig.* 28 (2005) 60–72. <https://doi.org/10.1016/j.ijrefrig.2004.07.016>.

784 [14] W. Samah, P. Clain, F. Rioual, L. Fournaison, A. Delahaye, Review on ice crystallization and
785 adhesion to optimize ice slurry generators without moving components, *Appl. Therm. Eng.*
786 (2023) 119974. <https://doi.org/10.1016/j.applthermaleng.2023.119974>.

787 [15] M.B. Lakhdar, R. Cerecer, G. Alvarez, J. Guilpart, D. Flick, A. Lallemand, Heat transfer with
788 freezing in a scraped surface heat exchanger, *Appl. Therm. Eng.* 25 (2005) 45–60.
789 <https://doi.org/10.1016/j.applthermaleng.2004.05.007>.

790 [16] M.N.A. Hawlader, M.A. Wahed, Analyses of ice slurry formation using direct contact heat
791 transfer, *Appl. Energy.* 86 (2009) 1170–1178. <https://doi.org/10.1016/j.apenergy.2008.11.003>.

792 [17] Y. Gao, Y. Ning, C. Wu, M. Xu, S. Akhtar, A.S. Mujumdar, A.P. Sasmito, Experimental
793 investigation of producing ice slurry with water using opposed-nozzle impinging jet method,
794 *Appl. Therm. Eng.* (2022) 119568. <https://doi.org/10.1016/j.applthermaleng.2022.119568>.

795 [18] H.T. Shin, Y.P. Lee, J. Jurng, Spherical-shaped ice particle production by spraying water in a
796 vacuum chamber, *Appl. Therm. Eng.* 20 (2000) 439–454. [https://doi.org/10.1016/S1359-4311\(99\)00035-6](https://doi.org/10.1016/S1359-4311(99)00035-6).

797 [19] M. Barth, Procede pour detacher les cristaux de glace d'un echangeur thermique generateur d'un
799 frigoporteur diphasique liquide-solide, EP1101071B1, 2000.
800 <https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO20000071945>.

801 [20] S. Brooks, M. Tierney, G. Quarini, Experimental investigation of different materials for use in
802 ice slurry generation, *Int. J. Refrig.* 129 (2021) 97–108.
803 <https://doi.org/10.1016/j.ijrefrig.2021.05.019>.

804 [21] S. Brooks, G. Quarini, M. Tierney, X. Yun, E. Lucas, Conditions for continuous ice slurry
805 generation in a nylon helical coiled heat exchanger, *Therm. Sci. Eng. Prog.* 15 (2020) 100427.
806 <https://doi.org/10.1016/j.tsep.2019.100427>.

807 [22] Y. Zhao, Z. Li, Y. Utaka, Z. Chen, H. Ohkubo, Adhesion characteristics of ice in urea aqueous
808 solution for efficient slurry formation in cold storage, *Int. J. Refrig.* 100 (2019) 335–342.
809 <https://doi.org/10.1016/j.ijrefrig.2019.01.020>.

810 [23] H. Wang, R. Feng, H. Duan, A. Chen, Study on sub-cooler based on the characteristics of the
811 super-hydrophobic surface, *Exp. Therm. Fluid Sci.* 76 (2016) 205–210.
812 <https://doi.org/10.1016/j.expthermflusci.2016.03.023>.

813 [24] H. Wang, G. He, Q. Tian, Effects of nano-fluorocarbon coating on icing, *Appl. Surf. Sci.* 258
814 (2012) 7219–7224. <https://doi.org/10.1016/j.apsusc.2012.04.043>.

815 [25] H. Wang, G. He, Q. Tian, Experimental study of the supercooling heat exchanger coated with
816 fluorocarbon coating, *Energy Build.* 55 (2012) 526–532.
817 <https://doi.org/10.1016/j.enbuild.2012.09.012>.

818 [26] H. Wang, Y. Wang, The flow and heat transfer characteristics of supercooled water based on the
819 nano-superhydrophobic surface, *Heat Mass Transf.* 55 (2019) 413–420.
820 <https://doi.org/10.1007/s00231-018-2424-1>.

821 [27] H. Wang, G. He, R. Feng, An effective method for preventing ice-blockage in dynamic
822 generation system with supercooling water, *Int. J. Refrig.* 46 (2014) 114–122.
823 <https://doi.org/10.1016/j.ijrefrig.2014.05.010>.

824 [28] W. Samah, P. Clain, F. Rioual, L. Fournaison, A. Delahaye, Experimental investigation on the
825 wetting behavior of a superhydrophobic surface under controlled temperature and humidity,
826 *Colloids Surf. Physicochem. Eng. Asp.* 656 (2023) 130451.
827 <https://doi.org/10.1016/j.colsurfa.2022.130451>.

828 [29] W. Samah, P. Clain, L. Fournaison, F. Rioual, A. Delahaye, Étude du comportement de
829 mouillage d'une goutte d'eau sur une surface superhydrophobe en fonction de la température et
830 de l'humidité, *Congrès Annu. Société Fr. Therm.* 2022 Valenciennes Fr. (2022) 10.
831 <https://doi.org/10.25855/SFT2022-045>.

832 [30] D. Carbonell, M. Schubert, J.R. Frandsen, J. Brand, K. Erb, L. Laib, M. Munari, Development of
833 supercoolers for ice slurry generators using icephobic coatings., *Int. J. Refrig.* 144 (2022) 90–98.
834 <https://doi.org/10.1016/j.ijrefrig.2022.07.011>.

835 [31] A. Bey, M.A.A. Faruque, R. Balachandar, Effects of varying submergence and channel width on
836 local scour by plane turbulent wall jets, *J. Hydraul. Res.* 46 (2008) 764–776.
837 <https://doi.org/10.1080/00221686.2008.9521921>.

838 [32] A. Nasr, J.C.S. Lai, A turbulent plane offset jet with small offset ratio, *Exp. Fluids.* 24 (1998)
839 47–57. <https://doi.org/10.1007/s003480050149>.

840 [33] X. Li, M. Zhou, J. Zhang, W. Xu, Numerical Study of the Velocity Decay of Offset Jet in a
841 Narrow and Deep Pool, *Water.* 11 (2018) 59. <https://doi.org/10.3390/w11010059>.

842 [34] S. Nishimoto, B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity,
843 superoleophobicity, and superhydrophilicity, *RSC Adv.* 3 (2012) 671–690.
844 <https://doi.org/10.1039/C2RA21260A>.

845 [35] X. Huang, N. Teplyo, V. Pommier-Budinger, M. Budinger, E. Bonaccurso, P. Villedieu, L.
846 Bennani, A survey of icephobic coatings and their potential use in a hybrid coating/active ice
847 protection system for aerospace applications, *Prog. Aerosp. Sci.* 105 (2019) 74–97.
848 <https://doi.org/10.1016/j.paerosci.2019.01.002>.

849 [36] L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-Icing Superhydrophobic Coatings,
850 *Langmuir.* 25 (2009) 12444–12448. <https://doi.org/10.1021/la902882b>.

851 [37] P. Du, J. Wen, Z. Zhang, D. Song, A. Ouahsine, H. Hu, Maintenance of air layer and drag
852 reduction on superhydrophobic surface, *Ocean Eng.* 130 (2017) 328–335.
853 <https://doi.org/10.1016/j.oceaneng.2016.11.028>.

854 [38] H.D.B.S. Heorton, N. Radia, D.L. Feltham, A Model of Sea Ice Formation in Leads and
855 Polynyas, *J. Phys. Oceanogr.* 47 (2017) 1701–1718. <https://doi.org/10.1175/JPO-D-16-0224.1>.

856 [39] S. Rønneberg, J. He, Z. Zhang, The need for standards in low ice adhesion surface research: a
857 critical review, *J. Adhes. Sci. Technol.* 34 (2020) 319–347.
858 <https://doi.org/10.1080/01694243.2019.1679523>.

859 [40] M. Rouaud, *Calcul d'incertitudes: application aux sciences expérimentales exercices corrigés*,
860 Mathieu Rouaud, Querrien, 2014.

861 [41] J. Chen, J. Liu, M. He, K. Li, D. Cui, Q. Zhang, X. Zeng, Y. Zhang, J. Wang, Y. Song,
862 Superhydrophobic surfaces cannot reduce ice adhesion, *Appl. Phys. Lett.* 101 (2012) 111603.
863 <https://doi.org/10.1063/1.4752436>.

864 [42] S.A. Kulinich, M. Farzaneh, How Wetting Hysteresis Influences Ice Adhesion Strength on
865 Superhydrophobic Surfaces, *Langmuir* 25 (2009) 8854–8856.
866 <https://doi.org/10.1021/la901439c>.

867 [43] J. Jiang, Q. Sheng, G.H. Tang, M.Y. Yang, L. Guo, Anti-icing propagation and icephobicity of
868 slippery liquid-infused porous surface for condensation frosting, *Int. J. Heat Mass Transf.* 190
869 (2022) 122730. <https://doi.org/10.1016/j.ijheatmasstransfer.2022.122730>.

870 [44] S. Lei, X. Fang, J. Ou, F. Wang, M. Xue, W. Li, A. Amirfazli, S.F. Chini, Icing of static and
871 high-speed water droplets on superhydrophobic surface, *Mater. Lett.* 285 (2021) 129048.
872 <https://doi.org/10.1016/j.matlet.2020.129048>.

873 [45] M. Zou, S. Beckford, R. Wei, C. Ellis, G. Hatton, M.A. Miller, Effects of surface roughness and
874 energy on ice adhesion strength, *Appl. Surf. Sci.* 257 (2011) 3786–3792.
875 <https://doi.org/10.1016/j.apsusc.2010.11.149>.

876 [46] Z. He, S. Xiao, H. Gao, J. He, Z. Zhang, Multiscale crack initiator promoted super-low ice
877 adhesion surfaces, *Soft Matter* 13 (2017) 6562–6568. <https://doi.org/10.1039/C7SM01511A>.

878 [47] M. Landy, A. Freiberger, Studies of ice adhesion: I. Adhesion of ice to plastics, *J. Colloid
879 Interface Sci.* 25 (1967) 231–244. [https://doi.org/10.1016/0021-9797\(67\)90026-4](https://doi.org/10.1016/0021-9797(67)90026-4).

880 [48] L. Lliboutry, The crystalline texture and plastic deformation of ice, *J. Hydraul. Res.* 2 (1964) 41–
881 49. <https://doi.org/10.1080/00221686409500071>.

882 [49] R.M. Fillion, A.R. Riahi, A. Edrisy, Design factors for reducing ice adhesion, *J. Adhes. Sci.
883 Technol.* 31 (2017) 2271–2284. <https://doi.org/10.1080/01694243.2017.1297588>.

884 [50] R. Menini, M. Farzaneh, Elaboration of Al₂O₃/PTFE icephobic coatings for protecting
885 aluminum surfaces, *Surf. Coat. Technol.* 203 (2009) 1941–1946.
886 <https://doi.org/10.1016/j.surfcoat.2009.01.030>.

887

888

889

890

891

892

893

894

895

896

897

898

899

900 **Appendix A:** Measurement uncertainty of liquid jet velocity and ice detachment
 901 length (L_D) for the case of untreated aluminum surface.

902 The data related to the liquid jet velocity and ice detachment length (L_D) from Figure 22,
 903 which represents the evolution of the average ice detachment length L_D as a function of the
 904 average velocity at the nozzle outlet in the case of an untreated aluminum surface, are detailed
 905 in Tables A1, A2, and A3, along with their absolute uncertainties. The data are provided for
 906 each studied surface temperature ($-6\text{ }^\circ\text{C}$, $-8\text{ }^\circ\text{C}$, and $-9\text{ }^\circ\text{C}$).

907 **Table A.1:** *Absolute uncertainties of the measurements of liquid jet velocities and ice detachment*
 908 *lengths (L_D) for the case of the untreated aluminum surface temperature of $-6\text{ }^\circ\text{C}$.*

Untreated aluminum surface temperature of $-6\text{ }^\circ\text{C}$			
Average liquid jet velocity (m s^{-1})	Absolute uncertainty of the liquid jet velocity (m s^{-1})	Average ice detachment length L_D (m)	Absolute uncertainty of ice detachment length L_D (m)
0.51	± 0.062	0	0
0.64	± 0.004	0.031	± 0.0016
0.81	± 0.0155	0.059	± 0.0037
1.11	± 0.042	0.094	± 0.0038
1.39	± 0.031	0.116	± 0.0027
1.60	± 0.085	0.129	± 0.0046
1.90	± 0.03	0.139	± 0.0012
2.03	± 0.062	0.149	± 0.0027
2.45	± 0.0134	0.160	0

909
 910 **Table A.2:** *Absolute uncertainties of the measurements of liquid jet velocities and ice detachment*
 911 *lengths (L_D) for the case of the untreated aluminum surface temperature of $-8\text{ }^\circ\text{C}$.*

Untreated aluminum surface temperature of $-8\text{ }^\circ\text{C}$			
Average liquid jet velocity (m s^{-1})	Absolute uncertainty of the liquid jet velocity (m s^{-1})	Average ice detachment length L_D (m)	Absolute uncertainty of ice detachment length L_D (m)
0.64	± 0.008	0	0
0.83	± 0.016	0.036	± 0.0056
1.09	± 0.075	0.063	± 0.0023
1.41	± 0.087	0.080	± 0.0078
1.62	± 0.046	0.094	± 0.0035
1.87	± 0.07	0.115	± 0.0013
2.04	± 0.065	0.125	± 0.0071
2.45	± 0.0052	0.149	± 0.0026
2.84	± 0.026	0.160	0

918 **Table A.3:** *Absolute uncertainties of the measurements of liquid jet velocities and ice detachment*
 919 *lengths (L_D) for the case of the untreated aluminum surface temperature of -9 °C.*

Untreated aluminum surface temperature of -9 °C			
Average liquid jet velocity (m s ⁻¹)	Absolute uncertainty of the liquid jet velocity (m s ⁻¹)	Average ice detachment length L_D (m)	Absolute uncertainty of ice detachment length L_D (m)
1.08	±0.005	0	0
1.40	±0.034	0.034	±0.0026
1.61	±0.111	0.066	±0.0214
1.89	±0.07	0.091	±0.0054
2.13	±0.052	0.106	±0.0095
2.45	±0.075	0.124	±0.0060
2.85	±0.025	0.134	±0.0067

920

921 **Appendix B:** Measurement uncertainty of liquid jet velocity and ice detachment
 922 length (L_D) for aluminum surfaces treated with PTFE adhesive tape and for
 923 aluminum surfaces treated with UED.

924 The data related to the average liquid jet velocity and average ice detachment length (L_D)
 925 from Figure 25 are provided for the case of aluminum surfaces treated with PTFE adhesive
 926 tape, as well as for the case of aluminum surfaces treated with the Ultra Ever Dry (UED) coating
 927 (superhydrophobic). The data, along with their absolute uncertainties, are detailed in Tables B1
 928 and B2 for the surface temperature case studied, -8 °C.

929 **Table B.1:** *Absolute uncertainties of the measurements of liquid jet velocities and ice detachment*
 930 *lengths (L_D) for the case of aluminum surfaces treated with PTFE adhesive tape with a surface*
 931 *temperature set at -8 °C.*

Aluminum surfaces treated with PTFE adhesive tape			
Average liquid jet velocity (m s ⁻¹)	Absolute uncertainty of the liquid jet velocity (m s ⁻¹)	Average ice detachment length L_D (m)	Absolute uncertainty of ice detachment length L_D (m)
0.15	±0.013	0	0
0.38	±0.051	0.032	±0.0102
0.63	±0.034	0.055	±0.0053
0.84	±0.034	0.079	±0.0028
1.11	±0.05	0.119	±0.0109
1.37	±0.08	0.160	0

932

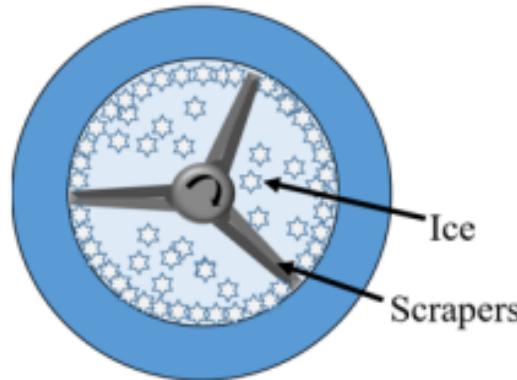
933

934

935

936

937

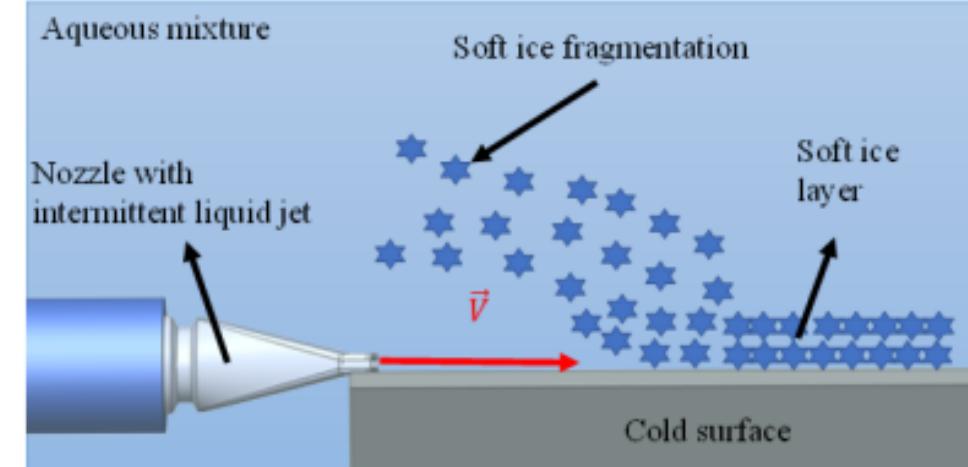

938 **Table B.2:** *Absolute uncertainties of the measurements of liquid jet velocities and ice detachment*
 939 *lengths (L_D) for the case of aluminum surfaces treated with the Ultra Ever Dry (UED) coating*
 940 *(superhydrophobic) with a surface temperature set at -8°C .*

Aluminum surfaces treated with the Ultra Ever Dry (UED) coating			
Average liquid jet velocity (m s^{-1})	Absolute uncertainty of the liquid jet velocity (m s^{-1})	Average ice detachment length L_D (m)	Absolute uncertainty of ice detachment length L_D (m)
0.30	± 0.002	0	0
0.40	± 0.003	0	0
0.50	± 0.003	0	0
0.84	± 0.008	0	0
1.09	± 0.003	0	0
1.35	± 0.075	0	0
1.54	± 0.165	0	0
1.93	± 0.005	0	0
2.04	± 0.07	0	0
2.45	± 0.026	0	0
2.85	± 0.034	0	0

941

Context

Scraped surface generators are the most commonly used in the refrigeration industry for ice slurry production.


These scraped surface ice slurry generators have drawbacks due to the adhesive strength of the ice:

- ❖ Excessive consumption of additional mechanical energy.
- ❖ High investment costs.
- ❖ Wearing out of the scrapers.

Reduction of ice adhesion for optimization of ice slurry generators

- ❖ Use of additives to form a soft, porous ice layer to reduce ice adhesion.
- ❖ Surface modification: reduction of roughness and/or use of low surface energy coatings to reduce the adhesion force of the soft ice to the generator surface and facilitate its detachment only by liquid flow (hydro scraping).
- ❖ Use of an intermittent liquid jet to detach the soft ice layer after the formation of a thin layer of 1 to 2 mm.

