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Abstract: Ice slurry is an alternative method to reduce the quantity and emission of greenhouse refrigerants, as
well as control electrical energy consumption. However, the production of ice slurry requires the use of scraped-
surface generators, which are costly to maintain and consume high mechanical energy. Therefore, studying the
icephobic behavior of surfaces is of interest to significantly reduce ice adhesion and facilitate detachment without
the need for mechanical scrapers. This study focuses on the growth, adhesion, and detachment phenomena of ice
by liquid jets on different types of surfaces (hydrophilic, hydrophobic, and superhydrophobic) immersed in a
10 wt.% ethanol/water mixture. A liquid jet is used to detach the ice layer from the surfaces, with a velocity ranging
from 0 to 2.87 m s~!, and the surface temperature varies from 25 °C to approximately -9 °C. The results show that
ice adheres less to hydrophilic and hydrophobic surfaces compared to superhydrophobic surfaces. The use of
PTFE-treated aluminum surfaces (hydrophobic) reduces the required flow velocity to detach the ice layer by half
compared to untreated aluminum surfaces (hydrophilic). An ANSYS® Fluent numerical model was developed to
simulate the evolution of turbulent velocities of immersed liquid jets, and a semi-empirical model was designed to
estimate the detachment forces of soft ice from hydrophilic surfaces (untreated aluminum). Two types of ice
detachment from surfaces were identified: adhesive detachment and cohesive detachment.

Keywords: Ice slurry generator; Superhydrophobic; Icephobic; Ice adhesion; Ice detachment; Liquid jet.

1. Introduction

The upcoming energy and climate crisis is pushing us to seek new ways to optimize energy while
reducing the impact on the environment. This crisis is driven by the increase in global energy
consumption, particularly in the refrigeration sector, where electricity consumption represents about
20% of global consumption. Without considering alternative measures, this proportion will continue to
rise, especially with global warming. Conventional systems of cold production using refrigerant gases
have a significant impact on energy consumption and the environment. Secondary refrigeration offers
an effective solution to significantly reduce the amount of refrigerant gas used, as the cold is transported
by a neutral fluid called secondary fluid to the place of use. When this secondary fluid contains a phase
change material (PCM) [1-3], such as suspended ice particles (ice slurry), electrical energy can be
optimized through thermal storage [4—6]. Ice slurries consist of ice particles suspended in an aqueous
solution with an average diameter of 1 mm or smaller [7]. Transporting cold using ice slurries is a cost-
effective and energy-efficient method because the ice slurry can be stored for extended periods.

There are several technologies for cold storage using ice, including ice harvesting, external ice-on-
coil fusion systems, internal ice-on-coil fusion systems, encapsulated ice systems, and ice slurry [8].
These systems, based on Cold Thermal Energy Storage (CTES) using the latent heat of fusion of water
(335 kJ kg "), allow storing thermal energy in the form of ice during periods of low cooling demand, to
be later released when demand is higher [8—11].

Afsharpanah et al. [9] conducted a numerical study to examine the charging performance of a thermal
energy storage device based on ice. This device consists of a small cuboid container equipped with two
rows of serpentine tubes with connecting plates. Designed as a backup cooling system for domestic
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refrigerators in developing countries, this device aims to compensate for thermal load during frequent
power outages in those regions and to preserve food during such times.

The authors' [9] study highlights key parameters that influence the charging performance of the ice
storage device. The results show that certain dimensions and characteristics of the system can be
optimized to improve the charging rate, which could be beneficial for cooling backup applications in
developing countries, especially during frequent power outages. These interesting findings pave the way
for potential future improvements in the design and use of such domestic energy storage, contributing
to better food preservation and increased energy efficiency in refrigeration systems.

Ice slurry is used in many fields such as medical care, the food industry, firefighting, air conditioning
[2], and other industrial applications [12].

There are several ice slurry generators, which can be classified into two categories [13,14]:

» Generators with moving components that are directly related to the extraction of ice from
the surface (scraped or brushed surface generator) [15] or the transformation of ice blocks
into ice slurry by grinding (falling film generator), etc. [13,14].

» Generators without moving parts such as the supercooling generator, direct contact ice slurry
generator [16,17], and vacuum ice slurry generator [18], etc. [14].

Most ice slurry generators without moving parts, excluding the ice slurry generator using the
supercooling phenomenon, are at the prototype or laboratory study technology readiness level (TRL),
with a TRL between 1 and 5 [14]. The most industrially advanced generators with a moving component
are scraped or brushed surface generators, while the most advanced generators without a moving
component are ice slurry generators that utilize the supercooling phenomenon.

However, these two types of generators have disadvantages:

» The ice slurry generator using the supercooling phenomenon can be blocked because of the
uncontrolled breakdown of the supercooling inside the generator, as well as the formation and
agglomeration of the ice inside the device, thus resulting in discontinuous production of ice
slurry.

» Generators with scraped or brushed surfaces have disadvantages such as low energy efficiency
(additional mechanical energy consumption for the rotation of the scrapers) and high
maintenance costs due to the wear of the scrapers [14].

To address these drawbacks, researchers working in the refrigeration industry have developed new
experimental approaches to optimize ice slurry production without using moving components. These
approaches include: the production of ice slurry by hydro scraping with intermittent flow and reduced
cooling energy at the time of ice detachment [19], the use of smooth and/or low surface energy materials
such as nylon 11 or polytetrafluoroethylene (Teflon® or PTFE) to reduce ice adhesion and facilitate ice
detachment by flow [20,21], the use of additives to make the ice morphology softer (porous ice or ice
with needle-shaped crystals), resulting in its reduced contact surface with the exchanger walls and thus
decreasing its adhesion to the surface [22], and the use of icephobic or superhydrophobic coatings to
increase the supercooling degree in supercooling generators [23-30].

However, none of these methods are ready for industrial use, and there is a lack of visual analysis to
better understand the phenomenon of ice detachment from surfaces. For example, studies of ice slurry
production by hydro scraping in a PTFE or nylon 11 helical tube heat exchanger (HCHX) [20,21], as
well as in steel tube heat exchangers [19], have been performed with compact tube heat exchangers that
are not transparent. This lack of visibility makes it difficult to establish an empirical or semi-empirical
relationship between flow velocity and ice detachment. In addition, these tubular heat exchangers often
experience clogging problems due to ice agglomeration in the tubes, making it difficult to study ice
detachment. Although Zhao et al. [22] focus on visualization, their study does not provide a complete
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visualization of ice detachment by flow because it is only based on the decrease in ice thickness, rather
than the lengthwise detachment of the ice from the surface. These studies deserve further investigation
with the visualization of ice detachment phenomena on the surface by flow (also called hydro-scraping
or by the hydrodynamic effect). The variation of flow velocity, surface temperature, and surface states
(hydrophilic, hydrophobic, superhydrophobic) are also parameters to consider in order to better
understand ice adhesion and detachment phenomena.

The present work is the first study on the ice detachment by a liquid jet with variable velocities on
immersed surfaces. The main objective of this study is to understand the phenomena of growth,
adhesion, and detachment of ice by flow on different types of surfaces (different wettability and surface
conditions). It aims at optimizing the ice slurry production method to develop a new method for ice
slurry production without moving components. To achieve these objectives, three types of surfaces
(hydrophilic, hydrophobic, and superhydrophobic) were studied in a transparent rectangular device
placed on a loop circulating a 10 wt.% ethanol/water mixture. This device is also equipped with a heat
exchanger for crystallization and a rectangular nozzle for liquid jet generation. This study focuses on
understanding the effect of temperature and surface condition on the growth and detachment of ice on a
given surface. Additionally, it examines the effect of increasing liquid jet velocity on ice detachment to
select surfaces with less adhesion and seek the most optimal conditions. The originality of this study lies
in the visualization of ice growth and detachment phenomena by a liquid jet (flow) on submerged
surfaces and in the evaluation of the ice detachment length (Lp) along a surface as a function of the flow
velocity. This is done to establish an empirical relationship and to understand the ice detachment
phenomena in immersion. Thus, an ANSYS® Fluent numerical model was developed to simulate the
evolution of turbulent velocities of immersed liquid jets along the heat exchanger surface for comparison
with experimental results.

2. Materials and methods

The objective of this study is to better understand the phenomena of ice adhesion and detachment in
immersion on several types of surfaces with different wettability and surface states to develop a new ice
slurry generator without moving components. Therefore, two devices were developed. Firstly, a device
to measure contact angles (CA) on the studied surfaces, and secondly, a device to identify the surfaces
that allow optimal ice detachment by shear flow (liquid jet) of a 10 wt.% ethanol/water mixture through
a rectangular nozzle. This section is composed of four subsections: the first describes the experimental
setups for measuring contact angles; the second describes the experimental setups for the study of ice
growth and detachment by flow; the third describes the experimental protocol for the ice detachment
setup; and the fourth sub-section describes the numerical model developed using ANSYS Fluent 2021
R1 to simulate the evolution of turbulent liquid jet velocities in immersion. The aim of this simulation
is to make a comparison with experimental results and to understand why, at a certain speed, the ice no
longer detaches itself from the surface studied. The overall objective is to establish an empirical
relationship between jet velocity variation and ice detachment lengths (Lp).

2.1 Experimental set-up for wettability and roughness analysis

An original goniometer was developed for wettability analysis (contact angle measurement) on
different surfaces and was presented in detail in a previous work [28]. The device is shown in Figure 1.
This goniometer is equipped with a USB CMOS digital microscope camera from Chengstore with
640 x 480 resolution and x1600 zoom, a white light source, an aluminum heat exchanger to maintain
the temperature of the samples at a fixed value, and a circulating cryostat bath to control the surface
temperature of the heat exchanger. The camera is connected to a computer to measure the contact angle
(CA) using the IC Measure V2.0.0.286 software. Roughness analysis of the three surface types
(hydrophilic, hydrophobic, and superhydrophobic) was performed using a KEYENCE VHX-
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7000N/VHX-970N digital microscope. The results of the contact angle and roughness measurements
are presented in the results section.

(2) p

Digital microscope camera.

Alumi heat exchanger.
White light source.
Support.

=W =

Figure 1 — Contact angle measuring device, (a) real image of the goniometer; (b) design image of the goniometer on
SOLIDWORKS.

Three AW1050H24 aluminum surface samples are used to represent different wetting and surface
states: hydrophilic, hydrophobic, and superhydrophobic, to characterize their ability to reduce ice
adhesion. The first surface is an untreated aluminum surface. The second surface of the same material
(aluminum) is treated with a 13 pm thick PTFE adhesive tape from REKALARO. This tape is made of
a PTFE-coated fiberglass fabric, which gives it additional properties of tear, tensile, and puncture
resistance. The third surface is treated with a commercial superhydrophobic "Ultra Ever Dry" (UED)
coating applied in two layers by spraying, the preparation process of which is described in detail in an
earlier study [28].

2.2 Experimental device of ice detachment study

To investigate the detachment of the ice layer on the three surfaces described in subsection 2.1, a
system was developed for and presented in Figure 2. This system consists of a BEWINNER aluminum
heat exchanger (component 8 in Figure 3) with dimensions 0.16 m x 0.04 m x 0.012 m (length, width,
height), which is insulated on all sides, except for the top side where the surface samples are fixed with
thermal paste. To remove the ice on the surface, a liquid jet is projected onto the surface through an
ARIANA flat nozzle (component 9 in Figure 3) with a rectangular (Sy) outlet section measuring
30 mm x 2 mm. The entire system is immersed in a 10 wt.% ethanol/water mixture with an immersion
depth of 2 cm between the surface sample and the air/liquid interface. The ice detachment length (Lp) is
defined as the maximum distance between the nozzle outlet section and the remaining ice layer on the
surface at the furthest point.
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Figure 2 — Schematic representation of the ice detachment length Lp by a liquid jet flow along the surface sample.

The experimental setup shown in Figure 2 is placed in a transparent box made of
Polymethylmethacrylate (PMMA), which is identified as component 2 in Figure 3. The dimensions of
the box are 0.34 m x 0.146 m x 0.127 m (length, width, height). This entire setup is called the surface
testing section, and it includes a high-speed camera (component 7 in Figure 3), specifically the
monochrome camera AOS Cesyco PROMON U750, which has a recording speed of 750 frames per
second and a KOWA zoom lens with a fixed resolution of 640 x 480. The section viewed by this camera
is shown in Figure 3 as a green dashed square, clearly representing the observed region. The video
recording of the ice layer formation and its detachment by the flow is performed using the AOS Imaging
Studio software version 4.7.2.4. Additionally, a second digital camera is placed above the exchanger to
take pictures after the ice detachment (component 1 in Figure 3). The ice detachment length, Lp, is
measured using IC Measure software version 2.0.0.286. To remove the dew that forms on the surface of
the PMMA box during the cooling of the mixture and for better visualization of the formation and
detachment of the ice layer by the liquid jet, a servo motor (component 15 in Figure 3) equipped with a
wiper (component 14 in Figure 3) is installed. The servo motor is controlled by an ELEGOO UNO R3
controller board (component 3 in Figure 3), which is programmed to allow the wiper to make a round
trip every 4 seconds with an opening angle of 120°. The nozzle is fed by the pump integrated into the
circulating cryostat (component III in Figure 4) through a filling tube (components 11 and 10 in
Figure 3), with an adjustable mass flow rate from 0 to 0.167 kg s™'. Finally, the PMMA box is
continuously fed through a filling tube (component 12 in Figure 3) that connects to an external pump
component (component IV in Figure 4) that takes liquid from the circulating cryostat (component III in
Figure 4) with a constant mass flow rate of 0.151 kg s™' during experiments.
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Surface testing section:

12

Digital camera.

Polymethylmethacrylate (PMMA) box 0.34 mx 0.146 m x 0.127 m (length, width, height).
ELEGOO UNO R3 controller board.

50 wt.% ethanol-water mixture inlet.

50 wt.% ethanol-water mixture outlet.

Liquid mixture outlet.

AOS Cesyco PROMON U750 high speed monochrome camera and KOWA zoom lens . Image resolution 640 x 480
Bewinner aluminum heat exchanger 0.16 m x 0.04 m x 0.012 m (length, width, height).

ARIANA flat nozzle with 0.03 m x 0.002 m (width, height) outlet section.

10 Nozzle swivel tube.

|0 Q|| ||| | —

Nozzle supply tube.

12 Filling tube of the PMMA box with the liquid mixture.
13 A-LED LIGHTING 15 Watt.

14 Wiper.

15 Servo motor SG90.

16 Surface sample.

Figure 3 — Detailed schematic of the surface testing section, highlighting its components that make it up (component I of
Figure 4)

The measurement of temperatures on the surface testing section is carried out using several T-type
thermocouples with a measurement uncertainty of £0.03 °C. These thermocouples are connected to a
KEYSIGHT Model DAQ970A data acquisition system connected to a computer. A thermocouple is
placed on the surface sample approximately 150 mm from the nozzle outlet section, shown in Figure 3
by a red circle. The purpose of placing a single thermocouple on the sample surface is to minimize
disturbance during ice formation and detachment. Tests were performed to verify the homogeneity of
the temperature along the sample surface and the average difference over several points that does not
exceed 0.5 °C. This result validates the use of a single thermocouple on the surface. Three
thermocouples are placed between the surface sample (component 16 in Figure 3) and the heat
exchanger (component 8 in Figure 3) and are represented in Figure 3 by red stars. Five thermocouples
are placed in the surface testing section to measure the temperature of the aqueous mixture at different
locations, represented in Figure 3 by red squares.
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Figure 4 — Schematic of the experimental setup to study ice detachment by flow on different surfaces: (a) top view;
(b) perspective view.

Figure 4 shows the complete experimental setup of ice detachment by shear flow. This device is
composed of a surface testing section (component I in Figure 4), two circulating cryostats JULABO
model FP50-HE (component II in Figure 4) and 601F (component III in Figure 4), a Grundfos pump
model ALPHA1 25-40 180 (component IV in Figure 4), and an ABB Coriolis mass flow rate meter
model FCM2000 MC23 (component V in Figure 4). The entire setup is placed in a climate chamber at
a fixed temperature of 13 °C to improve the efficiency of the two circulating cryostats and for reducing
heat losses of the experimental setup.

2.3 Experimental parameters and protocols

The experimental protocol for the study of ice growth and detachment by flow (liquid jet) is as
follows: first, the pump (component IV in Figure 4) feeding the surface testing section (system shown
in Figure 3) is turned on and set at a mass flow rate of 0.151 kg s™!, establishing a water level of 2 cm
above the heat exchanger. Then, a circulation of the aqueous mixture is established at a constant mass
flow rate of 0.025 kg s™' through the tube feeding the nozzle. As shown in Figure 5, which represents
the evolution of the mass flow rate through the nozzle, as well as the temperature of the aqueous mixture
(10 wt.% ethanol/water) and the untreated aluminum surface during cooling.
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Step 1 : The flow through the nozzle is stopped and the nozzle is
oriented towards the surface for ice detachment.

Step 2 : The pump of the circulating cryostat JULABO 601F which
feeds the nozzle is set to the desired power and the flow rate is
switched on for ice detachment.

Step 3 : The flow through the nozzle is stopped to take a picture of
the result of the ice detachment.

Figure 5— Example of evolution of the mass flow rate through the nozzle and the average temperature of the aqueous mixture
(10 wt.% ethanol/water mixture) and the average temperature of the untreated aluminum surface (hydrophilic) during the
cooling process.

The purpose of maintaining the flow in the tube feeding the nozzle (components 11 and 10 in
Figure 3) is to avoid heating of the liquid mixture at the time of the jet projection for the detachment of
the ice layer. Indeed, if the flow is stopped, since the ambient temperature is fixed at 13 °C, heating of
the liquid can occur in the tube feeding the nozzle. The nozzle (component 9 in Figure 3) is oriented at
about 80° upwards to avoid disturbing the formation of the ice layer. Then, the temperature of the two
circulating cryostats (components III and II in Figure 4) that supply the heat exchanger and the surface
testing section, respectively, is set to an initial temperature of 25 °C. Then, the temperature of the two
circulating cryostats is lowered to achieve stable surface sample and aqueous mixture temperatures at a
value of —3.6 °C before crystallization, as shown in Figure 5. Once the surface and liquid mixture
temperature are stabilized at —3.6 °C, the sample surface temperature is then lowered to a desired value
to initiate crystallization. In the case of Figure 5, the desired surface temperature was —8 °C.
Crystallization occurs at the phase change temperature of —4.8 °C to form a 2 mm ice layer on the surface
sample immersed in the 10 wt.% ethanol/water mixture, as shown in Figure 6. In Figure 6, the ice layer
formation takes about 310 seconds on the untreated aluminum surface. The thickness of the ice layer is
set to 2 mm so as not to penalize the heat transfer and to avoid the problem of temperature control.
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Figure 6 — Evolution of the ice layer thickness that forms on an untreated aluminum surface in a

10 wt.% ethanol/water mixture at a surface temperature set at —8 °C, (a): before crystallization; (d): after crystallization.

During these experiments, temperature and mass flow rate recording through the nozzle are activated
using KEYSIGHT software. The high-speed camera (component 7 in Figure 3) is activated to record
video of the ice layer formation and its detachment by the flow, and the wiper (component 14 in
Figure 3) is turned on to avoid condensation problems. After the ice layer is formed, the flow of the
aqueous mixture through the nozzle is stopped, and then the nozzle is directed horizontally towards the
surface sample under investigation (downwards) so that the shear flow loosens the ice layer (step 1 in
Figure 5). Next, the mass flow rate through the nozzle is adjusted to the desired value (in Figure 5, the
set flow rate is 0.109 kg s™!, which corresponds to a flow velocity of 1.83 m s~! at the nozzle outlet), and
the flow rate is turned on so that the liquid jet exiting the nozzle loosens the ice layer, as shown in Step
2 of Figure 5. Finally, the filling pump (component IV in Figure 4) and the cryostat circulation pump
(component III in Figure 4) are turned off (step 3 in Figure 5) when the ice layer no longer detaches
from the surface. A picture of the surface is taken with a camera (component 1 in Figure 3), and the ice
detachment length (Lp) is measured using IC Measure image processing software version 2.0.0.286.

2.4 Numerical model for the turbulent jet velocity evolution simulation in immersion

A numerical model is developed to simulate the evolution of the velocity of a turbulent jet in
immersion using the ANSYS® FLUENT 2021 R1 software. Several authors have already investigated
hydrodynamic phenomena of turbulent liquid jets in immersion, both experimentally and numerically.
However, these works do not specifically address the detachment of ice in immersion [31-33]. The
objective of our numerical study is to track the evolution of the velocities of the turbulent liquid jet in
immersion along the surface of the untreated aluminum sample and does not take account for ice
formation and detachment. In our experiment, after the ice detachment, the liquid jet is not immediately
stopped; instead, it is allowed to continue for a period of time to ensure that the ice layer no longer
detaches and to observe a phenomenon in a steady-state regime. Our simulation hypothesis focuses
solely on the evolution of liquid jet velocities over a plane plate within a water-ethanol binary mixture
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without ice layer, due to the lack of data on ice adhesion forces. The purpose of these simulations is to
uncover the reasons behind the detachment of the ice layer at a specific length for each studied velocity,
aiming to comprehend the detachment phenomenon. The ultimate goal is to establish a relationship
between the experimentally determined ice detachment length (Lp) and the numerically determined
maximum turbulent jet length (Lmax), at which the liquid jet velocity reaches the minimum velocity at
which ice detachment does not occur.

The Reynolds number of turbulent liquid jets in these simulations is calculated with equation (Eq.1):

VD
Re=plZ” Eq. (1)

Where Dy is the hydraulic diameter of the nozzle, which is 0.00375 m, p; = 983.4 kg m™ is the
density of the 10 wt.% ethanol/water mixture at the liquid temperature, which is set at =3.6 °C, Vi is the
turbulent velocities at the nozzle outlet (ranging from 1.4 to 2.87 m s™'), and 4 = 0.001889 Pa s is the
dynamic viscosity of the 10 wt.% ethanol/water mixture at the liquid temperature, which is set at
—3.6 °C. The results of the Reynolds number R, are shown in Table 1. The value of the Reynolds number
R, is greater than 2300, so the velocity of the liquid jet, ranging from 1.4 to 2.87 m s™', is in the turbulent
regime.

Table 1 — Reynolds number of turbulent velocities at the nozzle outlet.

Velocity in nozzle outlet Reynolds R.
(ms™) ()
2.87 5545
2.45 4783
2.04 3983
1.87 3651
1.62 3163
1.40 2733

2.4.1 Geometry, boundary conditions and meshing

The fluid domain geometry of the surface testing section (Figure 3) has been modeled using
ANSYS® SpaceClaim 3D CAD Modeling Software, as illustrated in Figure 7. The dimensions of the
geometry and the specifics of the boundary conditions have also been provided in the same Figure.
Table 2 summarizes the boundary conditions that have been defined in the Fluent software. The mesh
was created using Fluent mesh software. It is a hybrid mesh consisting of tetrahedral and hexacore
meshes, as shown in Figure 8.

G L
blde View: Rectangular nozzle inlet
g[ / IZO mm 35 mm
4 15mm
Isometric view:
Heat exchanger compartment Y T_‘ X
Rectangular nozzle
inlet 30 mm x 2 mm z
Bottom view: l
40 mm J
160 mm
15 mm diameter filling inlet 13%mm X

/ 19 mm diameter outlet ﬁ
= i

Green colored fluid region 7
| 323 mm 7 x

I 1
Figure 7 — 3D geometry of the fluid domain of the surface testing section drawn on ANSYS® SpaceClaim 3D CAD
Modeling Software.
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Table 2 — Boundary conditions declared in the Fluent software.

Positions Boundary conditions
Filling inlet Velocity Inlet (inlet velocity fixed at 0.86 m s~ during
all simulations).
Rectangular nozzle inlet Velocity Inlet (The velocities studied range from 1.4

to 2.87 m s7h).
Outlet Pressure Outlet
Walls No-slip wall conditions

Side view:

Top view:

Figure 8 — Fluid domain mesh image of the surface testing section drawn on ANSYS® Fluent meshing software.
2.4.2 Numerical discretizations

The ANSYS® Fluent 2021 R1 software was used to perform a 3D steady-state simulation of a
turbulent liquid jet in immersion. The turbulence model chosen was the k-epsilon Realizable with
Enhanced Wall Treatment. The Coupled algorithm was used to couple the velocity and pressure. The
spatial Second Order discretization scheme was used to discretize the pressure, while First Order
Upwind was used for the momentum, turbulent kinetic energy, and turbulent dissipation energy.
ANSYS® Fluent's default relaxation values were used for the parameters of pressure, density, body
force, and turbulent viscosity, with 0.3 for the momentum and 0.7 for turbulent kinetic energy and
turbulent dissipation energy. The computational results were considered convergent when the residual
was less than 1076 for all equations and stabilized. The analyzed results are presented in subsection 3.3.1.

2.4.3 Grids Sensitivity and Model Validation

The grid independence has been carefully examined to ensure the reliability of the numerical
simulation results. For this purpose, five different grids were analyzed to observe the solution's
evolution, result stability, and grid sensitivity. The grid sets used consisted of 905,060 cells (grid 1);
1,628,877 cells (grid 2); 2,753,589 cells (grid 3); 4,485,553 cells (grid 4); and 6,001,644 cells (grid 5).

In the mesh test simulation, the liquid jet velocity at the nozzle outlet is set at 1.4 m s™'. During its
evolution, this velocity decreases until reaching lower speeds for the detachment of the ice, which has
already been experimentally determined (see section 3.3). For instance, in the experimental case where
the liquid jet velocity is set at 1.4 m s™!, the ice detachment length is 0.116 m at a temperature of —6 °C
(see Table 3), and the experimentally found ice non-detachment velocity is 0.51 m s™' (see Figure 22).

The parameter evaluated during the mesh sensitivity test simulations is the jet velocity along the
central line at position 0.113 m (see Figure 9, with the nozzle outlet considered as the origin), where the
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jet velocity reaches values at which detaching the ice layer is no longer possible experimentally at a
speed of 0.51 m s™! (see Figure 23 and Table 3). The results of the effect of increasing the number of
mesh elements on the solution evolution are presented in Figure 10. It is worth noting that, according to
this figure, the results are independent of the grid size for a number of elements greater than 2,753,589
cells.

Considering the simulation's accuracy and computational efficiency, the final number of cells for this
study was set to 2,753,589 to reduce the computation time, as using 6,001,644 cells would result in a
24-hour calculation time.

Position 0.113 m on the
centerline of the liquid jet

Liquid jet centerline

Nozzle 01 2 3 435 6 7 8 9 10111213 14 15 16

Heat exchanger

Figure 9 — Spatial representation of the position 0.113 m on the central line of the liquid jet, where the velocity is calculated
to test grid independence.
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0.6
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velocity on jet centerline at position 0.113 m

0.1

0 ,,,,,,,,,,,,,
0051 152253354455 556657
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Figure 10 — Evolution of liquid jet velocity result on its central line at the position 0.113 m as a function of the number of
grid cells studied.
3. Results and discussions

In this section, the results were analyzed and discussed regarding the effect of temperature, surface
conditions (roughness and wetting properties) on the growth, adhesion, and detachment of the ice layer
by the flow. The objective is to better understand these phenomena in immersion to determine the
optimal conditions for ice slurry production.

3.1 Wettability and surface roughness characterization

Surface wettability is divided into three categories [34,35]:
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» hydrophilic surfaces are characterized by a contact angle (CA) with a drop of water of less than
90°.

» hydrophobic surfaces are characterized by a contact angle of greater than 90° and less than 150°.

» Superhydrophobic surfaces are characterized by a contact angle of greater than 150° and a
contact angle hysteresis CAH < 10°.

Three types of AWI1050H24 aluminum surfaces (hydrophilic (reference), hydrophobic, and
superhydrophobic) were characterized to determine their ability to reduce ice adhesion. The liquid drop
volume used for characterization is 8.4 uL. of a 10 wt.% ethanol/water mixture, this volume being neither
too large to avoid crushing of the drop by gravity effect nor too small to avoid surface tension effects.
Measurements are repeated 4 times at an ambient temperature of 23 °C to verify the non-variation of the
contact angle, the uncertainty is about £1°. The first surface is made of untreated (hydrophilic) aluminum
and exhibits an average contact angle (average of left and right contact angles) of 58.21°, as shown in
Figure 11 (a), while this surface forms an average contact angle of 82.36° with a drop of deionized water
[28,29]. The second aluminum surface (same material) which is treated with the 13 pm thick PTFE
adhesive tape presents an average contact angle of 91.38°, as shown in Figure 11 (b). The third surface,
which is treated with the commercial superhydrophobic coating "Ultra Ever Dry" (UED), exhibits an
average contact angle of 151.50°, as shown in Figure 11 (c). This coating was already characterized in
a previous study with a deionized water drop of 8.4 pL., with an average contact angle of 157.59° in the
Cassie state [28,29].

| (2) ] (b) (c)

Left C4=58.15° Right C4 = 58.28° Left CA=91.4° Right C4=91.37" Left C4=151.56° Right C4=151.45°

y—"u |

Figure 11 — Microscopic images and contact angles of the three types of surfaces studied, (a) hydrophilic "untreated
aluminum"; (b) hydrophobic "aluminum treated with PTFE adhesive tape"; (c) superhydrophobic "aluminum treated with
UED coating".

The roughness analysis of the three types of surfaces studied was performed using a KEYENCE
VHX-7000N/VHX-970N digital microscope. Figure 12 presents the results of the measurement of the
surface roughness parameter Sa, which is the arithmetic mean height. This parameter Sa extends the Ra
parameter (arithmetic mean height of a line) to a surface, while the surface roughness Sz represents the
maximum height. This Sz parameter is defined as the sum of the maximum peak height value and the
greatest well depth in the defined area. As seen in Figure 12 (a), the untreated aluminum (hydrophilic)
surface has the lowest surface roughness (Sa = 0.2 pm and Sz = 1.3 um). The aluminum surface treated
with PTFE adhesive ribbon (hydrophobic) has a double surface roughness, one at the scale of a single
fiber (Sa =2.3 um and Sz = 18.9 um) and the other at the scale of fibrous tissue surface (Sa'= 8.4 pm
and Sz'=92.2 pm), as shown in Figure 12 (b). The aluminum surface treated with UED coating
(superhydrophobic), as shown in Figure 12 (c), has the highest surface roughness (Sa =12 ym and
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Sz = 83.4 um) compared to the surface roughness of the untreated aluminum and the surface roughness
of a single fiber of the PTFE tape.

E

Regosity on a surface scale g Regosity on a surface scale:
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Regosity on the surface of the fibrous tissue:
Sa'=8.4 pm.
Sz'=92.9 nm.

Figure 12 — Results of the measurement of surface roughness parameters "Sa" and "Sz" of the three types of surfaces studied:
(a) hydrophilic; (b) hydrophobic and (c) superhydrophobic.

3.2 Ice growth Kkinetics

The effect of decreasing surface temperature on ice type and ice growth kinetics on the untreated
aluminum surface was examined. In addition, the effects of surface roughness on ice growth kinetics
were also analyzed on three types of surfaces: hydrophilic (untreated aluminum), hydrophobic
(aluminum treated with PTFE adhesive tape), and superhydrophobic (aluminum treated with UED
coating).

3.2.1 Temperature effect on ice growth kinetics

Figure 13 shows the growth kinetics of an ice layer up to 2 mm thick on an untreated aluminum
surface (hydrophilic) as a function of time for different surface temperatures set at —6 °C, —8 °C and
-9 °C. In addition, Figure 14 shows the evolution of the temperature of the surface and of the
10 wt.% ethanol/water mixture in the surface testing section for different target surface temperatures
(-6 °C, -8 °C and -9 °C).
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Figure 13 — Growth kinetics of an ice layer up to 2 mm thick on an untreated aluminum surface as a function of time for
different surface temperatures set at —6 °C, —8 °C and -9 °C.
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Figure 14 — Evolution of the temperature of the liquid mixture and of the untreated aluminum surfaces during the cooling
process for three target surface temperatures of -6 °C, —8 °C and -9 °C.

Figure 13 clearly indicates that a decrease in surface temperature leads to an increase in the ice layer
growth rate, as the heat flux increases with the decrease in surface temperature. Furthermore, the
standard deviations for the —6 °C case are significant, as shown in Figure 14, because the maximum
surface temperature is —6 °C and the average liquid temperature is —3.60 °C. The average temperature
between the surface and the liquid gives a value close to the phase change temperature, and in this case,
it is difficult to pass the energy barrier necessary for crystallization. Furthermore, the standard deviation
of the surface temperature in repeatability experiments is significant. This is due to the formation of an
ice layer on the surface, which acts as an insulation and therefore causes variability in the surface
temperature.

3.2.2 Effect of surface condition on ice growth kinetics

Figure 15 shows the analysis of the temperature evolution of the three surfaces: hydrophilic
(untreated aluminum) as "Al", hydrophobic (aluminum treated with Teflon® coating) as "PTFE", and
superhydrophobic (aluminum treated with Ultra Ever Dry) as "UED", and the temperature of the
10 wt.% water-ethanol mixture as a function of time during the surface cooling process. These
temperatures are plotted for a surface temperature between —4.10 °C and a final temperature of —8 °C,
between which a layer of ice with a maximum thickness of 2 mm is generated. It is observed that the
temperature variation of the ethanol/water mixture is stable for the three surfaces (Al, PTFE and UED),
with a standard deviation of less than +0.25 °C. Concerning the surface temperature the standard
deviation does not exceed 0.6 °C.
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Figure 15 — Evolution of the temperature of the liquid mixture and the three types of surfaces studied during the surface
cooling process.

Figure 16 shows the ice growth kinetics as a function of time for the three types of surfaces and for
a target surface temperature of —8 °C. The results indicate that ice growth is faster on the
superhydrophobic UED surface when compared to the PTFE and Al surfaces, even though the surface
temperature of the UED surface is slightly warmer than the others. Additionally, ice growth is slower
on the Al surface when compared to the PTFE surface. The aluminum surface treated with the UED
superhydrophobic coating increases the crystallization rate due to its higher roughness (Sa = 12 um, as
described in section 3.1). This value is significantly higher than PTFE (Sa = 2.3 ym and Sa' = 8.4 pm)
and untreated aluminum (Sa = 0.2 um), providing more nucleation sites on this superhydrophobic UED
surface. Indeed, roughness contributes to lowering the energy barrier for crystallization, as already
demonstrated in the article by Cao et al. [36]. The authors studied various superhydrophobic coatings
based on nanoparticle-polymer composites with diameters D, =20 nm, 50 nm, 100 nm, 1 um, and 20
um, with contact angles ranging from 143° to 158°, and a contact angle hysteresis of 2° and 4°. The
authors analyzed the effect of nanoparticle size in the superhydrophobic coating on the free energy
barrier. They noticed that the energy barrier for nucleation continuously decreases with an increase in
the size of particles in the superhydrophobic coating (increase in roughness) [36].
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Figure 16 — Ice growth kinetics as a function of time for a target surface temperature of —8 °C on the three surface types.

However, the PTFE surface has a double roughness due to its texture (glass fiber) of Sa’"about 8.4 pm
and a roughness on the fiber surface (Sa = 2.3 pm). This double roughness also serves as a nucleation
site, explaining why crystallization is faster on the PTFE surface compared to the untreated aluminum
surface, which is characterized by a roughness of Sa = 0.2 um. The surface roughness plays an important
role in influencing the crystallization rate of the ice by providing increasing the surface area available
for crystallization. This leads to a higher crystallization rate due to the increased number of nucleation
sites available for crystals.

The behavior of submerged superhydrophobic surfaces is aerophilic, meaning that they trap air in
their roughness when submerged [37]. Initially, the immersed UED superhydrophobic surface is covered
with a thin layer of air visible as a silvery mirror-like reflection, which is the signature of the presence
of an air layer adhering to the surface. During the cooling process, the silvery mirror reflection becomes
clearer and less reflective (seen by the naked eye), and then disappears when reaching low negative
temperatures (-6 °C). These experiments aim to understand the wetting behavior of the UED
superhydrophobic surface under immersion with surface cooling and understand why the silver mirror
color reflectivity effect that disappears during surface cooling. Figure 17 shows the air bubbles placed
with a pipette on the UED superhydrophobic surface in immersion to verify and understand the physical
phenomena of wetting transition in immersion with surface cooling.

16 1 Liquid/air interface
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Figure 17 — Air bubbles deposited on the superhydrophobic UED surface immersed in a 10 wt.% ethanol/water mixture
during the cooling process, the surface temperature 75 is 3.97 °C which corresponds to time ¢ = 1622 s.
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Figure 18 — Real image of the air bubble without background and schematic model illustrating the wetting transition on a
UED superhydrophobic surface immersed in a 10 wt.% ethanol/water mixture during the surface cooling process. 7T is the
surface temperature, ACA represents the air bubble contact angle, and ACD represents the air bubble contact diameter.

Figure 18 shows the real images and a schematic model explaining the behavior of air bubbles and
the wetting transition when immersed in a 10 wt.% ethanol/water mixture on a cooled superhydrophobic
UED surface. This model is considered original because no previous study has verified this wetting
behavior in immersion and at low temperature. When the air bubble is deposited at a temperature of
22.10 °C on the immersed superhydrophobic UED surface, as shown in Figure 18 (a), the initial shape
of the air bubble appears to be squashed. This air bubble has an ACA air contact angle of 60.47° and an
ACD air contact diameter (air bubble base diameter) of 7.18 mm. At this temperature of 22.10°, the air
bubble slides from left to right across the surface due to its contact with the thin layer of air and the
agitation of the mixture caused by the flow. As the surface temperature decreases, the silvery mirror
color becomes less visible, indicating a reduction in the thickness of the thin layer of air on the surface,
likely due to air diffusion into the liquid and a decrease in air volume due to cooling. This decrease in
the thickness of the air layer on the surface leads to a decrease in the contact diameter of the air bubble
(ACD =5.72 mm) and an increase in its contact angle (ACA = 70.22°) due to buoyancy forces lifting the
bubble vertically, as shown in Figure 18 (b). In the end, a layer of ice forms over the entire surface,
except for the ends of the bubbles which remain in contact with the cooled superhydrophobic surface
due to the lack of contact between the liquid and this cooled surface, as shown in Figure 18 (d). Figure
19 shows the process of ice layer formation on the surface of the UED in the presence of air bubbles.
After the transition from the Cassie wetting state to the Wenzel state, ice forms across the entire surface
except at the locations of air bubbles in immersion, which isolate the liquid from the cold UED surface.
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Figure 19 — Formation of a 2 mm ice layer on the UED superhydrophobic surface in a 10 wt.% ethanol/water mixture.
3.3 Ice detachment length evolution

In this subsection, the evolution of Lp on the three types of surfaces: hydrophilic (untreated
aluminum), hydrophobic (aluminum treated with PTFE adhesive tape), and superhydrophobic
(aluminum treated with a UED superhydrophobic coating) was studied.

3.3.1 Temperature effect on ice detachment length

The experimental results presented in Figure 20 show the detachment of a 2 mm thick ice layer on
an untreated aluminum surface. The surface temperature was set at —6 °C, and the liquid velocity at the
nozzle outlet (Vy), which was oriented horizontally towards the surface, was 1.62 m s™'. The detachment
process lasted about 1.27 s, and the type of detachment was identified as adhesive, meaning the ice
detached from the surface without leaving any residue. The ice was characterized as soft, with needle-
like crystals due to the presence of ethanol. After detachment, the ice broke into small particles, as shown
in the images in Figure 20 (c) and 20 (e). Chemical additives have an effect on the morphology of the
ice; for example, seawater (brine) results in porous ice [14,20-22,38]. These additives change the nature
of the ice, making it soft, and the ice crystals often take on the shape of needles, reducing the contact
surface of the ice with the solid surface. If pure water is used to produce the ice, it will have a hard
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texture [22,28]. In the case of a surface temperature set at —8 °C, ice detachment and ice appearance are
similar to those observed at a surface temperature of —6 °C.
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Figure 20 — Image of ice layer detachment on an untreated aluminum surface for a surface temperature set at —6 °C and an
average velocity at the nozzle outlet Vy of 1.62 m s,

Figure 21 shows the results of detaching a 2 mm thick ice layer from an untreated aluminum surface
at a surface temperature set at —9 °C. The average liquid velocity at the nozzle outlet is 1.62 m s~!, which
is identical to the —6 °C case described earlier. The ice detachment process took approximately 1.74 s,
slightly longer than in the —6 °C case. As with the —6 °C case, the type of detachment observed was
adhesive, where the ice layer fully detached from the surface without leaving any residue, as depicted
in Figures 21 (c)-(f). However, the ice layer does not detach easily, and the ice is hard, in contrast to the
soft ice observed at —6 °C. The detachment of the ice layer at a temperature of -9 °C occurred in large
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hard fragments rather than small particles, as shown in Figure 21 (f). This ice hardening is due to the
effect of low temperature, which accelerates the crystallization process, leading to a densification of the
ice layer. This effect of temperature has already been observed in a previous study with a 10 wt.%

aqueous urea solution [22].
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Figure 21 — Image of ice layer detachment on an untreated aluminum surface for a surface temperature set at =9 °C and an
average velocity at the nozzle outlet of 1.62 m s7'.

Figure 22 shows the variation of the ice detachment length Lp as a function of the average liquid
velocity at the nozzle outlet along a 0.16 m long surface. In our experiments, the mass flow rate ranges
from 0 to 0.17 kg s™'. This implies a flow velocity at the nozzle outlet ranging from 0 to 2.87 m s™!. The
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experiments were conducted on an untreated aluminum surface (hydrophilic) at three different surface
temperatures (-6 °C, -8 °C and -9 °C). In our experiments, we calculated the flow velocity Vy at the
nozzle outlet using the following equation (Eq. 2):

_ Om

= Eq. (2)
PiSn

Vn

Where Q,, is the mass flow rate, p; is the density of the mixture, and Sy is the outlet cross-sectional
area of the nozzle. As shown in Figure 22, the limit velocity of ice non-detachment Vinp, i.e., the velocity
below which there is no detachment of ice from the surface, is 0.51 m s™!, 0.64 m s™', and 1.08 m s~' for
surface temperatures set at —6 °C, —8 °C, and -9 °C, respectively. The ice detachment length decreases
with decreasing surface temperature due to an increase in ice adhesion strength, which is a well-known
trend in the literature [14,22,39]. At —6 °C and -8 °C, the required velocity Vu to detach the ice over the
entire surface is 2.45 ms™' and 2.87 m s™', respectively. However, for the -9 °C surface temperature
case, the detachment length is limited to 0.133 m, and the maximum velocity Vy in our experiments does
not exceed 2.87 m s™', which prevents us from detaching ice along the entire surface length. The standard
deviations on the —9 °C curve are larger due to the production of a hard ice layer (see Figure 21)
compared to the soft ice layer produced at surface temperatures of —6 °C and —8 °C (as shown in Figure
20), resulting in the detachment of large hard fragments from the surface and leading to the variability
of the detachment length over the three repeatability experiments. An analysis of error propagation for
measurements of various parameters, such as liquid jet velocities and ice detachment lengths (Lp), has
been conducted. The absolute uncertainties are estimated using the Student's distribution with a 95%
confidence interval [40]. The measurement errors for liquid jet velocities and ice detachment lengths
(LD) in Figure 22 are presented in Tables A1, A2, and A3 of Appendix A.
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Figure 22 — Evolution of the ice detachment length Lp as a function of the average velocity at the nozzle outlet for an
untreated aluminum surface, for the three surface temperatures set at -6 °C, -8 °C and -9 °C.

3.3.1.1 Numerical and experimental comparison on the ice detachment length

Figure 23 shows the results of ANSYS® Fluent numerical simulations using the numerical method
described in subsection 2.4. It shows the evolution of the local velocity of the turbulent jet (for flow
velocities at the nozzle outlet Vy from 1.4 m s~ to 2.87 m s7!) from the nozzle outlet which is at the 0 m
position to the 0.16 m position of the untreated aluminum surface (along the nozzle centerline). The
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dashed lines represent the limit velocity of ice non-detachment Viyp, determined previously from the
velocity at the nozzle outlet (see Figure 22), for the cases of surface temperatures set at -6 °C, -8 °C, and
-9 °C, which are 0.51 ms™, 0.64 ms™', and 1.08 m s7', respectively. The purpose of this numerical
model is to determine the maximum length, Luax, for which the local velocity of the liquid jet reaches
the limit velocity of ice non-detachment Vjvp, and compare it with the experimentally ice detachment
length determined previously, Lp. According to Figure 23, the local velocity of the jet increases after
passing through the nozzle outlet due to the decrease in jet pressure, resulting in a slight increase in
velocity. This velocity then decreases along the jet axis (along the surface). Near the 0.16 m position,
there is an increase in velocity due to the discharge outlet (as seen in component 6 of Figure 3), which
causes a flow acceleration.
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3
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f -------------- V,np for a surface temperature set at =9 °C
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Distance along the centerline of the liquid jet (mm)

Figure 23 — Evolution of the numerical turbulent velocities of the liquid jet along its centerline for an untreated aluminum
surface and for the three surface temperatures fixed at -6 °C, -8 °C and -9 °C.

Table 3 presents a comparison of the numerical results obtained with ANSYS® Fluent, which show
the maximum length, L., for which the local velocity of the liquid jet reaches the limit velocity of ice
non-detachment (Vivp), and the experimental ice detachment length, Lp, for the three surface
temperatures set at —6 °C, —8 °C, and -9 °C.

Table 3 — Comparison between the maximum numerical length Luax for which the local velocity of the liquid jet reaches the
limit velocity of ice non-detachment (Vinp), and the experimental ice detachment length Lp at different surface temperatures
set at -6 °C, =8 °C and -9 °C.

Velocity at
nozzle outlet
Vy (ms™)

2.87
245
2.04
1.87
1.62
1.40

Reynolds
U]

5545
4783
3983
3651
3163
2733

Surface temperature

Surface temperature

Surface temperature

-6 °C -8°C -9°C
Lyiax NUM LpEXP | LuaxNUM  LpEXP | LuaxNUM  LpEXP
(m) (m) (m) (m) (m) (m)
0.16 0.16 0.16 0.16 0.114 0.133
0.16 0.16 0.144 0.148 0.083 0.124
0.146 0.148 0.126 0.124 0.058 0.105
0.144 0.139 0.117 0.114 0.05 0.09
0.128 0.129 0.100 0.093 0.035 0.066
0.113 0.116 0.077 0.080 0.021 0.033
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It can be seen in Table 3 that the relative differences between the Lua. lengths of the numerical
simulations (NUM) and the Lp lengths of the experimental results (EXP) for the case of surface
temperatures set at —6 °C and -8 °C, are not significant, i.e. with a maximum difference (relative
deviation) less than 8%, which indicates the validation of our numerical model for the case of these two
surface temperatures. Indeed, the positions found numerically for which the local velocity of the liquid
jet reaches the ice non-detachment velocity (Vinp) are very close to the ice detachment positions found
experimentally. This can be explained by the fact that in these two cases of surface temperature fixed at
—6 °C and -8 °C, the ice produced and detached is soft and the detachment stops at the position where
the liquid jet velocity reaches the ice non-detachment velocity. However, for the case of the surface
temperature fixed at -9 °C (see Table 3), the relative deviations are very large, above 8%. In this case
the numerical model is not able to predict the position of the ice non-detachment velocities because in
this case the ice detaches in large hard fragments in a less repeated way, which results in a very high
relative deviation. Therefore, our numerical model is only valid in the case where the detached ice is
soft for the —6 °C and —8 °C surface temperature cases.

3.3.1.2 Evaluation of liquid jet force on ice detachment

In this part, an evaluation of the liquid jet force is presented along with an empirical model to estimate
the effect of this force on the evolution of the ice detachment length Lp on the untreated aluminum
surface for the three surface temperatures set at —6 °C, —8 °C, and -9 °C. The force of the jet at the
nozzle outlet Fy can be calculated using the following equation (Eq.3):

Fy = QnmVy = plSNVI\% = 2PpSy Eq. (3)

Where p; is the density of the fluid, Q,, is the mass flow rate at nozzle outlet, Syis the nozzle outlet

cross-section, Pp, = 0.5p,V is the dynamic pressure at the nozzle outlet, and Vi is the flow velocity at
the nozzle outlet.
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Figure 24 — Evolution of the jet force at the nozzle outlet for ice detachment Fip as a function of the ice detachment length
Lp for an untreated aluminum surface and this for the three cases of surface temperature fixed at —6 °C, -8 °C and -9 °C.

Figure 24 shows the liquid jet force at the nozzle outlet as a function of the ice detachment length
obtained with equation (Eq.3) for the case of the untreated aluminum surface with surface temperature
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variation. It can be observed that the force of the liquid jet at the nozzle outlet for ice detachment Fip
(Force Ice Detachment) varies with the ice detachment length and has an exponential curve. Using this
curve, a force model of the form shown in Equation (Eq.4) is obtained:

Fip = Foexp(kLp) Eq. (4)

Where Fy represents the force below which there is no ice detachment, Lp the ice detachment length
which varies between 0 and 0.16 m, and k a constant that depends on several experimental parameters
such as surface temperature, immersion level, jet force dissipation, and configuration geometry. This
model provides minimum force Fy values required for ice detachment, as well as maximum values Fax
for full surface ice detachment, for each temperature, as shown in Table 4:

Table 4 — Minimum, maximum force for ice detachment for each investigated surface temperature.

Temperature (°C) Minimum Minimum Maximum Maximum Lp EXP
forces Fo (N) velocities Vo forces Fuax (N) velocities Vaax (m)
(Vinp) (m s™) (ms™)
-6 0.014 0.51 0.35 2.44 0.16
-8 0.023 0.64 0.48 2.84 0.16
-9 0.068 1.08 0.48 2.84 0.133

Table 4 shows that the force required to detach the ice from the entire surface of the untreated
aluminum samples is 0.35 N, when the surface temperature is set at - 6 °C, and 0.48 N when the surface
temperature is set at -8 °C and -9 °C. This low force is due to the porosity of the ice layer which reduces
the adhesion of the ice to the surface, which may be caused by the presence of ethanol in the aqueous
mixture.

As the surface temperature decreases, the force required to detach the ice increases, due to the
hardness of the ice and its strong adhesion. It is difficult to compare these experimental forces with
literature results [41-43]. Several factors, such as the presence of microcracks, roughness, quasi-liquid
micro-layers, etc., affect the adhesion of ice to the surface [14]. Furthermore, this study focuses on the
adhesion of ice produced with a water-ethanol mixture, which reduces the adhesion force of the ice to
the surface. Indeed, the nature of ice differs from that of pure water. The presence of ethanol makes the
ice softer and more porous, even causing the formation of needle-shaped crystals, which reduces its
contact with the surface and, consequently, its adhesion. A critical review of the development of a
common standard for ice adhesion and different methods of measuring ice adhesion forces was
published by Rgnneberg et al. [39]. The authors suggest that the measured adhesion forces are very
sensitive to both the measurement method and the ice type.

3.3.2  Surface condition effect on ice detachment length

In Figure 25, the experimental results are presented for comparing the evolution of the detachment
length of the 2 mm thick ice layer (Lp) as a function of the average velocity at the nozzle outlet Vi for a
surface temperature fixed at —8 °C. The results are presented for all three surface samples. Error
propagation analysis was performed to assess absolute uncertainties, using Student's distribution with a
95% confidence interval [40]. The resulting measurement errors for liquid jet velocities and ice
detachment lengths (Lp), shown in Figure 25, are documented in Tables B1 and B2 in Appendix B.
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Figure 25 — Evolution of the ice detachment length Lp as a function of the average velocity of the aqueous mixture at the

nozzle outlet Vi for three types of investigated samples: untreated aluminum "Al" (hydrophilic), aluminum treated with a

Teflon® tape "PTFE" (hydrophobic), and aluminum treated with the Ultra Ever Dry coating "UED" (superhydrophobic).
In Figure 25, it can be observed that there is no visible ice layer detachment on the aluminum surface
treated with the UED superhydrophobic coating, as shown in Figure 28, for all flow velocities studied.
This result is consistent with the data published in the literature, which indicates that superhydrophobic
surfaces do not reduce ice adhesion [41,44]. This is due to the transition from the Cassie state to the
Wenzel state, resulting in mechanical interlocking, as demonstrated by Chen et al. [41]. The explanation
for this result is the effect of the high roughness of the UED superhydrophobic surface, which is
characterized by the roughness parameter Sz of 83.4 pm, as described in subsection 3.1. This value is
significantly higher than that of PTFE (18.9 um) and untreated aluminum (1.3 um). The increase in
surface roughness leads to an increase in the contact area and the number of potential anchor sites for
the ice layer [45]. Four mechanisms can explain the phenomenon of ice adhesion to a surface, as
described in a review article published by Samah et al. [14]: the mechanical mechanism, the chemical
mechanism, the electrostatic mechanism, and the boundary layer mechanism [46—48]. For the case of
the untreated (hydrophilic) aluminum surface, it is noted that there is no visible ice detachment on the
surface below a velocity Vivp of 0.64 m s™!. To detach all the ice along the 160 mm (0.16 m) exchanger,
a velocity Vi of 2.87 m s7!is required. On the aluminum surface treated with PTFE adhesive ribbon, the
limit velocity of ice non-detachment Vjyp is equal to 0.15 m s™!, which is four times less than the limit
velocity of ice non-detachment Viyp on the untreated aluminum surface. To detach all the ice along the
heat exchanger, a velocity Vi of about 1.37 m s™!is required (see Figure 26 (d)), which is half that of the
untreated aluminum surface, although the roughness parameter Sz of PTFE, which is 18.9 um, is much
higher than that of the untreated aluminum surface, which is about 1.3 um. This result indicates that
Teflon® (PTFE) exhibits good ice-repellent characteristics (low ice adhesion) compared to the untreated
aluminum surface (hydrophilic) and the UED treated aluminum surface (superhydrophobic). This result
is consistent with the results of Brooks et al. [20,21], and the results of ice adhesion tests on Teflon®
(PTFE) by Fillion et al. [49]. PTFE is currently one of the best icephobic materials reducing ice adhesion
forces due to its low dielectric permittivity of about = 2.1 [50]. In conclusion, the use of a Teflon®
(PTFE) coating or tape for ice slurry generation will reduce the amount of energy required to detach the
ice from the surface, provided that the Teflon® coating or tape is thin enough to not penalize heat transfer.
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Figure 26 — Example of 4 experiments of the measurement of the ice detachment length "Lp" (m) for the case of an
aluminum surface treated with the PTEF adhesive ribbon for a surface temperature fixed at — 8 °C: (a) Vv = 0.64 m s™' and
Lp=0.057 m; (b) Vv=0.86 ms™' and Lp = 0.083 m; (c) Vy=1.08 ms~'and Lp = 0.113 m; (d)Vy = 1.41 m s~ and
Lp=0.16 m.

In order to illustrate the icephobic behavior of Teflon® (PTFE), Figure 26 presents the evolution of
the ice detachment length (Lp) on the aluminum surface treated with Teflon® (PTFE) ribbon for different
flow velocities and a fixed surface temperature of —8 °C. The measurement of the ice detachment length
is taken at the point of maximum detachment. It can be seen in this figure that the area where the ice is
detached has no ice residue (see also Figure 27), which is consistent with adhesive detachment. The
detached ice is soft (needle-like crystals), allowing it to disintegrate into large fragments into particles
under the effect of the flow agitation.

27



687
688
689
690
691
692

693
694
695

& ooo s (a’. 1] Ice Dflrticée'm

= Lz) NOzzle/outlet s .
g " “2 mmice léyer
> 6 7
4 al ot o
2,
%02 4 6 8 1012 14 16 18 20 0 2 4 6 8 1012 14 16 18 20
X (mm) X (mm)
t=0ms t=51ms
141060 Kﬂe‘ 14{ Fragmefitdtion ofice
12 \\\ e : . 12 fayerinto small ~ c. " F
s 10 N ' particles by flow 8
£ 8| : 8 > -
> 6 6
4 4
2 2
0 0
0 2 4 6 8 10121416 18 20 0 2 4 6 8 1012141618 20
X (mm) X (mm)
t =104 ms t =548 ms
14 J (e)
" i; ° Start of detachment ia
£ \ ) £ by fR)W
E8 E
> 6 > 6
4 4
2 2
0 0
0 2 4 6 8 101214161820 0 2 4 6 8 1012 14 16 18 20
X (mm) X (mm)
t=937ms t=1.03s
14 } o (h)
12 :
30 Surf I
E sl g urface ‘(no (3,4 o
> 6 6 \ a
4 4 ;
2 2
%92 4 6 8 1012 14 16 18 20 %0 2 4 6 8 101214 16 18 20
X (mm) X (mm)
t=1.06s t=135s

Figure 27 — Image of the ice layer detachment on an aluminum surface treated with PTFE ribbon for a set surface
temperature of —8 °C and an average nozzle exit velocity of 2 m s~
The high-speed camera images in Figures 27 and 28 show the ice layer detachment on the aluminum
surface treated with PTFE adhesive tape and on the aluminum surface treated with Ultra Ever Dry
"UED" coating, respectively, for a flow velocity of 2 m s7'.

As shown in Figure 27, the detachment of the ice from the PTFE surface is adhesive, i.e., the entire
ice layer detaches from the surface without leaving any ice residue. This ice layer is soft, so it
disintegrates into ice particles under the agitation of the flow. After 1.35 seconds, the entire ice layer
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699 Figure 28 — Image of the ice layer detachment on an aluminum surface treated with UED superhydrophobic coating for a set
700 surface temperature of —8 °C and an average nozzle exit velocity of 2 m s~
701 In the case of the aluminum surface treated with UED superhydrophobic coating, no adhesive

702  detachment was observed on the surface for all flow velocities studied (see Figure 25). This is due to
703  the roughness of the UED superhydrophobic surface, which is much greater than that of the PTFE-
704  treated (hydrophobic) or untreated (hydrophilic) aluminum surfaces, as previously explained. However,
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after 9.91 seconds, a reduction in ice thickness was observed near the nozzle outlet due to ice crystal
breakup within the ice layer (see Figure 28). This type of ice breakup is referred to as cohesive
detachment, as the ice does not completely detach from the surface. Notably, the aluminum surface
treated with the UED superhydrophobic coating exhibited higher ice adhesion compared to the
aluminum treated with PTFE adhesive tape (hydrophobic) and untreated (hydrophilic).

4. Conclusions and outlook

In conclusion, this study aimed to understand the adhesion and detachment mechanisms of a 2 mm
thick ice layer on different surfaces (hydrophilic, hydrophobic, and superhydrophobic) using a liquid jet
with variable speeds under immersion conditions in a 10 wt.% ethanol/water mixture. The ultimate goal
was to develop a method of ice slurry production without the need for mechanical scrapers. The key
findings and implications of the study are summarized as follows:

1. Surface Temperature and Ice Growth: The study observed that the growth rate of the ice
layer increased as the surface temperature decreased. Notably, the nature of the ice produced
at different temperatures (-6 °C, -8 °C, and -9 °C) exhibited variations, with softer ice
forming at -6 °C and -8 °C, which can easily disintegrate into ice particles, and harder ice
forming at -9 °C, which is more resistant to disintegration into ice particles.

2. Surface Roughness and Ice Growth: The research revealed that increasing surface roughness
created more nucleation sites, resulting in faster ice growth rates. Specifically, the
superhydrophobic surface treated with UED exhibited the fastest ice growth, followed by the
surface treated with PTFE, while the untreated aluminum surface showed the slowest
growth.

3. Adhesion and Detachment Mechanisms: Surface roughness is a key factor influencing ice
adhesion, as higher roughness leads to stronger mechanical adhesion of ice to surfaces.
However, the case of aluminum surfaces treated with PTFE adhesive ribbon shows lower ice
adhesion due to its low dielectric constant. The jet velocities required for soft ice detachment
on the entire PTFE surface are two times lower than on untreated aluminum surfaces. This
indicates that PTFE exhibits effective icephobic properties, reducing ice adhesion compared
to untreated aluminum surfaces and those treated with superhydrophobic UED.

4. Modes of ice detachment: Adhesive detachment on low-roughness surfaces (untreated
aluminum and PTFE adhesive tape-treated surfaces). Cohesive detachment on rougher
surfaces, such as aluminum surfaces treated with UED superhydrophobic coating.

From a comprehensive perspective, applying a PTFE coating or adhesive ribbon to the ice slurry
generator can reduce the energy required to remove ice from a surface. However, further investigation
is needed to assess the durability and resistance of these coatings under low-temperature immersion
conditions, especially when used in ice slurry generators for the food sector to ensure food safety.
Moreover, future studies should examine ice adhesion on different surfaces using various methods such
as centrifugation or shear, incorporating different mixtures to evaluate the effect of additives like ethanol
and glycol in water on the nature of ice and its adhesion to surfaces.
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Appendix A: Measurement uncertainty of liquid jet velocity and ice detachment
length (Lp) for the case of untreated aluminum surface.

The data related to the liquid jet velocity and ice detachment length (Lp) from Figure 22,
which represents the evolution of the average ice detachment length Lp as a function of the
average velocity at the nozzle outlet in the case of an untreated aluminum surface, are detailed
in Tables Al, A2, and A3, along with their absolute uncertainties. The data are provided for
each studied surface temperature (-6 °C, -8 °C, and -9 °C).

Table A.1: Absolute uncertainties of the measurements of liquid jet velocities and ice detachment
lengths (Lp) for the case of the untreated aluminum surface temperature of —6 °C.

Untreated aluminum surface temperature of -6°C
Average liquid jet Absolute Average ice Absolute
velocity uncertainty of the detachment uncertainty of ice
(ms™) liquid jet velocity length Lp detachment length
(ms™h (m) Lp (m)
0.51 +0.062 0 0
0.64 +0.004 0.031 +0.0016
0.81 +0.0155 0.059 +0.0037
1.11 +0.042 0.094 +0.0038
1.39 +0.031 0.116 +0.0027
1.60 +0.085 0.129 +0.0046
1.90 +0.03 0.139 +0.0012
2.03 +0.062 0.149 +0.0027
245 +0.0134 0.160 0

Table A.2: Absolute uncertainties of the measurements of liquid jet velocities and ice detachment
lengths (Lp) for the case of the untreated aluminum surface temperature of —8 °C.

Untreated aluminum surface temperature of —8 °C
Average liquid jet Absolute Average ice Absolute
velocity uncertainty of the detachment uncertainty of ice
(ms™) liquid jet velocity length Lp detachment length
(ms™h (m) Lp (m)
0.64 +0.008 0 0
0.83 +0.016 0.036 +0.0056
1.09 +0.075 0.063 +0.0023
141 +0.087 0.080 +0.0078
1.62 +0.046 0.094 +0.0035
1.87 +0.07 0.115 +0.0013
2.04 +0.065 0.125 +0.0071
245 +0.0052 0.149 +0.0026
2.84 +0.026 0.160 0
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Table A.3: Absolute uncertainties of the measurements of liquid jet velocities and ice detachment
lengths (Lp) for the case of the untreated aluminum surface temperature of —9 °C.

Untreated aluminum surface temperature of -9 °C

Average liquid jet Absolute Average ice Absolute
velocity uncertainty of the detachment uncertainty of ice
(ms™) liquid jet velocity length Lp detachment length

(ms™h (m) Lp (m)
1.08 +0.005 0 0

1.40 +0.034 0.034 +0.0026

1.61 +0.111 0.066 +0.0214

1.89 +0.07 0.091 +0.0054

2.13 +0.052 0.106 +0.0095

2.45 +0.075 0.124 +0.0060

2.85 +0.025 0.134 +0.0067

Appendix B: Measurement uncertainty of liquid jet velocity and ice detachment
length (Lp) for aluminum surfaces treated with PTFE adhesive tape and for
aluminum surfaces treated with UED.

The data related to the average liquid jet velocity and average ice detachment length (Lp)
from Figure 25 are provided for the case of aluminum surfaces treated with PTFE adhesive
tape, as well as for the case of aluminum surfaces treated with the Ultra Ever Dry (UED) coating
(superhydrophobic). The data, along with their absolute uncertainties, are detailed in Tables B1
and B2 for the surface temperature case studied, —8 °C.

Table B.1: Absolute uncertainties of the measurements of liquid jet velocities and ice detachment
lengths (Lp) for the case of aluminum surfaces treated with PTFE adhesive tape with a surface
temperature set at -8 °C.

Aluminum surfaces treated with PTFE adhesive tape
Average liquid jet Absolute Average ice Absolute
velocity uncertainty of the detachment uncertainty of ice
(ms™) liquid jet velocity length Lp detachment length
(ms™h (m) Lp (m)
0.15 +0.013 0 0
0.38 +0.051 0.032 +0.0102
0.63 +0.034 0.055 +0.0053
0.84 +0.034 0.079 +0.0028
1.11 +0.05 0.119 +0.0109
1.37 +0.08 0.160 0
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938 Table B.2: Absolute uncertainties of the measurements of liquid jet velocities and ice detachment
939  lengths (Lp) for the case of aluminum surfaces treated with the Ultra Ever Dry (UED) coating
940  (superhydrophobic) with a surface temperature set at —8 °C.

Aluminum surfaces treated with the Ultra Ever Dry (UED) coating
Average liquid jet Absolute Average ice Absolute
velocity uncertainty of the detachment uncertainty of ice
(ms™) liquid jet velocity length Lp detachment length
(ms™h (m) Lp (m)
0.30 +0.002 0 0
0.40 +0.003 0 0
0.50 +0.003 0 0
0.84 +0.008 0 0
1.09 +0.003 0 0
1.35 +0.075 0 0
1.54 +0.165 0 0
1.93 +0.005 0 0
2.04 +0.07 0 0
2.45 +0.026 0 0
2.85 +0.034 0 0

941
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Context

Scraped surface generators are the most commonly used in the
refrigeration industry for ice slurry production.

These scraped surface ice slurry generators have drawbacks
due to the adhesive strength of the ice:

«»Excessive consumption of additional mechanical energy.
«+High investment costs.

«»Wearing out of the scrapers.

Reduction of ice adhesion for
optimization of ice slurry
generators

« Use of additives to form a soft, porous ice layer to reduce ice
adhesion.

« Surface modification: reduction of roughness and/or use of low
surface energy coatings to reduce the adhesion force of the soft ice to
the generator surface and facilitate its detachment only by liquid flow
(hydro scraping).

« Use of an intermittent liquid jet to detach the soft ice layer after the
formation of a thin layer of 1 to 2 mm.

Aqueous mixture

Soft ice fragmentation

Nozzle with A “< Soft ice
% %

layer

intermittent liquid jet






