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Abstract

Ongoing climate change will both profoundly impact land-use (e.g. changes in crop species or cultivar and
cropping practices) and abiotic factors (e.g. moisture and temperature), which will in turn alter plant-
microorganism interactions in soils including soil-borne pathogens (i.e. plant pathogenic bacteria, fungi,
oomycetes, viruses and nematodes). These pathogens often cause soil-borne disease complexes, which, due
to their complexity, frequently remain undiagnosed and unmanaged leading to chronic yield and quality
losses. Root exudates are a complex group of organic substances released in the rhizosphere with potential
to recruit, repel, stimulate, inhibit, or kill other organisms including the detrimental ones. An improved
understanding of how root exudates affect inter-species and/or inter-kingdom interactions in the
rhizosphere under ongoing climate change is prerequisite to effectively manage plant-associated microbes
including those causing diseases.
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Root exudates: complex organic substances relased in the rhizosphere

Root exudates are a complex group of organic substances released in the rhizosphere and are mostly soluble
and liquid [1,2]. Root exudates are rich in sugars, amino acids, organic acids, vitamins, nucleosides,
phytosiderophores, phenolic compounds, fatty acids, among others, including some still unidentified
substances [3-6]. Root exudation occurs passively (i.e. by diffusion due to osmotic differences between the
soil solution and root cells) or actively (i.e. by secretion). From 5 to 25% of the photosynthetically fixed
carbon can be released by soil-grown plants as root exudates into the rhizosphere [7-9]. The production of
root exudates is specifically linked to the plant species, their genotypes, the plant growth stages, and the
nearby biotic and abiotic environment [10,11]. Overall, root exudates play an important role in plant growth
by shaping plant-microorganism interactions in the rhizosphere (Box 1).

Box 1. Root exudates as plant growth promoters in the rhizosphere

The rhizosphere is a 'hot spot’ of microbial interactions as rhizodeposits released in solid, liquid or gaseous
forms by plant roots are a main food source for microorganisms that constitute a driving force of their
population density and activities [3,12-16]. Plants have developed several mechanisms to secrete
metabolites into the rhizosphere, including different types of passive and active transports [17]. Each
pathway is responsible for the release of different molecules depending on their nature: diffusion releases
low molecular weights, ionic channels release carbohydrates and vesicle transport excretes metabolites
with high molecular weight stored in vesicles [5]. Active transport mechanisms rely on transporter proteins
found in the membranes of root cells that secrete different types of metabolites [17]. Plants can also modify
soil pH through changes in root exudate composition, which may increase nutrient availability but also
affect pathogenic and beneficial bacteria, fungi, oomycetes, and nematodes [13,18,19].

One of the notable and particularly beneficial effects of root exudates for the plant is their ability to attract
bacteria and fungi that stimulate production of compounds promoting plant growth [20-23]. Examples are
Azospirillum lipoferum and A. brasilense releasing phytohormones including auxins favorable to the
growth of wheat and maize [24], Pseudomonas fluorescens and P. aeruginosa promoting the growth of rice
by producing indole acetic acid [25], P. monteilii releasing gibberellin and salicylic acid, near tomato roots
in presence of organic acids and sugars [26]. Root exudation in maize and potato modifies transcriptomic
and gene expression responses thereby improving the recruitement of Gram-positive bacteria Bacillus
amyloliquefaciens, B. atrophaeus or B. mycoides involved in the plant-growth promotion [27-29]. Likewise,
arbuscular mycorrhizal fungi alter root exudation in Lotus japonicus to cultivate a beneficial microbiome for
plant growth [30].

Root exudates: a hidden arsenal for plant defense?

Root exudates can directly recruit, repel, stimulate, inhibit, or kill other rhizosphere organisms including
detrimental ones (Table 1). Phytopathogenic fungi and oomycetes are attracted by trophic sources
constituted by root exudates or by signal molecules indicating the presence of a host plant of interest. To
counteract infection and defend themselves against phytopathogens, plants, through their root exudates,
release an arsenal of metabolites into the rhizosphere [31]. The nature and relative abundance of
components in root exudates have a profound effect on shaping the soil microbial communities, including
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pathogen populations. Some root exudates exhibit antibacterial, antifungal, or nematicidal properties that
directly or indirectly help the plant in controlling detrimental microorganisms (Table 1).

Table 1. A non-exhaustive list of references published in the last decade (2014-2023) showing potential of
root exudates in attracting biocontrol agents and repelling soil-borne pathogens leading to improved
disease management

Root exudating plant Compounds identified in  Attracted biocontrol agents and/or Disease in
. . ; . References
species root exudation affected soil-borne pathogens question
Bacillus amyloliquefaciens/Fusarium
Banana Phenolic acids oxysporum f. sp. cubense Fusarium wilt [32]
Phytophthora
Common bean Isoflavone phytoalexins Phytophthora sojae root rot [33]
Phenolic acids and
Legumes flavonoids Fusarium oxysporum f. sp. cubense Fusarium wilt [34]
Bacillus amyloliquefaciens/Fusarium
Maize Lipopeptides graminearum Maize stalk ot~ [35]
Cinnamic acid, 2-
dodecenoic acid, and 12-
Panax notoginseng oxo-phytodienoic acid Burkholderia sp. B36 Root rot [36]
Chinese cabbage
Potato onion Not determined Plasmodiophora brassicae clubroot [37]
Tobacco black
Rapeseed Antimicrobial compounds  Phytophthora parasitica var. nicotianae  shank disease [38]
Fusarium oxysporum, Botrytis cinerea
Tomato Extracellular vesicles and Alternaria alternata Soil-borne [39]
Trichoderma atroviride/Phytophthora  Phytophthora
Tomato Carbohydrate exudate cinnamomi root rot [40]
Bacillus amyloliquefaciens/Ralstonia
Tomato Organic compounds solanacearum Bacteria wilt [41]
Trichoderma harzianum/Fusarium
Tomato Volatile organic compounds  oxysporum f. sp. lycopersici Fusarium wilt [42]
Maize and soybean Phytophthora
intercropping Phenolic acids Phytophthora sojae root rot [43]
Potato Organic compounds Spongospora subterranea Powdery scab [44]
Phenolic acids, organic
Wheat/faba bean acids, amino acids and Faba bean
intercropping sugars Fusarium oxysporumf. sp. fabae fusarium wilt [45]
Wheat/watermelon Fusarium wilt of
intercropping Not determined Fusarium oxysporum f. sp. niveum watermelon [46]

There is a long research history about how plant exudates stimulate pathogen development and microbial
interactions in the rhizosphere (see seminal review by Lockwood [47] and references therein). For instance,
egg hatching in cyst nematode Globodera pallida Stone (Tylenchida: Heteroderidae) is stimulated by host
plant root exudates rather than by soil microbiota composition [48]. The soil-borne fungal pathogen
Fusarium oxysporum reorients its hyphal growth towards a variety of chemical signals in the presence of root
exudates produced by the host plant tomato [49]. In the Arabidopsis thaliana-Pseudomonas simiae WCS417
model system, the root-specific transcription factor MYB72-dependent coumarin exudation shapes root

3



60
61
62
63
64
65
66
67

68
69
70
71
72
73

74

75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93

94
95

96
97
98
99
100

microbiome assembly to promote plant health [50]. How a beneficial or pathogenic soil-borne organism
draws benefits from root exudates seems also dependent on the soil microbial community composition. For
example, competitive use of root exudates by the soil-borne biocontrol agent B. amyloliquefaciens enables it
to control the tomato bacterial wilt pathogen Ralstonia solanacearum [41]. However, the types and amounts
of exudates secreted by plant roots are determined both by plant genotypes and environmental factors [51]
and as such will be influenced by seasonal and climate changes. Hence, it is perhaps not surprising that
findings on beneficial or detrimental effects of root exudates on plant health are often inconsistent and
context dependent, warranting further investigations.

Infection by phytopathogens triggers the plant's defense reactions. In pea, pisatin, an isoflavonoid that
confers resistance to the plant, is secreted by the plant following attacks by the oomycete Aphanomyces
euteiches, the causal agent of pea root rot [52]. However, foliar infections also lead to a change in the nature
of root exudates resulting in an increase in plant resistance to both below- and above-ground pathogens
[53]. The strategies and biochemistry implemented by plants to activate the defense mechanisms against
their pathogens via root exudates have been reviewed [17].

Soil-borne pathogens and soil-borne disease complexes

Soil-borne pathogens are characterized by three key traits: i) they infect plants through below-ground
organs; ii) they act as saprotrophs, hemibiotrophs or parasites on roots, stems and/or leaves of herbaceous
or woody plants; and iii) they cause monocyclic, in some cases polyetic and, more rarely, polycyclic diseases.
Soil-borne pathogens are responsible for chronic crop yield and quality losses in agricultural settings, but
also severe decline of natural ecosystems.

Effective management of soil-borne diseases is often difficult as the rhizosphere is not directly accessible to
crop protection interventions. Indeed, the soil buffering capacity may protect soil-borne pathogens from
adversities such as heat, drought or cold stresses. In addition, soil-borne pathogens inside infected host
tissue are inaccessible to mycoparasites affecting biocontrol activities. Therefore, favoring root exudation is
an important strategy to recruit microorganisms having potential to containing or suppressing the disease
caused by soil-borne pathogens. This is why the search for new ideotypes and genotypes adapted to the
abiotic stresses triggered by climate change must also take into account the ability of plants to produce
exudates to maintain the interaction with the rhizobiome. This is especially true for managing soil-borne
disease complexes that are caused by a complex interaction among soil-borne pathogens (Figure 1). The
order/succession of host infection by each pathogen in a disease complex and its trophic level might affect
the nature of interaction that these pathogens eventually develop during disease occurrence. Overall,
disease complexes are caused by multiple infections, either simultaneous or sequential, leading to
competitive interactions among pathogens involved in an infection process that shapes pathogen
coexistence [54].

Dealing with knowledge gaps: root exudates and soil-borne disease complexes under changing
climate

Climate change can have direct and indirect effects on soil-borne disease epidemics, as climate change
affects host susceptibility, the survival of pathogen inoculum, the rate of disease progress and epidemic
duration [55]. The proportion of soil-borne pathogens increases with warming [56] and understanding
factors limiting their propagation is critical in forecasting their impact on human well-being and ecosystem
sustainability under projected climate and land-use change scenarios.
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While precise consequences of climate change for soil-borne pathogens are difficult to predict, climate
change influence on soil-borne pathogens will be predominantly plant stress mediated, where released root
exudates play a key role in recruitment of microorganisms enhancing or suppressing a disease. For instance,
in the US midwest, climate change results in warmer springs with heavier precipitation events which will
increase plant stress and soil-borne disease epidemics [57-59]. In southern Australia, increased severity of
rhizoctonia diseases [60,61], but decreased severity of some soil-borne oomycete disease epidemics [62] on
field crops, are associated with decreasing growing season rainfall from climate change . In northern France,
the evolution of the pathogen complex responsible for the pea root rot accross seasons reveals a
replacement of oomycetes having an optimum of growth and activity in cold and wet periods by
ascomycetes, in particular Fusarium sp., having an optimum growth and activity under warmer and dryer
periods [63]. This minor time scale scenario likely indicates the possible evolution of the pathogen
complexes that crops will face under hot and dry weather triggered by climate change. In the last 15 years, a
profound change in drought and rain periods during crop cycles has been reported across traditional
agricultural areas, worldwide [64]. Some of the agricultural areas previously characterized by hot and dry
summers under Mediterranean basin are now experiencing longer rainfall periods during summer. Under
these circumstances, it is important to understand how ongoing climate change will affect the root
exudation process and how all this will influence the rhizobiome. Overall, while several studies focused to
understand the effect of root exudates on beneficial or pathogenic soil-borne organisms, all these studies
have five key limitations.

e Most studies focused on specific pathosystems for a specific cropping season, entailing only one
host plant and a beneficial or harmful organism. This is not consistent with reality where inter-
species and/or inter-kingdom interactions occurring among a myriad of organisms shape semi-
quantitative changes in composition of root exudates. Indeed, there is increasing evidence that soil-
borne diseases are primarily caused not by individual species but by pathogenic complexes [65-68]
where each pathogen within a soilborne complex is differentially affected by environment, with the
complexity of soilborne pathogens x environment interactions highlighted by the multifaceted and
contrasting interactions such as those associated with temperature and moisture [62]. The
unpredictable and ever-changing proportions of different pathogens within complexes across
seasons and locations further increases this complexity [63]. In addition, synergistic and/or
antagonistic interactions occur not only between soil-borne pathogens but also between soil-borne
pathogens and other beneficial and/or commensal organisms constituting the soil microbiome. The
latter plays a positive role in the soil food web as well as in soil and plant health since the bulk of
the plant microbiome is concentrated belowground at the plant root-soil interface.

e Most studies generally focused on a single cropping or natural ecosystem with a unique, yet often
undefined, set of environmental (e.qg., soil, host) characteristics, missing the opportunity to assess
the advantages/disadvantages of different host(s), soil type, soil amendments, tillage and cropping
systems to define the most beneficial future scenarios. While such a systemic approach is difficult to
implement locally, an increasing number of meta-analyses make it possible to combine field
observations and experimental results conducted under contrasted conditions that helps determine
the most favorable biotic and abiotic parameters to plant health [69-71].

e |t remains unknown whether beneficial and soil-borne pathogens use the same or different root
exudate molecules to proliferate in the rhizosphere of diverse plant species because a taxon,
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pathogenic for one plant can be beneficial for another by using the same root exudate. Conversely,
the same fungal species such as Fusarium oxysporum for example, can harbor pathogenic and non-
pathogenic populations having quasi-identical ecological requirments in the same rhizosphere.
Actually, the relative success of soil-borne pathogens and mutualists in their respective association
with plant roots is also affected by the degree of activity of microbes that antagonize or support
them. Such microbe-microbe interactions, mediated via root exudates and microbial-specific
production and perception of molecules, provide important ecosystem services to the plant [72]. In
the case of competition between pathogenic and non-pathogenic populations of £. oxysporum, the
outcome of competition in favor of non-pathogenic populations was strongly dependent on the
production of siderophores by a population of fluorescent Pseudomonas. The non-pathogenic strain
of F. oxysporum is not very susceptible to iron depletion whereas the pathogenic population is
susceptible. The siderophores produced by Pseudomonas sp. create iron deficiency creating an
unfavorable environment for the pathogen. The plant therefore, has an interest in promoting the
bacterial population which not only provides it with iron but reduces the pathogenic pressure of F.
oxysporum [73]. Therefore, it is essential that plants maintain their root exudation potential despite
climate change, which is vital to also maintain high microbial diversity and activity in their
rhizosphere. All this, in turn, will lead to improved root architecture, enhanced nutrient uptake,
promotion of plant growth, activation of induced systemic resistance, and suppression of soil-borne
pathogens and microbes that stimulate induced systemic susceptibility as shown in maize grown
under warm climatic conditions [74]. Another example is the case of fungal pathogens with
hypovirulence-associated mycoviruses that grow endophytically in roots and have shown potential
as microbial biocontrol agents from the mycelial film they form around the root surface and with
masses of hyphae in root cells and/or root intercellular spaces [75]. Similarly, there remains
potential to further explore and exploit non- or weakly-pathogenic strains of important soilborne
pathogens like Rhizoctonia. These strains are well adapted to the same ecosystem processes as are
the more pathogenic Rhizoctonia strains and colonize roots even in the presence of more
pathogenic strains, increasing seedling emergence and plant size [76,77]. For both these examples,
the observed benefits are likely associated with changes in root exudates, yet this remains
unconfirmed and further investigation is required to explore and exploit their potential for future
management of soilborne diseases and their complexes.

While there is an established link between drought resilience (i.e., climate change) with
endophytes, opportunities to understand and exploit the full array of benefits from endophytes
seem overlooked. For example, the ability of endophytes to make plants such as ryegrass much
more drought-resilient has been demonstrated [78]. Yet, such plants with fungal endophytes will
almost certainly also have greater soilborne-disease-resilience associated with significant changes
in root exudates. For example, the endophyte Epichloé festucae var. lolii in Lolium perenne results
in >80 metabolites being differentially present or genes being expressed in endophyte presence vs
absence plants. Similarly, recent comparative molecular analyses of the diversity of endophytic
fungal communities of a range of plant species showing presence or absence of disease symptoms
revealed that asymptomatic plants harbored a taxa core absent from the symptomatic ones [79].
This raises the question about the potential role of these taxa in plant protection (e.g. antagonism
toward pathogens, stimulation of plant defense reactions) and how we can ensure and boost their
presence under climate change situations. Further research is needed to connect such changes in
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root exudate chemical composition with ecosysystem processes, including recruitment of
endophyte taxa and subsequent effects on soil-borne disease complexes.

e Although drought has been reported to affect the quantity and quality of root exudation [80],
drought is only one of the stresses due to climate change and it remains unknown if and how
different stresses generated by ongoing climate change will affect the quantity and composition of
root exudates. This may occur either by modifying soil physical (e.g. soil moisture, temperature) or
chemical (e.g. soil organic matter, pH) parameters as a consequence of changes in soil organic
carbon dynamics, especially in the mid-to long-term. For instance, root exudates alter the
expression of diverse metabolic, transport, regulatory, and stress response genes in rhizosphere
Pseudomonas spp. [81]. Despite these complexities and challenges, there are significant, yet
unexploited, opportunities to better understand and then to manipulate the ecosystem
environment towards novel and improved management solutions of soil-borne pathogen
complexes under changing climate conditions [82]. Root exudates form a two-way direct
communication pathway between plants and rhizosphere microbes that likely influences plant
growth and development under fluctuating environments, especially under climate change.
Therefore, a better understanding of the mechanisms of root exudation and microbial metabolite
reception/recognition contributing to future sustainable crop protection is critical.

Crop management practices as a key lever to modulate root exudation under climate change?

Climate change is expected to impact land use and cover at various temporal and spatial scales directly and
indirectly by altering disturbance patterns, species distributions, and suitability of land for specific uses [83].
To cope with climate change, multicropping practices that ensure better soil vegetation cover (e.qg. relay-,
cover- and inter-cropping) need to be designed, tested and adopted. The current agricultural model is
largely dominated by monocropping while multicropping based on spatio-temporal diversity of crops may
have potential to improve resource use efficiencies and resource complementarities that will help manage
biotic and abiotic stressors in the rhizosphere (Figure 2a). For instance, pea is a lequme that can fix
atmospheric nitrogen via root symbiotic bacteria and bring some of it to the soil through exudates in the
form of amino acids (e.g. proline, homoserine and alanine) that increase plant tolerance to drought. At the
same time, pea is also able to perform arbuscular mycorrhizal symbiosis that further confers tolerance to
biotic and abiotic stresses. On the other hand, maize cannot fix atmospheric nitrogen in the soil but is
strongly mycorrhizal dependent. In contrast, oilseed rape has neither nitrogen fixing nor mycorrhizal
capacity but it is a glucosinolate-containing plant species characterized by soil-borne pathogen suppressing
ability. Growing these crops in association via multicropping (e.g. cover-, inter- or relay-cropping) may thus
modulate the type and quantity of root exudates in the rhizosphere with the consequent positive impact on
beneficial soil organisms that help mitigate climate change. However, there is paucity of information in this
regard, especially as to whether multicropping of diverse plant species providing different functions has
positive or negative effects on the root exudation process, especially under climate change (e.g. increased
drought events, elevated temperature etc.) that needs further investigation. For example, does planting a
brassica crop (e.g. canola), which is one of the few non-mycorrhizal plant families, with a mycorrhizal crop
(e.g. pea or maize), reduces arbuscular mycorrhizal fungi inoculum?

Root exudation is affected by physical, chemical and biological factors including soil water stress,
temperature, light intensity, age, species and genotypes of plant, mineral nutrition, soil microbiome, degree
of anaerobiosis, and application of biologicals and chemicals (Figure 2a). Most of these factors can be
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modulated by management practices that can lead to semi-quantitative changes in composition of root
exudates and consequent inter-species and/or inter-kingdom interactions in the rhizosphere (Figure 2b).
We hypothesize that there is a negative relationship between tillage intensity and root exudation as tillage
promotes soil organic carbon oxidation and decomposition and also exposes beneficial microbes to the
external environment thereby creating unfavorable conditions for plant growth and root exudation in a more
later phase; a positive relationship between crop diversification and root exudation as well as soil carbon
storage and root exudation; and a positive or a negative relationship between crop species and root
exudation, depending on plant species and genotypes that needs to be tested. The interactions among soil,
climate and management practices can lead to semi-quantitative changes in composition of root exudates
affecting inter-species and/or inter-kingdom interactions in the rhizosphere. For example, intercropping
management of watermelon/aerobic rice alleviates the Fusarium oxysporum f. sp. niveum responsible for
watermelon wilt disease, thanks to unidentified component(s) in rice root exudates that suppress pathogen
sporulation and spore germination [84]. Likewise, pea and faba bean root exudates increase and decrease
the Aphanomyces euteiches pea root rot severity, respectively [85], thereby suggesting the importance of
multicropping in soil-borne disease management. However, the mechanisms and extent to which plant
genotypes affect the soil microbiome and the consequent soil suppressiveness to diseases remains largely
unknown to date.

Management practices that alter secretion of root exudates toward favouring beneficial organisms therefore
play a key role in promoting plant health and ecosystem functioning. However, the potentially important
ecological and environmental impact caused by minor changes in the composition of root exudation should
be studied to avoid possible negative repercussions on non-target soil organisms that are potentially
beneficial to the plant. Key changes due to climate change need a careful consideration to understand how
these events affect root exudation. For instance, Bobille et al. [86] showed how amino acids released by pea
roots are altered by a short period of induced drought. Molecules released by root exudates leave an imprint
on the soil that is critical in plant-soil microorganism interactions. Such interactions can help plants to
maintain health by better adapting to their environment.

Concluding remarks and future perspectives

Root exudates are key mediators in the interaction between plants and soil microbiota and, as such, they
affect the recruitment of beneficial microorganims and the establishment of defense reactions against plant
pathogens. Therefore, it is important to exploit the potential of root exudates to more effectively: i) attract
microorganisms directly beneficial to plants per se and/or those indirectly benefiting plants throught
antagonisim to pathogens, ii) increase resistance to abiotic stresses, iii) promote plant growth and health
while reducing the use of fertilizers and synthetic plant protection products within the frame of
agroecological crop protection [87].

Recent technological advancement allows collection, identification and characterization of a diverse array of
metabolites present in plant root exudates [88,89]. However, our knowledge is still limited on the: i) role
these root exudate molecules play towards soil organisms (e.g. soil-borne pathogens, beneficial,
commensals); ii) changes in semi-quantitative composition of root exudates in relation to environmental
conditions, especially under climate change; and iii) potential of crop management practices to steer root
exudation processes, especially by promoting increased species diversity and vegetation cover duration.
Medium- to long-term studies focusing on root exudate - crop management interactions are non-existent
but are urgently needed to quantify the role of root exudation on more ecologically-relevant timescales.
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Recent advancement in molecular and sequencing tools help improve understanding of soil microbiome
taxonomic and functional diversity although there is still need to define more precisely the role and relative
importance of each of the active or latent gene clusters in the rhizosphere. A paradigm shift in research to
understand these complexities is needed. However, this is only possible by shifting focus from mono-
disciplinary to multi- and inter-disciplinary research via greater collaboration between agronomists, soil
microbial ecologists, phytopathologists, soil scientists, and soil chemical ecologists. This will foster
development of new methodologies while strengthening the existing ones in order to elucidate how root
exudates affect inter-species and/or inter-kingdom interactions in the rhizosphere under ongoing climate
change. Finally, this will lead to sustainable and durable management of soil-borne disease complexes
while ensuring ecological functioning across natural or agricultural settings.
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Glossary

Allelopathy: biological phenomenon whereby an organism produces one or more biochemical
substances that influence the germination, growth, survival and reproduction of other organisms.

Chemoattractants: chemical substances causing stimulation, polarization and locomotion of
eucariotic or procariotic cells.

Commensals: microorganisms that colonize an organism without any positive or negative effects.

Hemibiotrophs: pathogens that keep their host alive while establishing itself within the host tissue,
taking up the nutrients with brief biotrophic-like phase prior to switching to a necrotrophic life-style,
where it kills the host cells, deriving its nutrients from the dead tissues.

Monocyclic disease: disease having only one life cycle in one year.

Mycoparasites: fungi that are parasitic on other fungal species and grows on their mycelium or
fruiting body.

Parasites: organisms living on (ectoparasite) or in (endoparasite) other organisms and feeding on
the hosts without destroying them as long as their life cycle is not complete.

Phytohormones: organic chemicals produced by plants that regulate their growth, development,
reproductive processes, longevity, and even death.

Phytosiderophores: iron-solubilizing compounds released by plant roots.

Phytotoxins: toxic chemical compounds produced by plants, most often having defense fuction.
Polyetic disease: disease that continues developing from one growing season to the next.
Polycyclic disease: disease that completes two or more life cycles in one year.

Rhizodeposition: the excretion of inorganic and organic elemental solution from living roots.

Resting spore: spore that remains dormant for a period before germination often to survive adverse
environmental conditions.

Rhizosphere: the region of the soil directly formed and influenced by the roots and associated
microorganisms that are part of the plant microbiota.

Root exudates: a suite of substances in the rhizosphere that are secreted by the roots of living plants
and microbially modified products of these substances.

Saprotroph: organism that feeds and grows on dead organic matter.

Soil-borne pathogens: microorganisms surviving and operating in the soil at least during part of
their lives infecting healthy plants belowground.

Soil-borne disease complexes: diseases resulting from the contributions of multiple soil-borne
pathogens that attack plants either simultaneously or at different time points.

15



514
515

516
517
518
519

520

521

522

523

Soil food web: a complex living system represented by the community of organisms living all or part
of their lives in the soil in interaction among them.

Soil microbiota/microbiome: Dynamic community of microorganisms (microbiota) or their DNA
(microbiome) within the soil. Although often used interchangeably, microbiota includes living
microorganisms while microbiome refers to the living and dead microorganims represented by
their DNA as well as the functional potential of the microbiota.

Strigolactones: a group of chemical compounds produced by plant roots.
Trophic sources: feeding and nutrition sources.

Vesicles: membrane-bound organelles that transport material within or outside the cell.
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528  Figure 1. Key soil-borne plant pathogenic genera leading to soil-borne disease complexes. A disease
529  complex can be caused by inter-species (green circle) and/or inter-kingdom interactions (orange circles)
530  among plant pathogenic (PP) organisms in the rhizosphere. The order/succession of host infection by each
531  pathogen in a disease complex can be simultaneous or sequential. The severity of a given soil-borne disease
532 on a given host due to multi-infection depends on three kinds of interactions (competition, cooperation or
533 inhibition) not only among pathogens but also with other soil-dwelling organisms, host and environmental
534 conditions (see Figure 3). Soil-borne disease complexes due to soil-borne viruses are vector-mediated and
535  mostsoil-dwelling pathogens including nematodes, fungi and bacteria act as their vector.
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Figure 2. Schematic representation of key above- and below-ground factors affecting the root exudation
process (a) and a hypothetical overview of key cropping practices that may affect the root exudation process
in interaction with soil and climate (b). Unlike some available knowledge about the effect of current
monocropping systems on the type and quantity of root exudates, there are severe knowledge gaps as to
whether multicropping systems under future climate change will alter inter-species and/or inter-kingdom
interactions in the rhizosphere and how all this modulate the quantity and quality (absolute and relative) of
root exudates, microbial community and functioning and soil suppressiveness to soil-borne pathogens.
VOCs: volatile organic compounds; R: rhizobia promoting atmospheric nitrogen fixation; M: mycorrhization;
SMs: secondary metabolites; OA: organic acids; CD: crop spatio-temporal diversification; T: tillage; SCS: soil
carbon storage; RE: root exudattion.
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