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2 Introduction

Grasslands cover approximately 40% of the Earth’s land area, encompassing nearly 70% of the global agricul-
tural land area, and are distributed on all continents and across all latitudes (Suttie et al., 2005; White et al.,
2000). Grassland dynamics influence global ecosystem functioning, and their impact is widely modulated by
management practices intensity on these landscapes (Zhao et al., 2020). Management practices are primarily
driven by grassland landscape maintenance, as well as by ecosystem service of provisioning offered by the
grasslands. Grasslands are subject to management practices such as mowing or grazing or a combination
of both. Therefore, monitoring grassland management practices is essential for assessing management in-
tensity level, which in turn plays a critical role in studies related to biodiversity (XXXX), water (XXXXX)
and carbon (XXXXX) cycling and others topics (XXXX). In France, the National Observatory of Mowed
Grassland Ecosystems conducts birdlife monitoring in mowed grasslands, with a particular focus on the rise
in breeding failures attributed to increasingly early mowing. Early mowing intercepts birds’ reproductive
period and interrupts their breeding process (Broyer et al., 2012). Usually, responsible agencies conduct
occasional observation campaigns to support ecosystem-related public policies, but ground observations are
not spatially exhaustive and are time-consuming. As an alternative source, synoptic remote sensing data
enables regular and global-scale monitoring, enabling tracking of vegetation dynamics. Currently, Sentinel-2
mission provides cost-free high resolution data at 10m spatial resolution with a 5-day temporal frequency (10
days before 2017), allowing intra-plot level observations. Grassland mowing events timing and intensity have
already been mapped using remote sensing-based time series, mainly from features sensitive to vegetation
status, such as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf
Area Index (LAI) and more. There have been several methods used to detect mowing events from satellite
time series. These methods were mainly based on temporal changes in time series using threshold-based
methods and anomalies detection approach. More recently, deep learning-based architectures were also used
to detect mowing events timing.

Estel et al. (2018) assessed grassland use intensity spatial patterns across Europe. To extract annual
mowing frequency, a temporal change analysis based on spline-adjusted MODIS NDVI time series was used.
Their approach involved identifying mowing events as instances where a local minima exhibited a change,
relative to its preceding peak, exceeding 10% of growing season amplitude. The results showed an overall
accuracy of 80%, which decreases as the frequency of events increases. In northern Switzerland, Kolecka
et al. (2018) also estimated mowing frequency employing similar temporal change analysis, but based on raw
Sentinel-2 NDVI time series. Here, a drop in NDVI greater than 0.2, between two consecutive cloud-free
acquisition dates, was counted as a mowing event. Their method accurately identified 77% of observed events
and highlighted that false detection can occur due to residual cloud presence, while sparse time series led to
the omission of mowing events. Regarding Griffiths et al. (2020), mowing events frequency and timing were
mapped in Germany using 10-day composite Harmonized Landsat-Sentinel NDVI time series. Discrepancies
between a hypothetical bell-shaped curve and the current polynomial-fitted curve were evaluated. An event
was counted when the difference exceeded 0.2 NDVI. Findings revealed consistent spatial patterns in mowing
frequency (indicating extensive and intensive management). However, estimated dates exhibited significant
discrepancies compared to observed dates (MAE > 50 days), which could be due to lower temporal resolution
of Sentinel-2 before 2017 and the absence of reliable ground data for calibration and validation. Stumpf et al.
(2020) mapped grassland management (grazing or mowing) and its intensity based on biomass productivity
and management frequency, respectively. The latter were extracted from n-day composite Landsat ETM +
and Landsat OLI NDVI time series. As in previous cases, a management event was counted when NDVI loss
is higher than a threshold, which was based on the probability density function of all NDVI changes across
the time series and was specified for p = 0.01. Their approach yielded management patterns consistent with
several management-related indicators (species richness, nutrient supply, slope, etc). Recently, Watzig et al.
(2023) estimated mowing events in Austria, using Sentinel-2 NDVI time series and implementing discrepancy
analysis between a idealized unmowed trajectory and actual NDVI values. An event was recorded if the
difference exceeded -0.061. Commission errors due to residual clouds were reduced via a subsequent binary
classification of each estimated event using a gradient boosting algorithm trained over cloudy plots. Findings
indicated an overall accuracy of 80% in correct event detection, with estimated dates closely aligning with
observed dates (MAE < 5 days). Vroey et al. (2022) developed a algorithm for detecting mowing events
across Europe. Here, raw Sentinel-2 NDVI and Sentinel-1 VH-coherence time series were used separately.
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A mowing event was deemed when temporal change exceeded -0.15 NDVI and 1.0 VH-coherence standard
deviation, multiplied by a factor (3.0× 10−7), respectively. VH-coherence standard deviation was calculated
from residuals of the six preceding observations. These residuals capture disparities between linear-fitted
values and actual values. In the final product, Sentinel-1 outputs were considered when Sentinel-2 omitted
events due to cloud cover. Results demonstrated synergy between optical and radar data in detecting
mowing events (F1-score of 79%). Using only Sentinel-2 data achieved maximum precision, but combining
both sensors boosted recall significantly. In the same focus to evaluate optical and radar data synergy,
Reinermann et al. (2022) mapped mowing frequency across Germany, from Sentinel-2 EVI and Sentinel-
1 PolSAR entropy time series separately. A mowing event was counted when temporal change exceeded
-0.07 EVI, which was calculated between two consecutive critical points (local minima and its preceding
local maxima). S1-based detection was used to find potentially missed mowing events in cloudy gaps (>
25 days) in optical observations. Here, the change needed to exceed 0.05 entropy between a peak and a
preceding trough. Findings showed that S2-based method correctly detected 60.3% of mowing events with
an F1-Score of 0.64. However, combining S1 and S2 increased recall but also caused more false positives,
lowering precision. To reduce cloudy gap in optical time series, Schwieder et al. (2022) combined Sentinel-2
and Landsat-8 EVI time series for mowing events detection in Germany. They analyzed the discrepancies
between actual observations and an idealized temporal profile (unmowed regime). An event was recorded
when difference exceeded the mean value of all absolute residuals. Also, the detected point needed a loss
greater than 1.0 standard deviation (of actual time series) compared to the previous point. Overall, detected
mowing dates exhibited an average absolute difference < 12 days compared to observed dates. Mowing events
were detected with an average F-score of 0.60, while the estimation of their frequency showed a mean error
< 40% of the actual number of mowing events. They highlighted that performance was lower in areas with
less cloud-induced observations. While threshold-based methods have shown promise in detecting mowing
events, some more complex approaches have also been explored. Komisarenko et al. (2022) estimated mowing
events timing at plot level in Estonia, using a 1-D Convolutional Neural Networks (CNN) on Sentinel-2- and
Sentinel-1-based features time series. Although fourteen features were used, NDVI and the harmonic mean
of VV and VH coherence were considered the most relevant. Their approach yielded an accuracy of 73%,
outperforming similar ones. Here, most of the incorrectly estimated events were observed when optical time
series were sparse or the size of the plot was small. For three regions in Germany, Lobert et al. (2021)
also used a similar deep learning approach (1-D CNN) on Sentinel-2/Landsat-8- (data cube) and Sentinel-
1-based features time series for mowing event frequency and timing detection. Among all studied feature
combinations, the highest overall accuracy was reached when combined NDVI, backscatter cross-ratio and
coherence with an F1-Score of 0.84. Estimated mowing dates showed a MAE of 3.79 days compared with
the observed dates. In terms of management intensity, low-intensity grasslands were overestimated, while
high-intensity grasslands were underestimated.

****************************************************************** Our approach:
In France, local remote sensing-based studies have already been conducted to discriminate grassland

management practices in the northwest (Dusseux et al., 2014) and detect mowing events in the southeast
(Courault et al., 2010).

Why first event only??? Considering environmental challenges in mowed grassland, as an indicator
of management intensity, fulfillment of ecological policies for avifauna conservation, to support grassland
management monitoring system at national level in France

Here, as a complement to previous efforts, we focused on mapping grassland first mowing event date
using Sentinel-2-based features time series, primarily to support grassland management monitoring system
at national level in France. Based on the state-of-the-art, we conducted a comprehensive evaluation of both
machine learning- and threshold-based approaches, either already implemented in mowing event detection
or chosen for their promising potential in this specific task. These methods were implemented via Iota2

(https://docs.iota2.net/).
How is the document organized?
This paper is organized as follow : ...
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3 Methods

3.1 Study area

Our study area covers grassland across France, which represent about 32% (84 225 km2) of the agricultural
area declared in the metropolitan Land Parcel Identification System (Cantelaube & Carles, 2014) in 2022
(Figure 1). Grasslands cover regions that are less suitable for agricultural activities due to unfavorable
climatic or site conditions (high altitudes, steep slopes, poor or wet soils). In France, grasslands are found
in mountain chains in the center (Massif Central), western (Massif Armoricain), eastern (Jura and Vosges),
Alps and Pyrenees, as well as in plains and wet regions. These grasslands are often divided into small
plots, with 75% of them covering less than 3.0 hectares. Larger plots, exceeding 5.0 hectares, are mainly
concentrated in specific regions like the Massif Central and Jura. Here, grasslands predominantly fall into
two categories: permanent grasslands, characterized by uninterrupted herbaceous cover for over 5 years (84%
of declared grassland area in 2022), and temporary grasslands. Both permanent and temporary grasslands
are subject to management practices such as mowing or grazing or a combination of both. The intensity of
these practices varies widely between plots, influenced by factors such as climate, altitude, accessibility, and
individual farmer preferences. Lower altitudes tend to offer more favorable conditions for mowing and more
intensive management. In France, grassland growing season spans from spring to autumn (March to October)
and mowed grasslands are generally managed extensively, with one or two mowings per year, but in some
cases they can be managed more intensively, with up to six mowings per year. From an ecological point of
view, timing of first mowing event is more important than frequency of mowing events along growing season.
In intensive regime, first mowing event happens before June 15th, while in extensive one, it occurs after
that date. Extensive management practices are beneficial for biodiversity (Petermann & Buzhdygan, 2021)
and birdlife (Broyer et al., 2012) and are actively promoted by the Common Agricultural Policy through
incentivized payment mechanisms.

In our study area, according to Köppen–Geiger classification (Peel et al., 2007), the climate is mainly
oceanic, with warm summers throughout the country and a Mediterranean climate in the south. Annual
rainfall is around 800-1 000 (mm), with a contrast between the western (> 1 000 mm) and the southeastern
(600-800 mm) regions. The average annual temperature is about 11-13 °C, with 20-25 degrees in summer
and 5-10 degrees in winter (https://meteofrance.com).
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figures/methods/study_area.png

Figure 1: Study area.

3.2 Reference data

In 2022, the French Agency of Biodiversity https://www.ofb.gouv.fr) coordinated an intensive campaign
of ground observations throughout the country, involving local government agencies participating in the
National Observatory of Mowed Grasslands Ecosystem network. Observations were conducted once a week
from May to August, covering a total of 2 227 plots evenly distributed across eight specific sites (Figure 1
and Table 1). These sites were selected to ensure diversity in ecology, topography, and management intensity
(Figure 1 and Table 1). For each specific site, permanent grassland plots were obtained from the 2020 Land
Parcel Identification System, a database derived from farmers’ official declarations (Cantelaube & Carles,
2014). This database provides information about plot polygons and crop types. However, each plot may
have more than one management at a given time (mowing and grazing). Therefore, we visually assessed
each plot using a national database of aerial imagery (BD ORTHO, https://geoservices.ign.fr/bdortho) and
Google Earth to identify and separate sub-plots with homogeneous spatial structure. For each actual plot,
a total of eleven observations were conducted throughout growing season. At each weekly visit, current
management practice (mowing or grazing) was recorded. An event could be ongoing during the visit or have
occurred between the current and previous visits. Consequently, observed date for a mowing event may have
an uncertainty of up to 7 days (∆t). At the end of observation campaign, each plot was labeled as mowed,
grazed or mixed (mowing + grazing) and the date of occurrence of each mowing event was recorded. Here,
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grasslands were mowed up to twice per year, but most of them were mowed only once (75% of plots). Finally,
an additional site (site 9) was included, where 38 plots were observed with a lower temporal resolution. These
grasslands are located in a national park (Parc Naturel Régional des Causses du Quercy) in the south of the
country and were monitored by local contributors (Table 1). Therefore, we established a database where
every plot was labeled in a management class. In the case of mowed plots, we additionally recorded the
dates of each observed mowing event.

Number of plots Average area (Ha) Mowed plots (%) Altitude (m) Key features
site 1 212 1.39 64 2-50 low-altitude flood grasslands
site 2 325 1.06 73 30 low-altitude flood grasslands
site 3 267 2.47 44 230-280 intensive low-plateaux grasslands
site 4 288 2.23 60 280-390 low-altitude unflood grasslands
site 5 272 2.55 78 800-950 mid-plateaux grasslands
site 6 267 3.87 82 800-850 mid-altitude flood grasslands
site 7 300 1.66 85 1100-1300 mid-plateaux grasslands
site 8 296 1.40 73 1000-1050 mid-plateaux grasslands
site 9 38 0.50 86

Table 1: Reference data.

3.3 Satellite data

All available Sentinel-2 surface reflectance L2A images captured throughout the growing season (from Jan-
uary to September 2022), intersecting our study area were used. All spectral bands (except B1, B9 and B10)
were used after resampling at 10 m to standardize pixel size between remaining bands. These images had
been preprocessed using MAJA algorithm (Lonjou et al., 2016) for atmospheric correction and cloud detec-
tion, and were downloaded from THEIA platform (https://www.theia-land.fr). Here, images were masked
from clouds and shadows resulting in a cloud-free time series. We processed a total of ninety tiles, each
having sixty images on average. Additional preprocessing were performed separately according to the task
(Table 2). We determined task-specific optimal preprocessing and features based on top-performing results
from several initial tests. For classification task, we generated a linearly interpolated time series, with a
regular 10-day time interval. In addition to original spectral bands, we also computed three spectral in-
dices: Normalized Difference Vegetation Index - NDVI (Rouse et al., 1974), Normalized Difference Water
Index - NDWI (McFeeters, 1996) and Brightness Index - BI (Escadafal, 1989). For mowing detection task,
we generated an independent data-cube according to applied approach. For machine learning methods, we
produced an interpolated time series as in classification task above. Here, however, we only used original
spectral bands and their first derivative. For threshold-based methods, we computed NDVI time series using
non-interpolated raw data.

Task Approach Spectral bands Derived features Data preprocessing
Classification B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 NDVI, NDWI, BI linear interpolation

Mowing detection Machine learning B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 band-specific 1st derivative linear interpolation
Threshold-based NDVI raw data

Table 2: Satellite data.

3.4 Grassland management map

A map of grassland management practices was generated to constrain mowing date estimation to areas
of mowed grassland. We performed a pixel-based classification task within a nationwide grassland mask
(Figure 1), derived from permanent grassland plots declared in the 2022 Land Parcel Identification System
(Cantelaube & Carles, 2014). This database only provides information about plot polygons and crop types,
but not about management practices. We trained a Shark Random forests classifier (Breiman, 2001) using
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a grassland management practices dataset (see section 3.2). From this dataset, we redefined two distinct
classes : ”mowed” including mowed and mixed grasslands (1 605 plots), and ”unmowed” including grazed
grasslands (660 plots). Reference data were split into a 70% training dataset and a 30% test dataset,
ensuring classes and sites representation through stratified sampling. Task-specific Sentinel-2-based time
series were used as predictor (section 3.3 and Table 2). Hence, every pixel served as a sample, its temporal
profile served as the features, and corresponding plot label served as target value. The classifier algorithm
parameters were set to their default values as specified in the Orfeo Toolbox - TrainImagesClassifier module
documentation (https://www.orfeo-toolbox.org), and were implemented via IOTA2 software (https://docs.
iota2.net/master/). Grassland management map achieved an overall precision of 90%, with ”mowed” class
showing an F-score of 0.93 and ”unmowed” class exhibiting an F-score of 0.81. Findings showed that
”mowed” class was slightly overestimated. In addition, in each plot of the initial grassland mask, resulting
classes exhibited a coherent spatial structure, showing unimodal or bimodal intra-plot management patterns.

3.5 Mowing events detection

We tested several generic regression methods, as well as specific mowing event detection methods found in
recent literature, including both machine learning- and threshold-based approaches (Figure 2). Here, we
estimated first mowing event date for each pixel classified as ”mowed” grassland. All methods share one
underlying hypothesis: mowing event induces a sudden shift in the temporal patterns of features, leading
to a decrease in values for features related to vegetative activity (e.g. NIR, vegetation indices...). Machine
learning- and threshold-based methods were trained/calibrated and tested using the same corresponding
dataset. Reference data (1 605 plots) included first mowing event date of plots labeled as ”mowed” in initial
dataset (see section 3.2), and was split into a 70% training dataset and a 30% test dataset, ensuring sites
representation through stratified sampling. Task- and approach-specific Sentinel-2-based time series were
used as predictor (Table 2). Overall performances of tested methods were compared on the common test
dataset. We also assessed models’ ability to generalize using a spatial cross-validation approach known as
”leave-one-site-out”. Here, a site-specific observations were excluded from reference data before training
and testing models. Therefore, models were evaluated separately on actual test dataset (obtained from n-1
sites) and on external test dataset, which was obtained from a specific and independent site not involved in
learning process. This exercise was repeated nine times, so that each site was excluded once and considered
as external test dataset. In next sections, we will provide a comprehensive overview of the steps involved in
implementing and evaluating each method.
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figures/methods/methods.png

Figure 2: Workflow.

3.5.1 Machine learning approach

Machine learning algorithms are versatile for both classification and regression task. In recent years, despite
their growing implementation in similar topics, few studies have applied machine learning-based methods
to detect mowing event date, and traditional methods continue to dominate the field (Wang et al., 2022).
We implemented seven generic models from the literature and adapted them to detect mowing event date,
since most were primarily designed for classification and non-remote sensing-based applications (see section
7.1). These models were carefully selected based on their established capabilities in similar tasks or their
adaptability to detect mowing event date. A comprehensive set of machine learning approaches, including
traditional algorithms such as Random Forest, Ridge, and Least Absolute Shrinkage and Selection Operator
(LASSO), alongside cutting-edge deep learning architectures like Fully Convolutional Network (FCN 1-D
CNN), Lightweight Temporal Attention Encoder (LTAE), and Multilayer Perceptron (MLP), were rigorously
evaluated in this study. A brief review of these models and their principal applications is given in section
7.1. As mentioned in preceding section, all models were trained and tested using the same corresponding
dataset, as well as the same input dataset. Hyperparameters tuning was performed via grid search strategy,
which provides optimal values from the space of possible values (Table 3). To detect mowing event date,
Sentinel-2 spectral bands time series and their first derivative were used as input dataset (Table 2). First
derivative quantifies temporal change in reflectance values. Therefore, this band-specific feature is relevant
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for mowing events detection, since biomass extraction induces an abrupt shift in spectro-temporal profile of
grasslands (Dusseux et al., 2014). Specifically, bands sensitive to vegetation dynamics exhibit a decrease in
reflectance values.

3.5.2 Threshold-based approach

Threshold-based methods are well-known in vegetation dynamics studies, and were widely used in mowing
event frequency and timing detection (Wang et al., 2022). We implemented a recent specific mowing event
detection algorithm introduced by Vroey et al. (2022) as an integral monitoring tool within Sen4CAP program
(http://esa-sen4cap.org). Here, it was adapted to detect mowing event date, since it was primarily designed
to detect mowing event time interval, which provides current and preceding satellite acquisition dates.
The main differences compared to original method are detailed in section 7.2. In this study, we evaluated
Sentinel-2 NDVI time series to detect mowing event date (Table 2). NDVI is correlated to vegetation
biomass dynamics throughout growing season (Dusseux et al., 2014). Therefore, the main idea is to quantify
temporal loss of NDVI, and to consider a mowing event when this loss is higher than a threshold, which
was specifically determined for our study area (Table 3). We employed two types of thresholds : the
fixed threshold that arbitrarily determines a fixed value expressed as NDVI, and the relative threshold that
determines a percentage of the NDVI seasonal amplitude. The method was calibrated and tested using
the same dataset employed for training and testing machine learning models. To determine the optimal
threshold, we tested a range of possible values and selected the value yielding highest performance (Table
3).

Approach Model Hyperparameters Value range Selected value
Machine learning Random Forest N trees, deep... 0-100 100

Lasso degree of regularization (λ) 0-100 100
Rigde degree of regularization (λ) 0-100 100

MLP L1 Loss epoch, ... 0-100 100
MLP L2 Loss epoch, ... 0-100 100

FCN (1-D CNN) epoch, ... 0-100 100
LTAE L2 Loss epoch, ... 0-100 100

Threshold-based Fixed threshold Minimum loss of NDVI 0.10, 0.11, ... 0.40 0.30
Relative threshold Minimum loss of NDVI 10%, 15%, ... 50% 15%

Table 3: Implemented methods and corresponding hyperparameter values.

3.6 Assessment of mowing events

We evaluated the performance of each method in detecting first mowing event date using the same test
dataset. Assessment compared detected dates against observed dates at pixel level. For this exercise, we
rasterized test dataset to match Sentinel-2 geometric grid, assigning the date observed in each plot to all
intersecting pixels. These dates were expressed in Day Of Year (DOY). To measure deviation between
detected dates and observed dates, we used statistical metrics commonly applied in regression task, such as
Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Bias, where discrepancies are measured
in days. To assess spatial sensitivity of methods in detecting mowing event date, we calculated the percentage
of observed dates explained by the detected dates using the coefficient of determination (r2). These statistical
metrics were calculated as follow :

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)
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Bias =
1

n

n∑
i=1

(ŷi − yi) (3)

r2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4)

Where ŷi and yi are detected date and observed date at pixel i, n is the number of pixels. In r2 formula,
ȳ is the average of observed dates obtained from all pixels.
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4 Results

11



5 Discussion

5.1 Mowing event date

Time interval graph wiht delta t observed Expliquer que l’on estime la fin de l’intervale observé Faire une
figure explicative Interpreter les dates estimées avec le biais. Si negative, delta t est diminué et donc moins
d’incertitude. Si positive, delta t est augmenté et donc plus d’incertitude.

Laisser claire que les dates estimées sont en effet la fin de l’intervale de temps observée.

5.2 False positive mowing events

Remaining clouds and snow :
Kolecka et al. (2018) found that the highest accuracy for detection of mowing events was achieved using

additional clouds masking and size reduction of parcels, which allowed correct detection of 77% of mowing
events. Additionally, we found that using only standard cloud masking leads to significant overestimation
of mowing events (false positive).

5.3 Period of mowing event detection

Kolecka et al. (2018) : We found that more than 40% of the study area was mown before 15 June, while the
remaining part was either mown later, or was not mown at all.

5.4 Number of valid observations

Kolecka et al. (2018) the detection based on sparse time series does not fully correspond to key events in the
grass growth season.

5.5 Traditional and ML approach

Kolecka et al. (2018) Our approach : First, it is not conditional upon the availability of reference data,
which is often missing, contrary to widely used machine learning strategies, which require training data.
Understanding seasonal and phenological aspects of management practices in the study area was sufficient
to allow discrimination between grass and non-grass clusters and, together with careful investigation of
satellite imagery, allowed for development of a rule set for mowing event detection.

Komisarenko et al. (2022) MLP showed lower performances than their CNN
Lobert et al. (2021) NDVI time series alone mostly under performed in comparison to optical/SAR

combinations but clearly outperformed input-sets that were solely based on SAR features.
Vroey et al. (2022) : In this study, the Planet image interpretation approach allowed to rapidly gather a

large reference dataset (n = 803) to validate the mowing detections in six countries along the whole season
(April to October 2019). ??

here, our approach had more reference dataset (n = 1600)
Nationwide mapping
Even though remote sensing-based approaches have been shown valuable to gather such information,

large- scale mapping approaches are still scarce (Reinermann et al., 2020).
When lower cloud-free obs is available, mowing event frequency led to a systematic underestimation of

mowing events, when the general data availability was not as high as in the following years (compare Fig.
2). This becomes increasingly prob lematic towards the South and may thus hamper comparable analyses
in the context of CAP in other European countries. The launch of Landsat 9 and the planned launches of
Sentinel-2C, and –2D in 2021/24/25 would enable to increase the density of optical time series — but only
if all sensors remain active.

While the usefulness of SAR data for detecting grassland management has already been tested in several
studies with a regional focus (De Vroey et al., 2021; Tamm et al., 2016, Lobert et al. accepted), mowing
detection algorithms that make use of SAR and op tical data together are still scarce. Even though mowing
events can be identified in SAR time series, additional factors such as topography, parcel size and shape
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influence the results and there are still signal in teractions that need to be further explored (De Vroey et al.,
2021).

In most common grasslands, exploitation activities (grazing or mowing) start from mid-April. In grass-
lands of high biological interest, supported by the EU CAP, mowing is only allowed after the 16th of June,
for flowering purposes, and before the 31th of October.

Limitations : reference data with 7 days error We compared estimated date and observed date. However,
observed date correspond to the end of observation time interval ∆t = 7days.
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6 Conclusion
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7 Supplementary information

7.1 Review of models

Breiman (2001) introduced Random Forest algorithm for classification and regression tasks. It employs
ensemble learning by training multiple decision trees independently, using randomly selected subsets of
training samples and features. It has been widely used in remote sensing time series applications, mainly
for land cover/use mapping and estimation of continuous variables (Belgiu & Drăguţ, 2016). Ridge is a
linear regression model that represents a special case of Least Squares, implementing a penalty criteria
on predictor coefficients, which aims to improve model generalization and modulate overfitting (Hoerl &
Kennard, 1970). This method is not common in remote sensing applications but some examples can be
mentioned, such as chlorophyll-a concentration mapping (Ivanda et al., 2021) or reduction of hyperspectral
data dimension (Imani & Ghassemian, 2015). Tibshirani (1996) developed Least Absolute Shrinkage and
Selection Operator (LASSO), a regression model with regularization criteria that constrain the predictor
coefficients toward zero. This restriction forces the sum of the absolute value of the regression coefficients
to be less than λ. Predictors with a regression coefficient of zero after shrinkage are excluded from the
model. There are limited examples in the literature of using this model with remote sensing data. However,
a few instances include estimating vegetation parameters (Verrelst et al., 2015), biomass (Zandler et al.,
2015) or crop yields (Ahmad et al., 2020). Based on Convolutional Neural Network (CNN) architecture
introduced by LeCun et al. (1998) for 2-D image categorization task, Fully Convolutional Network (FCN)
is a deep learning architecture, which has been developed for 2-D image semantic segmentation task (Long
et al., 2015), performing pixel-based labeling. These 2-D architectures exploit the spatial domain of the
data. In signal processing, Kiranyaz et al. (2015) introduced an 1-D CNN architecture for patient-specific
electrocardiogram classification, allowing to exploit the sequential order of the data. More recently, 1-D CNN
architecture was adapted and implemented to exploit spectro-temporal domain of satellite data (Kattenborn
et al., 2021), mainly for land cover/use classification tasks (Guidici & Clark, 2017; Kussul et al., 2017; Liao
et al., 2020; Pelletier et al., 2019; Zhong et al., 2019). FCN (1-D CNN) refers to an architecture using
temporal domain at pixel level. Garnot and Landrieu (2020) introduced Lightweight Temporal Attention
Encoder (LTAE), a deep learning-based architecture using attention mechanism for remote sensing time series
classification task. Similar architectures were also developed and implemented mainly in crop type mapping
(Barriere & Claverie, 2022; Li et al., 2019; Ofori-Ampofo et al., 2021). Finally, Multilayer Perceptron was
formalized by Hornik et al. (1989) and is the seminal architecture in deep learning topic. This versatile
algorithm performs well in both classification and regression tasks, using backpropagation for training the
network. It was implemented in remote sensing-based data analysis, such as in land cover/use mapping
(Kussul et al., 2017; Zhang et al., 2018; Zhang et al., 2019) or land cover/use changes analysis (Vinayak
et al., 2021).

7.2 Adapted threshold-based method

We implemented a recent specific mowing event detection algorithm introduced by Vroey et al. (2022) and
integrated into the Sen4CAP toolbox (http://esa-sen4cap.org). In our study, this method was adapted
to detect mowing event date, since it was primarily designed to detect mowing event time interval, which
provides current and preceding satellite acquisition dates. In this section, we will provide a concise overview
of the original method and emphasize the main distinctions between it and the adapted method.

Original method’s primary purpose is to facilitate the monitoring of grassland management activities
across Europe, aligning with the European Common Agricultural Policy. Vroey et al. (2022) employed
two independent change detection algorithms, whereby raw Sentinel-2 NDVI and Sentinel-1 VH-coherence
time series were evaluated separately. In the final product, Sentinel-1 outputs were considered only when
Sentinel-2 omitted events due to cloud cover. Here, we reproduced and adapted their Sentinel-2-based
algorithm for evaluating pixel-based time series, as opposed to the original method that used object-based
approaches. To account for a mowing event, the original algorithm performed the following steps : (i) each
observation NDVI(t) is compared to the last available cloud-free observation NDVI(t-1), (ii) an mowing
event is considered when the loss of NDVI, between NDVI(t) and NDVI(t-1), is greater than 0.15 NDVI
(NDV I(t) < NDV I(t− 1)− 0.15), (iii) as an additional condition, two consecutive mowing events must be
separated by a minimum temporal distance of 28 days, and (iv) if a mowing event is detected within the time
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interval [t-1, t], it is assumed that the actual event took place within 60 days before t. If [t-1, t] spans more
than 60 days, the detection interval is adjusted to [t-60, t]. For each detected mowing event, the confidence
level was estimated through a normalization function as follows:

f(x;min,max) = max− (max−min)× e−x (5)

Where x is the difference NDVI(t-1) - 0.15 - NDVI(t), [min, max] were set to fit the confidence limits
from 0.5 to 1. We retained the first mowing event among the four most confident detections, as opposed
to the original method that retained all four most confident detections. In contrast to the original method,
where the time interval [t-1, t] was kept for each detected mowing event, we retained the specific date t.
Therefore, in our study, step (iv) was ignored. Finally, original method was evaluated using performance
metrics related to classification task (precision, recall...), where an interception of detected and observed
time interval was considered as a correct detection. Here, however, we used performance metrics related to
regression task (Mean Absolute Error, Root Mean Square Error...).
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