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1. Introduction

Grasslands cover approximately 40% of the Earth’s land area, encompassing

nearly 70% of the global agricultural land area, and are distributed on all con-

tinents and all latitudes [1, 2]. Grassland dynamics influence global ecosystem

functioning, and their impacts are widely modulated by management practices

intensity [3].

Grasslands are subject to management practices such as mowing or grazing

or a combination of both. These practices are primarily driven by grassland

landscape maintenance, as well as by ecosystem service of provisioning offered

by the grasslands. Therefore, monitoring grassland management practices is

essential for assessing management intensity level, which in turn plays a critical

role in studies related to biodiversity (XXXX), water (XXXXX) and carbon

(XXXXX) cycling and others topics (XXXX).

In France, the National Observatory of Mowed Grassland Ecosystems (Il

faudrait une référence, un lien ...) conducts birdlife monitoring in mowed grass-
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lands and has related breeding failures to earlier mowing date. Indeed, Broyer

et al. [4] has shown that early mowing intercepts birds’ reproductive period and

interrupts their breeding process. Traditionally, responsible agencies conduct

occasional observation campaigns to support ecosystem-related public policies,

but ground observations are not spatially exhaustive and are time-consuming,

thus limited in terms of area covered and revisit frequency. Remote sensing

Earth observation enables regular and global-scale monitoring, enabling track-

ing of vegetation dynamics. Currently, Sentinel-2 mission provides cost-free high

resolution data at 10m spatial resolution with a 5-day temporal frequency (10

days before 2017), allowing intra-plot level observations and long-time analysis.

Grassland mowing events timing and intensity have been investigated using

satellite image time series (SITS), mainly from features sensitive to vegetation

status, such as Normalized Difference Vegetation Index (NDVI), Enhanced Veg-

etation Index (EVI), Leaf Area Index (LAI) and more. These methods usually

exploit the temporal information contains ed? in SITS to detect moving events:

a significant variation is usually associated to an events. The various methods

differ in how the drop is computed. For instance, Estel et al. [5] assessed an-

nual mowing frequency using temporal change analysis based on spline-adjusted

MODIS NDVI time series was used?. Their approach involved identifying mow-

ing events as instances where a local minima exhibited a change, relative to

its preceding peak, exceeding 10% of growing season amplitude. The results

showed an overall accuracy of 80%, which decreases as the frequency of events

increases. In northern Switzerland, Kolecka et al. [6] also estimated mowing fre-

quency employing similar temporal change analysis, but based on raw Sentinel-2

NDVI time series. Here, a drop in NDVI value greater than 0.2, between two

consecutive cloud-free acquisition dates, was counted as a mowing event. Their

method accurately identified 77% of observed events and highlighted that false

detection can occur due to residual cloud presence, while sparse time series

led to the omission of mowing events. Regarding Griffiths et al. [7], mowing

events frequency and timing were mapped in Germany using 10-day composite

Harmonized Landsat-Sentinel NDVI time series. Discrepancies between a hy-
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pothetical bell-shaped curve and the current polynomial-fitted curve were eval-

uated. An event was counted when the difference exceeded 0.2 NDVI. Findings

revealed consistent spatial patterns in mowing frequency (indicating extensive

and intensive management). However, estimated dates exhibited significant dis-

crepancies compared to observed dates (with a mean average error greater than

days), which could be due to lower temporal resolution of Sentinel-2 before 2017

and the absence of reliable ground data for calibration and validation. Stumpf

et al. [8] mapped grassland management (grazing or mowing) and its intensity

based on biomass productivity and management frequency, respectively. The

latter were extracted from n-day composite Landsat ETM + and Landsat OLI

NDVI time series. As in previous cases, a management event was counted when

NDVI loss is higher than a threshold, which was based on the probability den-

sity function of all NDVI changes across the time series and was specified for

p = 0.01. Their approach yielded management patterns consistent with several

management-related indicators (species richness, nutrient supply, slope, etc).

Recently, Watzig et al. [9] estimated mowing events in Austria, using Sentinel-2

NDVI time series and implementing discrepancy analysis between a idealized

unmowed trajectory and actual NDVI values. An event was recorded if the

difference exceeded -0.061pourquoi?. Commission errors due to residual clouds

were reduced via a subsequent binary classification of each estimated event using

a gradient boosting algorithm trained over cloudy plots. Findings indicated an

overall accuracy of 80% in correct event detection, with estimated dates closely

aligning with observed dates (MAE < 5 days).

Previous methods exploit only optical modality and are limited by clouds

cover. To cope with optical SITS limitation, Vroey et al. [10] developed a al-

gorithm for detecting mowing events across Europe using jointly raw Sentinel-2

NDVI and Sentinel-1 VH-coherence time series. A mowing event was deemed

when temporal change exceeded -0.15 NDVI and 1.0 VH-coherence standard de-

viation, multiplied by a factor (3.0×10−7), respectively. VH-coherence standard

deviation was calculated from residuals of the six preceding observations. These

residuals capture disparities between linear-fitted values and actual values. In
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the final product, Sentinel-1 outputs were considered when Sentinel-2 omitted

events due to cloud cover. Results demonstrated synergy between optical and

radar data in detecting mowing events (F1-score of 79%). Using only Sentinel-

2 data achieved maximum precision, but combining both sensors boosted re-

call significantly. Also relying on optical and radar data synergy, Reinermann

et al. [11] mapped mowing frequency across Germany, from Sentinel-2 EVI and

Sentinel-1 PolSAR entropy time series separately. A mowing event was counted

when temporal change exceeded −0.07×EVI, which was calculated between two

consecutive critical points (local minima and its preceding local maxima). S1-

based detection was used to find potentially missed mowing events in cloudy

gaps (> 25 days) in optical observations. Here, the change needed to exceed

0.05 entropy between a peak and a preceding trough. Findings showed that

S2-based method correctly detected 60.3% of mowing events with an F1-Score

of 0.64. However, combining S1 and S2 increased recall but also caused more

false positives, lowering precision.

To reduce cloudy gap in optical time series, Schwieder et al. [12] combined

Sentinel-2 and Landsat-8 EVI time series for mowing events detection in Ger-

many. They analyzed the discrepancies between actual observations and an

idealized temporal profile (unmowed regime). An event was recorded when dif-

ference exceeded the mean value of all absolute residuals. Also, the detected

point needed a loss greater than 1.0 standard deviation (of actual time series)

compared to the previous point. Overall, detected mowing dates exhibited an

average absolute difference < 12 days compared to observed dates. Mowing

events were detected with an average F-score of 0.60, while the estimation of

their frequency showed a mean error < 40% of the actual number of mowing

events. They highlighted that performance was lower in areas with less cloud-

induced observations. In [13] Sentinel-1 and -2 SITS as well as climatic and

topographic data were used to reconstruct continuous Sentinel-2 NDVI time

series for mowing date estimation, based on NDVI drop analysis.

While threshold-based methods have been widely investigated, supervised

learning based approaches have also been explored. Komisarenko et al. [14]
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estimated mowing events timing at plot level in Estonia, using a 1-D Convolu-

tional Neural Networks (CNN) on Sentinel-2- and Sentinel-1-based features time

series. Although fourteen features were used, NDVI and the harmonic mean of

VV and VH coherence were found to be the most relevant. Their approach

yielded an accuracy of 73%. Most of the incorrectly estimated events were ob-

served when optical time series were sparse or the size of the plot was small.

Lobert et al. [15] also used a similar deep learning model (1-D CNN) on Sentinel-

2/Landsat-8- feature and Sentinel-1-based features time series for mowing event

frequency and timing detection. Among all tested feature combinations, the

highest overall accuracy was reached when combined NDVI, backscatter cross-

ratio and coherence with an F1-Score of 0.84. Estimated mowing dates showed

a MAE of 3.79 days compared with the observed dates. In terms of manage-

ment intensity, low-intensity grasslands were overestimated, while high-intensity

grasslands were underestimated. Following a similar approach, Holtgrave et al.

[16] tested four machine learning algorithms for mowing event detection in Ger-

many. Sentinel-2/Landsat-8, Sentinel-1- and weather-based features time series

were analyzed. Mowing events were detected by a binary classification approach

(mown or unmown) for each observation in the time series, using the adjacent

observations as predictors. As a preprocessing, the optical time series were

gap-filled using machine learning regression and linear interpolation techniques.

Here, 1D-CNN (F1-score 0.72 - 0.80) and Long Short-Term Memory (F1-score

0.89) algorithms performed better on unknown and known study site and years,

respectively. Overall, optical data proves advantageous for known study sites

and years, while the inclusion of both optical and SAR data yields favorable

results for transferable models. Weather data were significant in classifying

mowing events for known study sites and years, but caution is needed when

including it in transferable models.

******************************************************************

””” In the literature, there is no consensus on the optimal satellite data for

mowing event detection in grasslands. On the one hand, some studies demon-

strated Sentinel-1 data potential, due to their sensitivity to changes in vegetation
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cover structure, and their insensitivity to clouds [17]; but performance varies lo-

cally due to factors like soil moisture, vegetation water content, roughness, etc.

On the other hand, some authors combined Sentinel-2 and Sentinel-1 data to

reduce cloud effects in time series, and found enhanced performance in some

cases [10, 18, 14, 15, 16]. Overall, most authors agree that optical data alone

can effectively detect mowing events, provided that enough cloud-free observa-

tions are available [6, 7, 9, 8, 12]. In our study, we focused solely on optical

data as previous studies have found no significant improvement by combining

optical and radar data for grassland monitoring in France (e.g., [19]). ”””

Our approach:

In France, local remote sensing-based studies have already been conducted

to discriminate grassland management practices in the northwest [20] and detect

mowing events in the southeast [21].

Why first event only??? Considering environmental challenges in mowed

grassland, as an indicator of management intensity, fulfillment of ecological

policies for avifauna conservation, to support grassland management monitor-

ing system at national level in France

Here, as a complement to previous efforts, we focused on mapping grassland

first mowing event date using Sentinel-2-based features time series, primarily to

support grassland management monitoring system at national level in France.

Based on the state-of-the-art, we conducted a comprehensive evaluation of both

machine learning- and threshold-based approaches, either already implemented

in mowing event detection or chosen for their promising potential in this specific

task. These methods were implemented via Iota2 (https://docs.iota2.net/).

How is the document organized?

This paper is organized as follow : ...
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2. Materials and Methods

2.1. Study area

Our study area covers permanent grasslands across the mainland France

(except Corsica), which represent 68.5% of the total grassland area -including

permanent, temporary and other grasslands-, declared in the Land Parcel Iden-

tification System - LPIS [22] in 2022 (Figure 1). According to Köppen–Geiger

classification [23], the France climate is mainly oceanic across the country -

with warm summers -, and is mediterranean in the south. Annual rainfall

is around 800-1 000 (mm), with a contrast between the western (> 1 000

mm) and the southeastern (600-800 mm) regions. The average annual tem-

perature is about 11-13 °C, with 20-25 °C in summer and 5-10 °C in winter

(https://meteofrance.com).

Permanent grasslands are defined in the LPIS as surfaces with uninterrupted

herbaceous cover for at least 6 years and are identified at the plot level with class

code 18. These permanent grasslands alone account for approximately 27.5% (76

835 km2) of the entire agricultural area reported for 2022. Grasslands cover re-

gions that are less suitable for agricultural activities due to unfavorable climatic

or site conditions (high altitudes, steep slopes, poor or wet soils). In mainland

France, permanent grasslands are found in mountain chains in the center (Mas-

sif Central), western (Massif Armoricain), eastern (Jura and Vosges), Alps and

Pyrenees, as well as in plains and wet regions (Figure 1). According to the

LPIS, at least 75% of permanent grassland plots cover 2.80 hectares or less,

and the largest plots -exceeding 20.0 hectares- are concentrated mainly in the

center and eastern regions. Grasslands undergo various management practices

such as mowing or grazing or a combination of both; and the intensity of these

practices varies across plots, influenced by climate, site conditions and farmer

decisions. Lower altitudes tend to offer more favorable conditions for mowing

and more intensive management. In mainland France, grassland growing sea-

son spans from spring to autumn (March to October) and mowed grasslands

are mainly managed extensively, with one or two mowing events per year (up
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to six mowing events in intensive management).

From an avifauna diversity view point, timing of the first mowing event is

more important than frequency of mowing events along growing season. In

this sense, in our study area, intensive management refers to parcels for which

the first mowing event occurs before June 15th, whereas extensive management,

mowing happens after that date. Extensive management practices are beneficial

for biodiversity [24] and birdlife [4], and are actively promoted by the European

Common Agricultural Policy (CAP) through incentive payment mechanisms.

Figure 1: (A) Study area location. The gray color represents the delimitation of mainland
France (except Corsica), while the green color represents the permanent grassland plots de-
clared in the LPIS 2022. (B) Study sites location. The black dots represent the observation
sites in 2022. The boxes in dashed gray lines represent the Sentinel-2 tiles that intercept each
observation site. The color palette represents the eco-climatic regions in mainland France, as
defined in [25].

2.2. Satellite data

All available Sentinel-2 (L2A) surface reflectance images, captured through-

out the growing season (from January to September 2022) and intercepting

mainland France, were used. This dataset comprised ninety tiles and seven of

them, intercepting ground observation sites, were used for training and testing

models (Figure 1). Each tile provided an average of sixty images. All spec-

tral bands (except B1, B9 and B10) were used, after resampling 20m resolution

8



Table 1: Satellite data preprocessing and derived features according to implemented approach.

Approach Spectral bands Features Preprocessing

Machine learning B2, B3, B4, B5,
B6, B7, B8, B8A,
B11, B12

1st derivative linear interpolation

Threshold-based - NDVI linear interpolation
Threshold-based - NDVI raw data

bands to 10m resolution1 to uniform pixel sizes to a common geographical grid.

These images had been preprocessed using MAJA algorithm [27] for atmo-

spheric correction and cloud detection, and were downloaded from THEIA plat-

form (https://www.theia-land.fr). All images were provided with a mask

layer for clouds and shadows. For each tile, cloud- and shadow-free time series

with a regular 10-day time interval were generated using a linear interpolator, as

done in [28] or [29]. In addition to spectral bands, we also computed their tem-

poral derivative -using finite differences-, as well as the Normalized Difference

Vegetation Index - NDVI [30] (Table 1).

2.3. Reference data

In 2022, the French Biodiversity Agency (https://www.ofb.gouv.fr) co-

ordinated an intensive campaign of ground observations throughout the main-

land French territory, involving local government agencies participating in the

National Observatory of Mowed Grasslands Ecosystem network. A total of

eight sites (from north to south: Marais du Cotentin et du Bessin, Val de Vi-

enne, Sologne Bourbonnaise, Vallée de l’Arconce, Vallée du Drugeon, Haut Jura,

Plateau du Mézenc and Planèze - Narse de Lascols) were observed across four

different eco-climatic regions (Figure 1), and covering a significant altitudinal

gradient (Table 2). Observations were conducted once a week from May to Au-

gust, covering a total of 2 227 plots with a balanced distribution among sites

(Table 2). For each specific site, observed plots were chosen based on accessi-

bility and the local observer’s prior knowledge of the area.

1using a bicubic interpolation, as implemented in the Orfeo ToolBox and its SuperImpose
application [26]
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Plot boundaries were obtained from the 2020 LPIS. This database pro-

vides spatialized information on agricultural plot boundaries and crop types,

but does not provides information about management practices. For perma-

nent grasslands, a declared plot can be managed with two practices simulta-

neously (i.e., spatially separated mowing and grazing within the same plot).

Therefore, prior to ground observation campaign, we visually assessed each cho-

sen plot using a national database of aerial imagery (BD ORTHO, https:

//geoservices.ign.fr/bdortho) and Google Earth, to identify and separate

sub-plots with homogeneous spatial structure. For each actual plot, a total of

eleven observations were conducted throughout growing season. At each weekly

visit, current management practice (mowing or grazing) and the corresponding

date were recorded.

Based on these records, each plot was labeled as mowed, grazed or mixed

(mowing + grazing). Then, these labeled plots were grouped into two manage-

ment practice categories: mowed -including mowed and mixed plots (70.5% of

plots)- and unmowed -including grazed plots-. A management practice could

be ongoing during the visit or have occurred between the current visit and the

previous visit. Consequently, in these mowed plots, observed date for a mowing

event may have an average uncertainty of seven days. Here, 87% of mowed plots

had one mowing event, while remaining plots had two mowing events.

Additionally, Causses du Quercy site was included (in the south, Figure 1),

where 38 plots were observed with a lower temporal resolution. Here, obser-

vations were provided by the local observatory of the Parc Naturel Régional

des Causses du Quercy, independently of the main observation campaign at the

above-mentioned sites. At this site, 87% of observed plots were mowed, and all

had one mowing event.

An unique site value was added to plots located within the same Sentinel-2

tile, corresponding to tile name. This grouping serves in the experimental vali-

dation to separate training and testing samples based on the tile membership:

plots from a same site share the same satellite acquisition conditions and the

same pedo-climatic conditions and should be used either for training or for test-
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ing. In the following, the term “site” is used to denote plots belonging to the

same Sentinel-2 tile.

Here, all pixels in observed mowed plots were selected and spectro-temporal

profile and corresponding first mowing event day of the year (DOY) were ex-

tracted to serve as predictor and target values, respectively. Mowing event

dates span from May 10th (DOY 130) to August 2nd (DOY 214), comprising a

total of 328 451 pixels derived from the 1 605 observed mowed plots (Figure 2).

Notably, 80% of these occurrences were concentrated between May 30th (DOY

150) and July 7th (DOY 188). The average observed date was June 16th (DOY

167), while the median was June 15th (DOY 166).

Finally, these observed mowing dates revealed a temporal pattern in this

agricultural practice throughout the growing season, characterized by its oc-

currence during specific time periods. These time periods can be categorized

sequentially throughout the year as follows: early period (before 150 DOY), in-

termediate period (between 150 and 188 DOY) and late period (after 188 DOY).

Hence, observed plots were mainly mowed during intermediate period (Figure

2). The categorization of mowing periods relied solely on our observations and

not on environmental criteria.
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Table 2: Statistical description of the observed sites. The values represent the number of
plots (# plots), average plot area (Av. area), number of mowed plots (# mowed plots) and
approximate altitude. Tile column represents Sentinel-2 tile intercepting an observed site.

Site Tile # plots Av. area # mowed plots Altitude
(Ha) (m)

Marais du Cotentin et du
Bessin

T30UXV 212 1.39 136 2-50

Val de Vienne T30TYT 325 1.06 239 30
Sologne Bourbonnaise T31TEM 267 2.47 119 230-280
Vallée de l’Arconce T31TEM 288 2.23 174 280-390
Vallée du Drugeon T31TGM 267 3.87 219 800-850
Haut Jura T31TGM 272 2.55 213 800-950
Plateau du Mézenc T31TEK 300 1.66 255 1100-1300
Planèze - Narse de Lascols T31TDK 296 1.40 217 1000-1050
Causses du Quercy T31TCK 38 0.50 33 309-775

Total 2 265 1 605

Figure 2: Distribution of pixel-level first mowing event dates observed in mowed plots across
all sites in 2022. Reprendre la figure: mettre un peu plus de bins (20 ?), ne metttre que DOY
sur l’axe horyzontal

2.4. Mowing events prediction

We predicted first mowing event date at pixel-level. For this purpose, we in-

vestigated several supervised regression algorithms, from conventional machine

learning to recent deep learning ones. We then compared their performances

against those obtained from unsupervised mowing event detection algorithms
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found in recent literature, specifically those based on thresholding approaches.

Following Fauvel et al. [19], we set-up a spatial cross-validation to esti-

mate the prediction accuracy (Figure 3). All observations from a site were

excluded from reference data before training/calibrating models. Then, models

were tested and assessed using the excluded site-specific observations. In other

words, all observations from excluded site were used as testing data, and all

observations from non-excluded sites were used as training data. This exercise

was repeated seven times, so that each site was excluded once and considered as

testing data. To estimate the test error, average prediction errors rate computed

on 50 bootstrap set from each testing data were used.

In next sections, we provide a comprehensive overview of algorithms used to

predict the first mowing event date.

Figure 3: Workflow for mowing events prediction. The box in dashed lines represents the
spatial cross-validation approach implemented in this study. Here, the different steps (model
training, prediction and assessment) implemented for a given site are illustrated. The solid
lines represent implementation for site 1, while dashed lines represent implementation for all
remaining sites. In this example, all observations from site 1 were used as testing data, while
all observations from the remaining sites were used as training data.

2.4.1. Machine learning approach

Machine learning algorithms are now widely used to estimate agro-ecological

variables from remote sensing data. Yet, in recent years, few studies have applied

machine learning-based methods to detect mowing event date, and traditional

methods continue to dominate the field [31]. We implemented five generic

models from the literature: conventional algorithms such as Random Forest

(RF) and Ridge Regression, as well as cutting-edge deep learning architectures
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such as Multilayer Perceptron (MLP), Fully Convolutional Network (FCN 1-D

CNN, [32]) and Lightweight Temporal Attention Encoder (LTAE, [33]).

Linear regressor and MLP were used as a baseline, while RF was chosen due

to its demonstrated high accuracy in large-scale prediction [28, 19]. FCN and

LTAE were selected for their capacity to model temporal information, leveraging

convolutional techniques and attention mechanisms, respectively. A brief review

of these models is given in section 5.

The deep learning models were trained on 200 epochs with a batch size of

4096, using the optimization algorithm Adam[34]. 10% of the train dataset was

used to form a validation set, which was used to perform early stopping and to

reduce the learning rate by a factor of 10 when learning stagnated.

Oversampling techniques for minority ranges of mowing dates were also im-

plemented using the imbalanced-learn toolbox [35]. More specifically, three over-

sampling techniques for classification problems were tested. The first is the

naive Ramdom Over Sampling (ROS) method, which involves copying samples

from minority classes and adding a small amount of noise. The two others are

SMOTE [36] and ADASYN [37] algorithms, relying on a convex combination of

existing samples. These oversampling techniques were defined for classification

problem. We created 10 fake classes by dividing the interval of mowing date

values into 10 sub-intervals of equal width and assigned each pixel to a class

corresponding to the number of the interval in which its label fell2. For each

method, we used the implementation provided by the imbalanced-learn library

[35] and set the sampling strategy to ’not majority’. All classes were oversam-

pled, except for the majority class, to obtained an equal number of samples in

each class.

2.4.2. Threshold-based approach

Threshold-based methods are well-known in vegetation dynamics studies,

and were widely used in mowing event frequency and timing detection [31].

2Other number of bins were investigated providing similar or worst results. For clarity we
only report results for 10bins.
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We implemented a recent specific mowing event detection algorithm introduced

by Vroey et al. [10] as an integral monitoring tool within Sen4CAP program

(http://esa-sen4cap.org). It was adapted to detect mowing event date, since

it was primarily designed to detect mowing event time interval. The main

differences compared to original algorithm are detailed in section 5.

The main idea developed in Vroey et al. [10] was to quantify temporal loss of

NDVI, and to consider a mowing event when this loss is higher than a threshold

value. In our study, the threshold value was set automatically using grid-search

on training data (Table 3). Two types of thresholds methods were used:

1. A fixed threshold corresponding to fix loss of NDVI without taking into

account the amplitude (specific pixel minimum and maximum value).

2. A relative threshold that determines a percentage of the pixel-wise NDVI

seasonal amplitude.

Threshold-based algorithms were calibrated and tested using the same train-

ing and testing data used for machine learning-based algorithms. It should be

noted that in assessing this method, our focus was solely on the configuration

that yielded the optimal output among all possible configurations. This encom-

passes considerations such as raw or interpolated time series, relative or fixed

thresholds, and determining the most effective threshold value.

Table 3: Algorithm-specific hyperparameters values. The Value column reports the selected
values or the search range for the algorithm, with the following notation start:step:end. For
Ridge Regression and threshold mode, cross-validation was used to select the optimal value.

Algorithm Hyperparameters Value Package

Random Forest Number of trees 100 Scikit-Learn
Rigde Regression Regularization 1000:500:15500 Scikit-Learn
FCN (1-D CNN) Learning rate 1e-3 Pytorch

LTAE Learning rate 1e-3 Pytorch
MLP Learning rate 1e-4 Pytorch

Fixed threshold Minimum loss of NDVI 0.10:0.01:0.40
Relative threshold Minimum loss of NDVI 10:5:50 %

2.5. Assessment of mowing events

The deviation between predicted and observed mowing dates in DOY were

assessed using four metrics: Mean Absolute Error (MAE), Root Mean Square
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Error (RMSE), Max error and the coefficient of determination (R2), defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

Max error = max(|yi − ŷi|),

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

where ŷi and yi are predicted and observed moving dates at pixel i, respec-

tively, n is the number of pixels in the testing data. In R2 formula, ȳ is the

average of observed dates in all pixels in the testing data.
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3. Results

All implemented algorithms were able to detect first mowing event date

across the growing season in 2022. However, performances differed among mod-

els, with deep learning models performing better than conventional machine

learning ones and threshold-based method (Figure 4). In the following sections,

we present a comprehensive overview of the quantitative results obtained by all

implemented algorithms. Subsequently, we focus on a more detailed analysis

of the selected optimal model outputs. Finally, we visually interpret the map-

ping results of this selected model on observed mowed plots before extending

its application to entire mainland France.

to remenber later: The article presents for each machine learning approach

the best association between the three oversampling method, as well as no over

sampling. The Appendix provides the results of all possible combinations ma-

chine learning methods/ oversampling techniques.

3.1. Evaluation of algorithms for mowing events prediction

Overall, machine learning models demonstrated better performances com-

pared to threshold-based method (Figure 4 and Table 4). For machine learning-

based approach, deep learning models (LTAE, LTAE_ADASYN, FCN_ADASYN,

FCN and MLP_SMOTE) yielded higher performances compared to conven-

tional ones (RF and Ridge). Notably, architectures that consider temporal

dimension (LTAE and FCN) are placed as the best evaluated models (Figure

4).

FCN and MLP_SMOTE achieved similar scores in terms of R2 and are at

the inflection point between deep learning models (R2 > 0.48) and conventional

ones (R2 ≤ 0.40 ) (Table 4).

All machine learning-based models exhibited a temporal discrepancy (RMSE)

about 10 days, an average MAE of 6.74 ± 1.07 days and Max_error of 57.55 ±

8.22 days (Table 4). For this approach, the linear Ridge model gave the worst

performance in all evaluated metrics.
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SMOTE oversampling technique only improved the R2 of MLP model, in-

creasing it from 0.40 to 0.47; while all other metrics remained similar (Table 4).

In contrast, ADASYN algorithm did not contribute significantly in any metrics

when implemented with LTAE and FCN.

Globally, deep learning models outputs (LTAE, LTAE_ADASYN, FCN_ADASYN,

FCN, MLP_SMOTE) were statistically comparable with each other, while out-

puts of the other models did not show any similarity between them -except for

RF and MLP- (Figure 7).

Regarding the threshold-based method, the implemented algorithm obtained

an even lower overall performance (R2= -1.36) compared to an algorithm (i.e.,

Mean) that always predicts the average of observed dates from training data

(R2= -0.10). Timing discrepancies were 14.02, 19.66 and 73.24 days for MAE,

RMSE and Max_error, respectively (Table 4).

These average score values summarize the performance variability inherent

to each model, either within a specific site or between studied sites (Figure

6). Here, all models performed differently across sites. Within each site, a

model’s performance varied across simulations -i.e., fifty folds per site, each fold

containing 70% of the randomly selected observations- (Figure 6). Site-specific

overall results are shown in Table 6 and the optimal model per site in Table 7.

T31TDK exhibited the lowest variation (all models and folds) in R2 (std.dev.

of 0.05), while T31TEK had the highest (std.dev. of 0.10). Similarly, FCN

exhibited the lowest variation across all sites and folds (std.dev. of 0.10), while

LTAE had the highest (std.dev. of 0.18).

Finally, since our results will be used for biodiversity monitoring at plot level,

we aggregated (by mean) pixel-level predictions to the corresponding plots. Sub-

sequently, we re-evaluated these aggregated values against testing data. Here,

overall inter-model performance trend remains basically unchanged. We can

only observe that MLP_SMOTE and RF moved up a position to the detriment

of FCN (Table 5), when compared to pixel-based evaluation (Table 4).

In conclusion, LTAE emerged as the optimal model due to its consistent

performance across all sites. Consequently, in the following sections, all findings
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are based on this model, and statistical interpretations centered around plot-

level evaluations.

Figure 4: Algorithm-specific statistical summary in terms of (A) R2 and (B) RMSE. The
values represent weighted mean of all sites. A site-specific score was weighted using the
number of pixels used for the evaluation (32 123 pixels in average). For each site, fifty
folds were synthetically generated for individual evaluation, each fold containing 70% of the
randomly selected observations. Here, values less than zero are not shown. For comparison
purposes, Mean corresponds to an algorithm that always predicts the average of observed
dates from training data (poor model).

3.2. Mowing events prediction across sites

Although the optimal model differed among sites (Table 7), LTAE demon-

strated consistent overall performance across all sites (Tables 4 and 5).

LTAE yielded a moderate overall performance, achieving a weighted average

(# plots as weight) R2 of 0.55 ± 0.17 across all sites (Figure 5 and Table 8).

Temporal discrepancies between predicted and observed dates differed among

sites; MAE ranged from 4.34 to 9.21 days, while RMSE from 6.76 to 14.61 days.

The maximum error measured (all sites) was 61.04 days. Overall, across all sites

(excluding T31TCK due to a limited # plots), this model exhibited its strongest

performance at site T31TEK (R2 = 0.72) and its lowest at site T30TYT (R2 =

0.18).

At sites with larger prediction errors (e.g., RMSE > 7.0 days), temporal dis-

crepancies, between predicted and observed dates, were particularly accentuated

at the extremes of the observed date values (Figure 5). These prediction errors

at the extremes were mostly found in sites T30TYT, T30UXV and T31TEM.

Notably, these prediction errors were positive during early period, while they
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were negative during late period (Figure 8).

Most of the plots mowed during early or late periods exhibited prediction

errors exceeding 15.0 days, while the plots mowed during intermediate period

exhibited prediction errors lower than 15.0 days. In general, fewer than 10.0%

of mowed plots (all sites and all mowing periods) experienced a prediction error

exceeding 15.0 days (Figure 8).

””” Visual interpretation of observed plots???? ”””

Regarding intra-plot spatial configuration of outputs, ..............

Quel site? Quelle parcelle? 1 605 parcelles
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Figure 5: Site-specific LTAE outputs aggregated at plot-level. The columns represent datasets
(testing or training), while the rows represent studied sites. For a given site, testing data
included all samples from that specific site, while training data included all samples from
all remaining sites. For a given site, the first column (e.g., A.1) shows predicted dates (y-
axis) against observed dates (x-axis) at plot-level, while the second column (e.g., A.2) shows
the distribution of pixel-level observed dates used to train the model. These predicted and
observed dates are expressed in Days Of Year (DOY).

3.3. Mowing events prediction across mainland France

All plots of all sites as training data (ratio 1.0), not spatial CV!!!

Grassland mask description (two classes in a LPIS plot).

Spatial structure within some plots across sites??? pdf of plots with predic-

tions
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4. Discussion

4.1. Mowing event date

Time interval graph wiht delta t observed Expliquer que l’on estime la fin

de l’intervale observé Faire une figure explicative Interpreter les dates estimées

avec le biais. Si negative, delta t est diminué et donc moins d’incertitude. Si

positive, delta t est augmenté et donc plus d’incertitude.

Laisser claire que les dates estimées sont en effet la fin de l’intervale de temps

observée.

4.2. False positive mowing events

Remaining clouds and snow :

Kolecka et al. [6] found that the highest accuracy for detection of mow-

ing events was achieved using additional clouds masking and size reduction of

parcels, which allowed correct detection of 77% of mowing events. Additionally,

we found that using only standard cloud masking leads to significant overesti-

mation of mowing events (false positive).

4.3. Period of mowing event detection

Kolecka et al. [6] : We found that more than 40% of the study area was

mown before 15 June, while the remaining part was either mown later, or was

not mown at all.

4.4. Number of valid observations

Kolecka et al. [6] the detection based on sparse time series does not fully

correspond to key events in the grass growth season.

4.5. Traditional and ML approach

Kolecka et al. [6] Our approach : First, it is not conditional upon the avail-

ability of reference data, which is often missing, contrary to widely used machine

learning strategies, which require training data. Understanding seasonal and

phenological aspects of management practices in the study area was sufficient
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to allow discrimination between grass and non-grass clusters and, together with

careful investigation of satellite imagery, allowed for development of a rule set

for mowing event detection.

Komisarenko et al. [14] MLP showed lower performances than their CNN

Lobert et al. [15] NDVI time series alone mostly under performed in com-

parison to optical/SAR combinations but clearly outperformed input-sets that

were solely based on SAR features.

Vroey et al. [10] : In this study, the Planet image interpretation approach

allowed to rapidly gather a large reference dataset (n = 803) to validate the

mowing detections in six countries along the whole season (April to October

2019). ??

here, our approach had more reference dataset (n = 1600)

Nationwide mapping

Even though remote sensing-based approaches have been shown valuable

to gather such information, large- scale mapping approaches are still scarce

(Reinermann et al., 2020).

When lower cloud-free obs is available, mowing event frequency led to a

systematic underestimation of mowing events, when the general data availability

was not as high as in the following years (compare Fig. 2). This becomes

increasingly prob lematic towards the South and may thus hamper comparable

analyses in the context of CAP in other European countries. The launch of

Landsat 9 and the planned launches of Sentinel-2C, and –2D in 2021/24/25

would enable to increase the density of optical time series — but only if all

sensors remain active.

While the usefulness of SAR data for detecting grassland management has

already been tested in several studies with a regional focus (De Vroey et al.,

2021; Tamm et al., 2016, Lobert et al. accepted), mowing detection algorithms

that make use of SAR and op tical data together are still scarce. Even though

mowing events can be identified in SAR time series, additional factors such as

topography, parcel size and shape influence the results and there are still signal

in teractions that need to be further explored (De Vroey et al., 2021).
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In most common grasslands, exploitation activities (grazing or mowing) start

from mid-April. In grasslands of high biological interest, supported by the EU

CAP, mowing is only allowed after the 16th of June, for flowering purposes, and

before the 31th of October.

Limitations : reference data with 7 days error We compared estimated date

and observed date. However, observed date correspond to the end of observation

time interval ∆t = 7days.
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5. Conclusion
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Supplementary materials

Review of models

Conventional machine learning models

Ridge Regression is a regularized linear model that seeks a linear relationship

between the predictors (here the Sentinel-2 spectro-temporal features) and the

output (here the observed mowing date) [38]. A regularized version was used

to cope with the high number of spectro-temporal features [38, Chapter 3].

This method serves as a baseline for supervised model: its learning capacity

is limited w.r.t. other non-parametric regression methods but has provided

accurate results for some case, such as chlorophyll-a concentration mapping [39].

The regularization parameter value was selected using 10-folds cross-validation

on the training data, as implemented in Scikit-learn [40].

Random Forest is a non-parametric and non-linear regression model intro-

duced by Breiman [41]. It is an ensemble-based model learning multiple inde-

pendent decision trees, using bootstraps of training samples and features. It

has been widely used in remote sensing time series applications, mainly for land

cover/use mapping [28] and estimation of continuous variables [42]. Several

hyperparameters can be selected for training. The most important one is the

number of decision trees in the forest. As shown in Inglada et al. [28], Fauvel

et al. [19], setting it to a large value is enough to provide accurate results. In

this experiment we found that 100 trees was a good compromise: increasing

the values did not lead to an improvement of the precision while the processing

complexity (time and memory footprint) was much higher. Random Forest was

implemented in [40].

Deep learning models

One conventional and two advanced DL models were implemented: a Mul-

tiple Layer Perceptron (MLP), a 1D-CNN and the Lightweight Temporal At-

tention Encoder (LTAE), respectively. The MLP was composed of three “linear

layer + batchnormalization layer + rectified linear activation layer” modules
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and last linear output layer [43]. Such architecture has been widely used in re-

mote sensing for land cover/use mapping [44, 45, 46] or land cover/use changes

analysis [47].

The 1D-CNN was defined to perform along the temporal dimension, as

in Kattenborn et al. [48], Kussul et al. [44], Guidici and Clark [49], Zhong

et al. [50], Liao et al. [51], Pelletier et al. [32], to take into account the tem-

poral dependence between the acquisition dates. From the MLP configuration,

we replace the linear layer by a 1D convolutional layer and add max-pooling

operation, as usually done with CNN models [43].

LTAE used temporal attention mechanism to make use of the acquisition

dates [33]. Attention mechanism has showed to perform really well for land-

cover mapping [52, 33, 53, 29]. The same architecture proposed by Garnot and

Landrieu [33] was used in this work, just adapting the last layer and loss function

to perform regression rather than classification.

Threshold-based method

We implemented a the specific mowing event detection algorithm intro-

duced by Vroey et al. [10] and integrated into the Sen4CAP toolbox (http:

//esa-sen4cap.org) toto facilitate the monitoring of grassland management

activities across Europe, aligning with the European Common Agricultural Pol-

icy. In our study, this method was adapted to detect mowing event date, since

it was primarily designed to detect mowing event time interval.

Vroey et al. [10] proposed two independent change detection algorithms,

whereby raw Sentinel-2 NDVI and Sentinel-1 VH-coherence time series were

evaluated separately. In the final product, Sentinel-1 outputs were considered

only when Sentinel-2 omitted events due to cloud cover. Here, we reproduced

and adapted their Sentinel-2-based algorithm for evaluating pixel-based time

series, as opposed to the original method that used object-based approaches.

To account for a mowing event, the original algorithm performed the follow-

ing steps:
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1. Each observation NDVI(t) is compared to the last available cloud-free

observation NDVI(t− 1).

2. If the loss of NDVI, between NDVI(t) and NDVI(t−1), is greater than 0.15

NDVI (NDVI(t) < NDVI(t− 1)− 0.15), a mowing event is considered. As

an additional condition, two consecutive mowing events must be separated

by a minimum temporal distance of 28 days, and if a mowing event is

detected within the time interval [t − 1, t], it is assumed that the actual

event took place within 60 days before t. If [t − 1, t] spans more than 60

days, the detection interval is adjusted to [t − 60, t]. For each detected

mowing event, the confidence level was estimated through a normalization

function as follows:

f(x;min,max) = max−(max−min)× exp(−x), (1)

where x is the difference NDVI(t− 1)− 0.15− NDVI(t), [min,max] were

set to fit the confidence limits from 0.5 to 1.

The first mowing event among the four most confident detections was retained,

as opposed to the original method that retained all four most confident detec-

tions. In contrast to the original method, where the time interval [t− 1, t] was

kept for each detected mowing event, we retained the specific date t. Therefore,

in our study, additional checks in step 2 were ignored.

Grassland management map

A map of grassland management practices -mowed or unmowed- was gen-

erated to constrain mowing date prediction to areas of mowed grassland. We

performed a pixel-based classification task within a nationwide grassland mask

(Figure 1), derived from permanent grassland plots declared in the 2022 LPIS

(section 2.1). This database provides spatialized information on agricultural

plot boundaries and crop types, but does not provides information about man-

agement practices.

Here, we trained a Random Forest classifier using a grassland management
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practices dataset, derived from ground observations in 2022 (section 2.3). In

this reference dataset, mowed class included 1 605 plots and unmowed class

660 plots (Table 2). Reference data were split into a 70% training dataset and

a 30% test dataset, ensuring classes and sites representation through stratified

sampling. Sentinel-2-based time series were used as predictor. In this dataset, in

addition to spectral bands, we also computed three spectral indices: Normalized

Difference Vegetation Index - NDVI [30], Normalized Difference Water Index -

NDWI [54] and Brightness Index - BI [55].

The classification was done using IOTA2 software [56]. Grassland manage-

ment map achieved an overall precision of 90%, with mowed class showing an F-

score of 0.93 and unmowed class exhibiting an F-score of 0.81. Findings showed

that mowed class was slightly overestimated. In addition, in each plot of the

initial grassland mask, resulting classes exhibited a coherent spatial structure,

showing unimodal or bimodal intra-plot management patterns.

It is important to note that all quantitative evaluation results presented

in this paper are not based on the grasslands management map, as they were

computed on the reference data (observed mowed plots). This map was used

for visual evaluation only

Tables and figures

Table 4: Algorithm-specific statistical summary. Each score value represents weighted mean of
all sites. A site-specific score was weighted using the number of pixels used for the evaluation
(32 123 pixels in average). For each site, fifty folds were synthetically generated for individual
evaluation, each fold containing 70% of the randomly selected observations. MAE, RMSE
and Max_error are represented in days. For comparison purposes, Mean corresponds to an
algorithm that always predicts the average of observed dates from training data (poor model).
The lines are sorted based on R2 values (descending order).

Algorithm MAE RMSE R2 Max_error

LTAE 5.63 9.13 0.52 59.58
LTAE_ADASYN 5.51 9.32 0.50 64.31
FCN_ADASYN 6.67 9.46 0.48 48.57

FCN 6.84 9.60 0.47 49.30
MLP_SMOTE 6.50 9.50 0.47 54.23

RF 6.80 10.09 0.40 56.69
MLP 7.02 10.11 0.40 54.28
Ridge 9.02 11.88 0.16 73.46
Mean 10.28 13.81 -0.10 42.06

Threshold 14.02 19.66 -1.36 73.24
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Table 5: Algorithm-specific statistical summary. Each score value represents weighted mean
of all sites. A site-specific score was weighted using the number of plots used for the evaluation
(158 plots in average). For each site, fifty folds were synthetically generated for individual
evaluation, each fold containing 70% of the randomly selected observations. MAE, RMSE
and Max_error are represented in days. For comparison purposes, Mean corresponds to an
algorithm that always predicts the average of observed dates from training data (poor model).
The lines are sorted based on R2 values (descending order).

Algorithm MAE RMSE R2 Max_error

LTAE_ADASYN 5.43 8.94 0.58 48.03
LTAE 5.76 9.19 0.55 48.53

FCN_ADASYN 6.71 9.62 0.51 42.70
MLP_SMOTE 6.46 9.66 0.51 45.73

RF 6.61 9.73 0.50 45.76
FCN 6.95 9.94 0.48 44.05
MLP 6.86 10.04 0.47 44.05
Ridge 8.27 11.27 0.32 43.39
Mean 10.78 14.47 -0.10 41.14

Threshold 12.98 17.24 -0.64 56.38

Figure 6: Algorithm-specific outputs in terms of (A) R2, (B) RMSE, (C) MAE and (D)
Max_error. The sites are represented on the x-axis. The color palette represents the algo-
rithms. For each site, fifty folds were synthetically generated for individual evaluation, each
fold containing 70% of the randomly selected observations. The number of plots used for eval-
uation was: T31TCK (23.0), T31TEK (178.0), T30UXV (95.0), T31TDK (152.0), T31TGM
(289.0), T31TEM (205.0) and T30TYT (167.0). Ridge, Mean and Threshold outputs are not
shown in this figure.
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Table 6: Site-specific statistical summary. Each score value represents mean of all mod-
els (except Ridge, Mean and Threshold outputs) and folds. For each site, fifty folds were
synthetically generated for individual evaluation, each fold containing 70% of the randomly
selected observations. The number of plots used for the evaluation is represented by n. MAE,
RMSE and Max_error are represented in days. The lines are sorted based on R2 values (de-
scending order).

Site MAE RMSE R2 Max_error n

T31TCK 5.304771 6.948514 0.739886 17.523229 23.0
T31TDK 5.721743 8.059086 0.611000 41.570743 152.0
T31TEK 5.505600 8.044171 0.593800 48.275429 178.0
T30UXV 5.984714 10.191029 0.564000 44.685886 95.0
T31TGM 5.849600 8.970257 0.523257 48.181800 289.0
T31TEM 7.226886 10.177057 0.453571 41.949286 205.0
T30TYT 8.259800 13.000257 0.340571 50.503600 167.0

Table 7: Site-specific statistical summary. Each score value represents mean of all folds of
the corresponding optimal model (in terms of R2). For each site, fifty folds were syntheti-
cally generated for individual evaluation, each fold containing 70% of the randomly selected
observations. The number of plots used for the evaluation is represented by n. MAE, RMSE
and Max_error are represented in days. The lines are sorted based on R2 values (descending
order).

Site Optimal model MAE RMSE R2 Max_error n

T31TCK LTAE_ADASYN 4.4704 5.8876 0.8144 16.3618 23.0
T31TEK LTAE 4.4212 6.9634 0.6980 54.6360 178.0
T31TDK LTAE_ADASYN 4.6706 7.2848 0.6830 42.6492 152.0
T31TGM LTAE 4.5920 7.7784 0.6438 51.1618 289.0
T30UXV MLP 5.4642 9.3572 0.6324 46.0896 95.0
T31TEM LTAE 6.4670 9.6552 0.5084 44.9112 205.0
T30TYT FCN_ADASYN 7.8062 11.5166 0.4850 40.7350 167.0

Table 8: Site-specific LTAE outputs aggregated at plot-level. Each score value was calculated
from all plots. The number of plots used for the evaluation is represented by n. MAE, RMSE
and Max_error are represented in days. The lines are sorted based on R2 values (descending
order).

Site MAE RMSE R2 Max_error n

T31TCK 5.02 6.91 0.76 20.36 33.0
T31TEK 4.34 6.76 0.72 61.04 255.0
T31TDK 4.85 7.66 0.65 49.61 217.0
T31TGM 4.56 7.74 0.65 55.04 413.0
T30UXV 5.86 10.29 0.56 43.82 136.0
T31TEM 6.52 9.72 0.51 46.91 293.0
T30TYT 9.21 14.61 0.18 52.78 239.0
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Figure 7: T-test between each pair of algorithms in terms of (A) R2 and (B) RMSE. The color
palette represents p-value scores from the statistical test. Here, the number of observations
by algorithm was 350 (7 sites x 50 folds each).

Figure 8: Site-specific LTAE outputs aggregated at plot-level. For each plot, the predicted
date was compared to the observed date. The x-axis represents the observed date, while the
y-axis represents the prediction error. Each plot is represented by a dot on the graph, and its
color indicates the observation site. A positive bias means that predicted date is higher than
observed date, while a negative bias means that predicted date is lower than observed date.
The gray band shows a tolerance margin of ± 15 days. The dashed vertical lines represent the
average value of the 10th (left, 150.0 DOY) and 90th (right, 188.0 DOY) percentiles. These
percentiles were derived from each site’s training dataset, before averaging.
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