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Abstract 

To fully understand gene regulation, it is necessary to ha v e a thorough understanding of both the transcriptome and the enzymatic and RNA- 
binding activities that shape it. While many RNA-Seq-based tools have been developed to analyze the transcriptome, most only consider the 
abundance of sequencing reads along annotated patterns (such as genes). These annotations are typically incomplete, leading to errors in the 
differential e xpression analy sis. To address this issue, we present DiffSegR - an R package that enables the disco v ery of transcriptome-wide 
e xpression differences betw een tw o biological conditions using RNA-Seq data. DiffSegR does not require prior annotation and uses a multiple 
changepoints detection algorithm to identify the boundaries of differentially expressed regions in the per-base log 2 fold change. In a few minutes 
of computation, DiffSegR could rightfully predict the role of chloroplast ribonuclease Mini-III in rRNA maturation and chloroplast ribonuclease 
PNPase in (3 ′ / 5 ′ )-degradation of rRNA, mRNA and tRNA precursors as well as intron accumulation. We belie v e DiffSegR will benefit biologists 
working on transcriptomics as it allows access to information from a la y er of the transcriptome o v erlook ed b y the classical differential expression 
analysis pipelines widely used today. DiffSegR is available at https:// aliehrmann.github.io/ DiffSegR/ index.html . 

I

I  

g  

s  

b  

R  

o  

t  

i  

v  

(  

r  

i  

m  

c  

t
 

s  

(  

T  

c  

l  

p  

l  

p  

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
w

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/4/lqad098/7369456 by inra nantes user on 31 July 2024
ntroduction 

t has long been recognized that transcriptomes largely surpass
enomes in complexity ( 1 ). Besides alternative use of tran-
cription initiation sites, most of the transcript diversity can
e ascribed to post-transcriptional modifications, including
NA splicing, processing, alternative polyadenylation, editing
r base modification ( 2 ). Although the advent of the transcrip-
omics revolution has allowed an unprecedented understand-
ng of this transcript diversity, the combinatorial nature and
ery large number of variations is still an analytical challenge
 3 ,4 ). Moreover, because most strategies for RNA-Seq analysis
ely on incomplete transcriptomic variant annotations, mean-
ngful variations may currently be overlooked ( 5 ). This is a
ajor issue for biological interpretation as illustrated by the

rucial role played in disease development by poorly anno-
ated non coding elements like 5 

′ and 3 

′ UTRs ( 6–9 ). 
As a consequence, there is a massive effort to improve tran-

criptomic annotations with the help of the third generation
long-read) sequencing technologies from Oxford Nanopore
echnologies or Pacific Bioscience. Long RNA-Seq reads may
over an entire RNA isoform from start to end, directly il-
ustrating the exon structure, splicing patterns and UTR com-
osition ( 10–12 ). They carry the promise to go beyond the
imits of full-length transcript assembly, which is notoriously
rone to error ( 13 ,14 ). Although such a strategy can double
he number of referenced transcripts for a model organism
eceived: June 22, 2023. Revised: September 27, 2023. Editorial Decision: Octob
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his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
( 15 ), reaching an exhaustive description of a transcriptome is
arguably a Sisyphean task ( 5 , 16 , 17 ). 

Because most RNA-Seq experiments aim at identifying
RNA processes that vary between two biological conditions
(WT versus mutant or control versus stress, for example), an
alternative to this issue is to identify portions of the tran-
scriptome that vary between both experimental conditions
(differentially expressed regions or DERs) directly from the
RNA-Seq data, without relying on annotations and bypass-
ing assembly altogether. This is performed by a class of meth-
ods sometimes referred to as identify-then-annotate tools ( 18 ).
Their gold standard is to be both highly specific (i.e. able to
merge adjacent non-DERs) and highly sensitive (i.e. able to
discriminate between adjacent DERs, in particular between
up and down DERs). To do so, various methods summarized
in Figure 1 ( 19–22 ) address a well-defined statistical problem
known as multiple changepoints detection, or segmentation
problem. This has been a long-standing problem in the field
of genomic series analysis ( 23–27 ). To identify DERs, current
identify-then-annotate tools mainly vary in the signal they seg-
ment and in the way they segment it (Figure 1 ). 

Here, we introduced DiffSegR, an R package that uses a
new strategy for delineating the boundaries of DERs. It seg-
ments the per-base log 2 fold change (log 2 -FC) using FPOP,
a method designed to identify changepoints in the mean of
a Gaussian signal ( 28 ). Intuitively, the per-base log 2 -FC is a
er 13, 2023. Accepted: October 23, 2023 
enomics and Bioinformatics. 
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Figure 1. State-of-the-art of Identify-then-annotate methods for 
detecting differentially expressed regions (DERs) in RNA-Seq data. The 
methods included in this figure—srnadiff, srnadiff IR, srnadiff HMM ( 19 ), 
derfinder SB, derfinder RL ( 22 ), RNAprof ( 21 ), parseq ( 20 ) and 
DiffSegR—belong to a class of methods known as identify-then-annotate, 
which enable the identification of DERs directly from RNA-Seq data 
without relying on annotations or assembly. To identify DERs, these 
methods address a well-defined statistical problem known as multiple 
changepoints detection or segmentation problem. The methods vary in 
the signal they segment and the way they segment it. For example, 
srnadiff merges the results of a three-le v el segmentation model on the 
per-base log 2 fold change (srnadiff IR) and a two-level segmentation 
model on the per-base P -value (srnadiff HMM). Similarly, derfinder SB 

and derfinder RL implement a tw o-le v el segmentation model on the 
per-base F -statistic (similar to per-base P -value) and the mean of 
co v erages, respectiv ely. RNAprof implements a three-le v el segmentation 
model on the per-base log 2 fold change. parseq segments the mean of 
co v erages without assuming the number of le v els. Finally, DiffSegR 

introduces a new strategy to identify DERs by segmenting the per-base 
log 2 fold change without assuming the number of levels. All the methods 
e x cept parseq assess the found DERs using DESeq2 ( 29 ). 
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measure that scales with the intensity of the transcription dif-
ferences at each genomic position between the two compared
biological conditions. Expression differences are then statis-
tically assessed for each region using the negative binomial
generalized linear model of DESeq2 ( 29 ) and the outputs can
be visualized in IGV ( 30 ). 

DiffSegR and competitor methods (Figure 1 ) were com-
pared on two plant RNA-Seq datasets that were previously
used in combination with molecular biology techniques to de-
cipher the roles of the chloroplast ribonucleases PNPase and
Mini-III ( 31 ,32 ). DiffSegR was the only method able to re-
trieve all the segments known to differentially accumulate out-
side of the annotated genic regions (i.e. 3 

′ and 5 

′ extensions,
anti-sense accumulation). Moreover, it is the only method
predicting the overaccumulation of intronic regions on the
plastome-scale in the PNPase mutant. Globally, DiffSegR bet-
ter captures multiple trends of differences within DERs while
being more parsimonious in non-DERs than its competitors. 

We anticipate DiffSegR will be an important tool in pro-
viding an in-depth description of local or regional transcript
variations within RNA-seq libraries from two biological con-
ditions, especially when studying RNA processes located out-
side of the annotated coding sequences, like RNA processing,
trimming or splicing. 

Materials and methods 

DiffSegR segmentation model 

Differential transcription profile 
DiffSegR builds the coverage profiles indexed on n genomic
positions from the BAM files provided by the user. The cov-
erage profile for replicate r of biological condition j is noted
Q jr = { Q i jr } n i =1 ∈ N 

n . By default we propose to compute Q ijr 

using the geometric mean of the number of 5 

′ and 3 

′ end 

of the reads overlapping position i , denoted Q ijr5 ’ and Q ijr3 ’ .
Formally: 

Q i jr + 1 = 

(
Q i jr 5 ′ + 1 

)1 / 2 × (
Q i jr 3 ′ + 1 

)1 / 2 
. (1) 

We describe alternative approaches that use either the full 
length or the 5 

′ or 3 

′ end of the reads, and compare them with 

our geometric mean heuristic in Notes S1–S3, Supplementary 
Table S9 and Supplementary Figures S40–S42. DiffSegR then 

builds the differential transcription profile between the bio- 
logical conditions (named 1 and 2 hereafter) using a log 2 -FC 

per-base transformation because it scales with the intensity 
of the transcriptional differences between conditions 1 and 2.
The log 2 -FC at the i th genomic position (denoted Y i ) is given 

by 

Y i = 

1 

R 1 

R 1 ∑ 

r 1 =1 

log 2 (Q i 1 r 1 + 1) − 1 

R 2 

R 2 ∑ 

r 2 =1 

log 2 (Q i 2 r 2 + 1) (2) 

where R 1 and R 2 stand for the number of replicates in condi- 
tion 1 and 2, respectively. 

Segmentation model 
We consider D changepoints τ 1 < …< τD 

within the range 1 

and n – 1 . These changepoints correspond to unknown po- 
sitions along the genome where a shift in the mean of the 
per-base log 2 -FC (eq: 2) is observed. We adopt the conven- 
tion that τ 0 = 0 and τ | τ | = n . These changepoints define | τ | 
= D + 1 distinct segments. The j th segment includes the data 
]] τ j-1 ,τ j ]] = { τ j-1 + 1,…,τ j }. Each segment is premised on the as- 
sumption that the Y i therein are independent and follow the 
same Gaussian distribution, with a mean μj specific to that 
segment and a common variance σ 2 . Expressed mathemati- 
cally, we have: 

∀ i ∈ ] ] τ j−1 , τ j ] ] Y i ∼ N 

(
μ j , σ

2 ) iid. (3) 

Estimation of the segment 
The parameters of the model (eq: 3), including τ 1 < …< τD 

,
can be estimated using penalized maximum likelihood infer- 
ence. To achieve this, DiffSegR uses the FPOP algorithm ( 28 ) 
(a dynamic programming algorithm that implements func- 
tional pruning techniques) which solves the inference prob- 
lem exactly (see below). For many profiles lengths the compu- 
tation time of FPOP is log-linear allowing for the segmenta- 
tion of large data (10 

6 < n < 10 

7 ) in a matter of seconds. The 
number of changepoints estimated by FPOP is a decreasing 
function of the penalty λσ 2 log( n ). The constant λ is a hyper- 
parameter that can be adjusted by the user. A good starting 
point, based on theoretical arguments ( 33 ) and simulations 
( 34 ), is to set λ = 2. The variance σ 2 is estimated on the data 
using the unbiased sample variance estimator. 

FPOP 

Informally, the idea of the FPOP algorithm is to consider the 
penalized maximum likelihood of the data from observation 1 

to t as a function of the parameter (the mean) of the last seg- 
ment. This idea is referred to as ‘functional pruning’. In the 
Gaussian case, the resulting function is piecewise quadratic.
For a new observation at time t + 1, it is possible to efficiently 
update this function (that is, compute the penalized maxi- 
mum likelihood function from observation 1 to t + 1) using a 
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ormula similar to that of the Viterbi algorithm. This formula
s applied piece by piece, that is by intervals. At each step, the
lgorithm searches for the best possible value of the parameter
f the last segment to maximize the penalized likelihood. 

ormalization 

o account for differences in the total number of sequenced
eads per sample, we assume that the mean of the coverage
ijr is composed of a sample-specific size factor s jr and a pa-

ameter q ijr proportional to the expected true concentration of
ranscripts overlapping position i in replicate r of condition j
erifying μijr = s jr q ijr ( 29 , 35 , 36 ). As the coverage (eq: 1), the
er-base log 2 -FC (eq: 2) depends on sample-specific size fac-
ors. One can show that the non-normalized and normalized
er-base log 2 -FC are linked together by an offset denoted ρ

uch that 

ρ = 

1 
R 1 

R 1 ∑ 

r 1 =1 
log 2 ( s 1 r 1 ) − 1 

R 2 

R 2 ∑ 

r 2 =1 
log 2 ( s 2 r 2 ) . 

For a given penalty the output of FPOP is shift invariant.
hat is if the data is shifted by a given value the returned
hangepoints will be the same. Therefore the segmentation
eturned by DiffSegR does not depend on the knowledge of
he normalization factors. This is a key difference with thresh-
ld based methods (e.g. srnadiff IR, srnadiff HMM, RNAprof,
erfinder RL, derfinder SB). 
We acknowledge that when taking into account the offset

o the logarithms (+1) in the per-base log 2 -FC, the previous
rgument is approximately true for large counts but does not
old for small counts. 

verview of the DiffSegR package 

iffSegR is implemented as an R package ( www.R-project.
rg/) and can be found on GitHub ( https://aliehrmann.github.

o/ DiffSegR/ index.html ) with the installation procedure as
ell as a vignette with functional examples. The package im-
lements the four steps of a conventional pipeline for identify-
hen-annotate methods (Figure 2 ). 

tep 1: computing the co ver age profiles and the differential
ranscription profile from BAMs 
he loadData function builds coverage profiles from BAM
les within a locus specified by the user. If the reads are
tranded, the function builds one coverage profile per strand
or each replicate of both compared biological conditions. By
efault the heuristic used to compute coverage profiles is the
eometric mean of the 5 

′ and 3 

′ profiles (eq: 1). Alternative
pproaches use either the full length or the 5 

′ or 3 

′ end of the
eads (Note S1). loadData then converts the coverage profiles
nto the per-base log 2 -FC (eq: 2) (one per strand) using the
eference biological condition specified by the user as the de-
ominator. The function returns the coverage profiles and the
ifferential transcription profile as a list of run-length encoded
bjects. 

tep 2: summarizing the differential transcription landscape 
he segmentation function uses FPOP ( 28 ) on the per-base

og 2 -FC of both strands to identify the segment’s boundaries
or changepoints). The number of returned segments is con-
rolled by the hyperparameter λ specified by the user. The seg-
ents are stored as GenomicRanges object and the segmen-

ation function finally uses featurecounts ( 44 ) to assign them
he mapped reads from each replicate of each biological con-
dition. By default a read is allowed to be assigned to every seg-
ment it overlaps with. The segments and the associated count
matrix are returned as a SummarizedExperiment object. 

Step 3: differential expression analysis (DEA) 
The dea function uses DESeq2 ( 29 ) to test the difference in
average expression between the two compared biological con-
ditions for every segment. The resulting P -values are then ad-
justed using a Benjamini-Hochberg (BH) procedure to control
the false discovery rate (FDR), which is a common approach in
DEA. However, this approach does not guarantee that the pro-
portion of false discoveries (FDP) will be upper bounded, and
there is no statistical guarantee on the number of false discov-
eries in subsets of segments selected using FDR thresholding.
For example, while a widespread practice in DEA is to select a
subset of segments whose absolute log 2 -FC passes a threshold
it can potentially result in an inflated FDR. To address these
limitations, the dea function can also call a post-hoc inference
procedure that provides guarantees on the FDP in arbitrary
segment selections ( 42 ). Finally, dea returns the user-provided
SummarizedExperiment object augmented with the outcome
of the DEA. 

Step 4.A: annotating the differentially expressed regions
(DERs) 
The annotateNearest function annotates the DERs found dur-
ing the DEA using user specified annotations in the gff3 or gtf
format. Seven classes of labels translate the relative positions
of the DER and its closest annotation(s): antisense, upstream,
downstream, inside, overlapping 3 

′ , overlapping 5 

′ and over-
lapping both 5 

′ and 3 

′ . These labels allow users to easily un-
derstand the relationships between the DERs and their nearest
annotations, and to analyze the potential functional signifi-
cance of the DERs in the context of the annotated genomic
features. 

Step 4.B: visualizing the DERs 
The exportResults function saves the DERs, not-DERs, seg-
mentation, the mean of coverage profiles from both biolog-
ical conditions and per-base log 2 -FC information, for both
strands, in formats readable (bed, gff3) by genome viewers
like the Integrative Genome Viewer (IGV) ( 30 ). For IGV, ex-
portResults also creates a session in xml format that allows
loading all tracks in one click. This provides a convenient
way to save and visualize the results of the differential ex-
pression analysis, allowing a user-friendly exploration and in-
terpretation of the data generated by the DEA. An example of
the graphical output obtained with DiffSegR is displayed in
Figure 3 . 

Benchmarking 

Data and read mapping 
The true positive rate (see Evaluation metrics ) of DiffSegR and
competitors were evaluated on two RNA-Seq datasets com-
paring Arabidopsis thaliana control plants ( col0 ) to mutants
deficient in the PNPase and Mini-III chloroplast ribonucleases
( 31 ,37 ). We refer to these datasets as pnp1-1 and rnc3 / 4 , re-
spectively. In the rnc3 / 4 dataset both conditions contained
two replicates with about 19.5 million reads each while in
the pnp1-1 dataset, both conditions contained two replicates
with about 18.6 million reads each. DiffSegR ability to work
on a bacterial genome was evaluated using a RNA-Seq dataset

http://www.R-project.org/
https://aliehrmann.github.io/DiffSegR/index.html
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Figure 2. Schematic representation of the DiffSegR pipeline. The DiffSegR pipeline consists of four major steps: (1) Computing the coverage profiles 
and the differential transcription profile from BAMs. The loadData function creates coverage profiles from user-specified BAM files and a genomic 
region. (1.A) It produces one profile per strand for each replicate of both biological conditions. (1.B) The function then calculates the per-base log 2 
fold change (log 2 -FC) based on the coverage profiles. (2) Summarizing the differential transcription landscape. (2.A) The segmentation function applies 
FPOP to the per-base log 2 -FC of each strand to identify segment boundaries, known as changepoints. (2.B) Then the featurecounts program is used to 
assign mapped reads to segments, resulting in a count matrix. (3) Differential expression analysis (DEA). The dea function uses DESeq2 to test the 
difference in a v erage e xpression betw een the tw o compared biological conditions f or each segment. (4) Annotating and visualizing the differentially 
expressed regions (DERs). (4.A) The annotateNearest function annotates DERs using user-specified gff3 or gtf format annotations. In parallel, (4.B) the 
e xportR esults function sa v es DERs, not-DERs, segmentation, the mean of co v erage profiles from both biological conditions, and per-base log 2 -FC 

information in formats compatible with genome viewers like IGV. An IGV session in XML format allows loading all tracks with one click, providing a 
user-friendly w a y to visualiz e and interpret DiffSegR results. 
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Figure 3. DiffSegR analysis of the psbB-psbT-psbN-psbH-petB-petD gene cluster in the pnp1-1 dataset. The tracks from top to bottom represent: 
(log 2 -Cov (+)) the mean of coverages on the log 2 scale for the forward strand in both biological conditions of interest, with the blue line representing the 
WT condition and the red line representing the pnp1-1 condition; (log 2 -FC (+)) the per-base log 2 -FC between pnp1-1 (numerator) and WT (denominator) 
for the forward strand. The straight horizontal line represents the zero indicator. When the per-base log 2 -FC is above or below the zero indicator line, it 
suggests up-regulation or down-regulation, respectively, in pnp1-1 compared to WT. The changepoint positions are indicated by vertical blue lines, and 
the mean of each segment is shown by horizontal blue lines connecting two changepoints; (DiffSegR (+)) the differential expression analysis results for 
segments identified by DiffSegR on the forward strand are presented as follows: up-regulated regions are depicted in green, down-regulated regions in 
purple, and non-differentially expressed regions in gray; (annotations) the genes provided by users for interpretations. Symmetrically, the remaining 
tracks correspond to the same data on the re v erse strand. DiffSegR finds 8 up-regulated DERs on the f orw ard strand (IDs 1 to 8), 5 up-regulated DERs 
on the re v erse strand (IDs 9 to 11, 14 and 15), and 2 down-regulated DERs on the reverse strand (IDs 12 and 13). Table 1 provides a summary of the 
molecular validations published for the DERs identified in the psbB gene cluster through DiffSegR analysis. The bedGraph and gff3 files used to 
generate the tracks and the xml file used to load them in IGV were created using the exportResults function of the DiffSegR R package. The session 
was loaded in IGV 2.12.3 for Linux. 
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omparing a Bacillus subtilis control strain (CCB375 strain)
o a mutant deficient for the Rae1 ribonuclease (SSB1002
train) ( 38 ). We refer to this dataset as Δrae1 . Both condi-
ions contained three replicates with about 14.8 million reads
ach. The IDEAs dataset used to evaluate the false positive
ate (see Evaluation metrics ) contained ten RNA-Seq repli-
ates of the Col-0 Arabidopsis thaliana accession grown in
itrogen deficiency condition with about 32.7 million reads
ach. The plants were grown at the IJPB Phenoscope platform
 https:// phenoscope.versailles.inrae.fr/ ) to ensure maximal ho-
ogeneity between the replicates (see the GEO database with

he accession number GSE234377 for more details). RNA-
eq datasets were aligned to the Arabidopsis thaliana chloro-
last genome using the OGE pipeline ( https://forgemia.inra.
r/ GNet/ pipelineoge ) ( 39 ). This pipeline uses the STAR aligner
 40 ). The BAM files corresponding to the aligned Bacillus sub-
ilis RNA-Seq dataset were kindly provided by Ciarán Con-
don. The alignment was performed using the Bowtie aligner
( 41 ). These alignments were then used for the downstream
analyses. Because DiffSegR is the only evaluated method able
to analyze stranded RNA-Seq reads, the BAM files were then
split by strand in order to be used by the competing methods
and the results for both strands were finally merged. 

Adjusting method parameters 
For the purpose of benchmarking DiffSegR against other
methods in terms of true positive rate (see below), one or more
parameters likely to change the number and / or the positions
of the identified changepoints were adjusted. 

1. The minimum depth threshold ( minDepth ) is com-
mon to derfinder RL and srnadiff. All contiguous posi-
tions with mean of coverages above this threshold are
kept. For each method, on both datasets, one hundred

https://phenoscope.versailles.inrae.fr/
https://forgemia.inra.fr/GNet/pipelineoge
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minDepth values evenly spaced within the interval
[1,6000] were tested. The default minDepth value of
derfinder RL and srnadiff are 5 and 10, respectively. 

2. The minimum log 2 -FC threshold ( minLogFC ) is used by
srnadiff to keep only contiguous positions with abso-
lute normalized log 2 -FC above the threshold. For both
methods, on both datasets, one hundred minLogFC val-
ues evenly spaced within the interval [0.1,7] were tested.
The default minLogFC value of srnadiff is 0.5. 

3. The emission threshold ( emissionThreshold ) is used by
srnadiff to define the HMM states. For both methods, on
both datasets, one hundred ( emissionThreshold ) values
evenly spaced within the interval [0.09, 0.9] were tested.
The default emissionThreshold value of srnadiff is 0.1. 

For all these comparisons and on both datasets, the Diff-
SegR hyperparameter λ was kept to its default value, λ= 2.
In other analyses, all parameters from the different methods
tested were set to their default values. 

Evaluation metrics 
At the end of the segmentation process, each method yields
a collection of segments that may or may not correspond
to genomic regions with differential expression. Differentially
expressed regions (DERs) stand for the largest set of seg-
ments with a fold change > 1.5 (symmetrically < 2 / 3) and a
false discovery proportion upper bound set to 5%. Both per-
segment fold change and P -value are estimated using DESeq2
( 29 ). The post-hoc upper bound is obtained by controlling
the joint error rate (JER) at significance level of 5% using
the Simes family of thresholds implemented in the R pack-
age sanssouci ( 42 ,43 ). Unless specified, all methods were com-
pared using these thresholds. All quality control of the Diff-
SegR results, including a PCA of counts, a dispersion-mean
plot and an histogram of P -values are available in supplemen-
tary data for pnp1-1 (Supplementary Figures S1-S3), rnc3 / 4
(Supplementary Figures S4–S6) and Δrae1 (Supplementary
Figures S7–S9) datasets. For the comparisons on the pnp1-
1 and rnc3 / 4 labeled dataset the error E was defined as the
total number of labels which are not overlapped by at least
one DER. A label is a genomic portion whose correspond-
ing transcript has previously been validated by molecular bi-
ology techniques to be differentially accumulated in the mu-
tant compared to WT. The genomic coordinates of the labels
can be found in Supplementary Tables S1-S2. The true posi-
tive rate is given by T PR = 

N−E 
N 

where N is the total number
of labels. In the blank experiment the replicates of the nitro-
gen deficiency condition from the IDEAs project were resam-
pled in two groups to test several 2 versus 2, 3 versus 3, 4
versus 4 and 5 versus 5 designs. All the DERs identified are
supposed to be false positives. The false positive rate is given
by F PR = 

number of DERs 
number of segments . 

Results 

Foreword 

srnadiff merges the results of a two-level segmentation ap-
proach on the per-base P -value (srnadiff HMM) and a three-
level segmentation approach on the per-base log 2 -FC (srnadiff
IR) (Figure 1 ). Consequently, for the purposes of the following
comparisons, we will use srnadiff as a representative tool of
the methods following similar strategies, including derfinder
SB and RNAprof. In addition, due to the lengthy process of es-
timating the parameters of the model implemented in parseq 

(days) ( 20 ), comparing this tool with srnadiff, derfinder RL 

and DiffSegR is beyond the scope of our study. 

Speed and memory comparisons 

All the simulations presented here were performed with an 

Intel Core i7-10810U CPU @ 1.10GHz, 16 Go of RAMs and 

10 logical cores. On both chloroplast RNA-Seq datasets, Diff- 
SegR returns results in less than 2 minutes. In comparison, it 
takes less than 30 s for a standard differential gene expression 

(DGE) analysis. The identification of segment boundaries us- 
ing changepoint detection analysis runs in less than a second 

on both datasets. The slowest step of the DiffSegR pipeline 
is the construction of the coverage profiles followed later by 
the segment count table using the featureCounts program and 

the BAMs files (Supplementary Table S3). Less than 1 Go of 
RAM is necessary and the peak of memory used is reached at 
the differential analysis step (Supplementary Table S4). 

DiffSegR facilitates the visualization of DERs 

DiffSegR was applied to a RNA-Seq dataset comparing con- 
trol plants ( col0 ) to a mutant deficient in the PNPase chloro- 
plast ribonuclease ( pnp1-1 ), a major 3 

′ processing enzyme 
( 37 ). When dealing with a gene dense genome like the plas- 
tome, annotating a DER using the nearest gene can lead to am- 
biguities. In this case, visualization of the DERs in a genome 
viewer, as exemplified for the psbB-psbT-psbN-psbH-petB- 
petD gene cluster (Figure 3 ), is often the simplest solution.
In line with previous molecular studies, DiffSegR identifies 
15 DERs, 8 on the forward and 7 on the reverse strand, re- 
spectively. For example, the overexpressed segment, in 5 

′ of 
the psbB gene (DER 1 with genomic positions 72233–72395) 
matches an area previously shown to over accumulate RNA 

5 

′ ends in pnp1-1 ( 45 ) and the segment 2 overlapping psbH 

and antisense to psbN (DER 2 with genomic positions 74224 

to 74846) corresponds to various 400–700 nt long RNA iso- 
forms previously characterized in WT or pnp1-1 mutants 
( 37 ,46–48 ). The published molecular validations correspond- 
ing to the DERs identified in the psbB gene cluster by DiffSegR 

are summarized in Table 1 . 

DiffSegR improves the search for DERs 

The ability of DiffSegR and competitor methods derfinder and 

srnadiff ( 19 ,22 ) to identify DERs was evaluated on two RNA- 
Seq datasets generated for plants lacking the chloroplast ri- 
bonucleases PNPase (see above) and Mini-III ( rnc3 / 4 ) ( 31 ,37 ).
In comparison to control plants, these two mutants over accu- 
mulate RNA fragments that are mainly located outside of the 
annotated genic areas and the RNA-Seq data have been ex- 
tensively validated using molecular techniques ( 31 ,32 ). These 
validations were used to define 23 labels (17 in pnp1-1 and 6 

in rnc3 / 4 ) where a DER was expected to be found (list and 

coordinates of the labels in Supplementary Tables S1-S2). Us- 
ing its default segmentation hyperparameters ( λ= 2) DiffSegR 

identified 434 and 25 DERs in the pnp1-1 and rnc3 / 4 datasets 
respectively (Supplementary Tables S5-S6; Supplementary Fig- 
ures S10–S30), including all the predefined labels (TPR = 1).
By contrast, srnadiff and derfinder RL identified 16 and 4 la- 
bels out of 17 in pnp1-1 and 4 and 0 labels out of 6 in rnc3 / 4
(Table 2 ). After adjusting the per-base log 2 -FC threshold, only 
srnadiff was also able to reach a TPR of 1 (Supplemen- 
tary Figure S31-S34). As expected, standard differential gene 
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Table 1. DERs identified by DiffSegR within the gene cluster psbB-psbT-psbN-psbH-petB-petD in pnp1-1 dataset 

Strand Positions DiffSegR result Genomic context ID Validation 

forward 72233–72395 up psbB 5 ′ ends 1 ( 45 ) 
forward 74224–74846 up psbH ; antisense to psbN 2 ( 37 ,46–48 ) 
forward 74847–75235 up petB intron 3 ( 47 ) 
forward 75236–75649 up petB intron 4 ( 47 ) 
forward 76487–77196 up petD intron 5 ( 47 ) 
forward 77740–77963 up petD 3 ′ ends; antisense to petD-rpoA intergenic 6 ( 37 ,47 ) 
forward 77964–78112 up petD 3 ′ ends; antisense to rpoA 7 ( 37 ,47 ) 
forward 78113–78218 up petD 3 ′ ends; antisense to rpoA 8 ( 37 ,47 ) 
reverse 71814–73668 up psbN 3 ′ ends; antisense to psbB 9 NA 

reverse 73669–73935 up psbN 3 ′ ends; antisense to psbB 10 NA 

reverse 73936–74085 up psbN 3 ′ ends; antisense to psbB-psbT intergenic 11 ( 37 ) 
reverse 74232–74365 down psbN 12 ( 47 ) 
reverse 74366–75133 down psbN 5 ′ ends; antisense to psbH and petB 13 ( 37 ) 
reverse 75134–77383 up rpoA 3 ′ ends; antisense to petB and petD 14 NA 

reverse 77384–77605 up rpoA 3 ′ ends; antisense to petD 15 NA 

Most DERs are supported by molecular validations described in the literature. Up is for up-regulated and down for down-regulated. 

Table 2. Comparison of the true positive rates (TPRs) for DiffSegR, sr- 
nadiff and derfinder RL methods on the pnp1-1 (17 labels) and rnc3 / 4 (6 
labels) datasets 

Dataset Method TPR 

pnp1-1 DiffSegR 1 (17 / 17) 
pnp1-1 srnadiff 0.94 (16 / 17) 
pnp1-1 derfinder RL 0.24 (4 / 17) 
rnc3 / 4 DiffSegR 1 (6 / 6) 
rnc3 / 4 srnadiff 0.67 (4 / 6) 
rnc3 / 4 derfinder RL 0 (0 / 6) 

Each method is executed using its default segmentation hyperparameters. 
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Figure 4. Comparison of the empirical cumulative distribution functions 
(eCDFs) of the False Positive Rate (FPR) from DiffSegR and the 
Differential Expression analysis within Gene annotations (DGE). The 
eCDFs of FPRs from DiffSegR (solid curves) and DGE (dashed curves) 
methods are compared by re-sampling two groups from 10 biological 
replicates of the same nitrogen deficiency condition in the IDEAs 
dataset. The figure displays results for group sizes of 2 (blue curves) and 
5 (red curves) (see Supplementary Figure S35 for 3v3 and 4v4 designs). 
The eCDF represents the proportion of comparisons (y-axis) with fewer 
f alse positiv es than a specified percentage (x-axis). T he eCDF analy sis 
demonstrates that the FPR in DiffSegR results is not inflated compared 
to the widely-used DGE approach. 
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xpression (DGE) analysis, which relies on known gene anno-
ations and is considered as a routine research tool ( 3 ), was
nable to identify labels located outside of these annotations,
herefore resulting in an TPR of 0. Because the large num-
er of DERs found by DiffSegR could suggest it has a high
PR, we evaluated and compared it to classical DGE anal-
sis ( 49 ) using a RNA-Seq dataset containing 10 replicates
f the nitrogen deficiency condition. Any DER identified be-
ween subsamples of the replicates was therefore considered
 false positive. The empirical cumulative distribution func-
ions (eCDFs) of the FPR for both DiffSegR and the DGE
nalysis were similar when using the 5 versus 5 designs. For
he 2 versus 2 designs, approximately 90% and 80% of the
esigns resulted in < 2.5% of FPR with DiffSegR and tradi-
ional DGE respectively (Figure 4 ). These observations con-
rm that the FPR is not inflated in the results of DiffSegR
see Supplementary Figure S35 for 3 versus 3 and 4 versus
 designs). 

if fSegR bet ter captures the dif ferential landscape 

ecause derfinder RL and srnadiff use a two- or three-level
egmentation model they are susceptible to merge in a sin-
le DER various contiguous segments having different log 2 -
C. As a consequence, distinct DER events stemming from
istinct RNA maturation processes could be wrongly asso-
iated together (Note S4 and Supplementary Figure S43). In
ontrast, DiffsegR segments the mean of the per-base log 2 -FC
ithout making any assumption on the number of levels. It

hould therefore be able to distinguish between contiguous
ER events, leading to shorter DER than the other methods.
e therefore compared the length distribution of DERs identi-
fied by DiffSegR, srnadiff and derfinder RL. In agreement with
our expectation, the DERs identified by DiffSegR are on av-
erage smaller than those identified by its competitors in both
the pnp1-1 and rnc3 / 4 datasets (Figure 5 ). Respective median
sizes are equal to 211 and 455 nt for DiffSegR and srnadiff
( P -value < 2.2 × 10 

−16 , Mann–Whitney U test) in pnp1-1 . In
rnc3 / 4 respective median lengths are equal to 15 and 97 nt
( P -value = 0.0362, Mann–Whitney U test) (Figure 5 A). An
identical trend can be observed between DiffSegR and
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A

B

C

Figure 5. Comparisons of DERs and not-DERs lengths between DiffSegR, derfinder RL and srnadiff on pnp1-1 and rnc3 / 4 datasets. (A) The length 
distribution of DERs and not-DERs identified by DiffSegR and srnadiff are shown using both boxplot and violin plot. Only overlapping (not-)DERs 
between the compared methods are kept. A (not-)DER of method DiffSegR is considered o v erlapping either if it co v ers 90% of a (not-)DER of srnadiff or 
if 90% of it is co v ered b y a DER of method srnadiff. When there are fe w er than 20 o v erlapping DERs or not-DERs, the violin plot is replaced b y a dot 
plot. (B) Similar comparisons were made between DiffSegR and derfinder RL methods. Derfinder does not identify DERs in rnc3 / 4 , which explains the 
lack of o v erlap betw een DiffSegR DERs and derfinder RL DERs in this dat aset. (A, B) In both dat asets, DiffSegR not-DERs are on a v erage longer than 
srnadiff not-DERs and derfinder RL not-DERs. Additionally, DiffSegR DERs are on a v erage smaller compared to srnadiff DERs and derfinder RL DERs 
(Mann-Whitney U test). (C) Comparison of DiffSegR, derfinder RL, and srnadiff analyses for the trnV gene and the 3 ′ ends of atpE , located on the 
re v erse strand of the chloroplast genome. The tracks are defined as depicted in Figure 3 , and further enhanced by incorporating the results from the 
derfinder RL and srnadiff analyses. DiffSegR identifies 6 up-regulated DERs (IDs 1–6). derfinder RL fails to detect any DERs within this region. Lastly, 
srnadiff disco v ers a singular DER (ID 7). 
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erfinder RL. In pnp1-1 respective median sizes are equal to
20 and 826 nt ( P -value < 2.2 × 10 

−16 , Mann–Whitney U
est). In rnc3 / 4 , derfinder fails to detect DERs, accounting
or the absence of overlapping DERs between DiffSegR and
erfinder RL in this particular dataset (Figure 5 .B). We con-
lude that srnadiff and derfinder RL indeed merge neighboring
ERs with different log 2 -FC. 
Moreover, derfinder RL directly segments the mean of cov-

rages and is therefore susceptible to split regions that are not
ifferentially expressed into distinct segments (Note S5 and
upplementary Figure S44). This is because the shape of the
ranscriptional signal is strongly influenced by numerous bio-
ogical and technical factors that are not directly related to
ona fide transcriptional differences ( 50 ). In contrast, Diff-
egR uses the per-base log 2 -FC that is largely unaffected by
he underlying transcriptional coverage. This is because lo-
al variations in coverage are reproducible and cancel out
hen taking the difference of the log 2 (log 2 -FC) (Supplemen-

ary Figure S36). As a consequence, we expect DiffSegR to
eturn not-DER longer than derfinder RL. We therefore com-
ared the length distribution of not-DERs identified by Diff-
egR, srnadiff and derfinder RL in both pnp1-1 and rnc3 / 4
atasets. Figure 5 shows that the not-DERs identified by Diff-
egR are indeed on average longer than those identified by its
ompetitors. Respective median sizes are equal to 833 and 80
t for DiffSegR and srnadiff ( P -value < 2.2 × 10 

−16 , Mann–
hitney U test) in pnp1-1 . In rnc3 / 4 respective median

engths are equal to 294 and 86 nt ( P -value < 2.2 × 10 

−16 ,
ann–Whitney U test) (Figure 5 A). An identical trend can

e observed between DiffSegR and derfinder RL. In pnp1-
 respective median sizes are equal to 833 and 80 nt ( P -
alue < 2.2 × 10 

−16 , Mann–Whitney U test). In the rnc3 / 4
ataset, respective median lengths are equal to 327 and 122
t ( P -value < 2.2 × 10 

−16 , Mann–Whitney U test) (Figure 5 B).
e conclude that both srnadiff and derfinder RL over-segment

egions that are not differentially expressed in comparison to
iffSegR. 

iffSegR can be used on sparser genomes 

parsity refers to the fraction of a genomic region with a
ull RNA-Seq coverage and is known to cause artifacts in
tatistical analyses ( 51 ). Because the two plant chloroplasts
NA-Seq datasets previously used have a low sparsity rang-

ng from 0.42 to 0.57 we tested DiffSegR on a Bacillus sub-
ilis RNA-Seq dataset previously used to decipher the role of
he Rae1 ribonuclease ( 38 ) and whose sparsity ranged from
.79 to 0.82 between the different replicates. Using standard
ifferential expression analysis, Leroy et al. identified 46 mR-
As and ncRNAs as significantly up-regulated in the rae1
utant ( q -value < 0.05 & fold change > 1.5) and eventu-

lly selected seven of them ( S1025 , S1024 , S1026 , yrzI , bmrC ,
mrD , bglC ) as candidates for direct degradation by Rae1.
iffSegR returned significant up-regulated DERs overlapping
5 of the 46 genes identified by Leroy et al. including the seven
andidates of interests (Supplementary Figures S37–S39). In
ddition, DiffSegR returned significantly up-regulated DERs
verlapping 60 other genes (Supplementary Tables S7 and
8). A striking feature was however the over-representation
f very short DERs. The five most abundant ones were indeed
 (6.5%), 6 (6.4%), 5 (5.9%), 2 (5.6%) and 8 (5.4%) nt long
hile the five most abundant ones in the pnp1-1 dataset were
5 (1.7%), 73 (1.7%), 83 (1.1%), 204 (1.1%), 56 (0.8%) nt
ong. 
Discussion 

DiffSegR is a straightforward solution to the DERs 

detection problem 

We here introduced DiffSegR, an R package that allows the
discovery of transcriptome-wide expression differences be-
tween two biological conditions using RNA-Seq data (Figure
2 ). While standard RNA-Seq differential analyses rely on ref-
erence gene annotations and therefore miss potentially mean-
ingful DERs, DiffSegR directly identifies the boundaries of
DERs without requiring any annotation. Unlike its competi-
tors, DiffSegR is designed to analyze stranded RNA-Seq reads,
therefore allowing the identification of transcriptional differ-
ences on both the forward and reverse strands. This is an in-
valuable asset when considering the pervasiveness of antisense
transcripts ( 52–54 ). The output generated by DiffSegR can be
easily loaded into the Integrative Genomics Viewer (IGV), pro-
viding a user-friendly platform for the exploration and inter-
pretation of the results (Figure 3 ). 

Like other methods willing to automatically identify tran-
scription differences along the genome, DiffSegR addresses
a well-defined statistical problem known as the multiple
changepoints detection or segmentation problem. Among the
many algorithmically and statistically well-established meth-
ods that have been developed to tackle this problem ( 55 ,56 ),
DiffSegR uses FPOP ( 28 ). This method relies on a Gaussian
model to detect changes in the mean of a signal. The compu-
tation time of FPOP is log-linear in the signal length, making
it time efficient (Supplementary Table S3). FPOP is statisti-
cally grounded ( 33 ,57 ), and has been shown to be effective
in numerous simulations ( 28 ,55 ) and genomic applications
( 26 , 27 , 58 ). Another advantage of FPOP is that it only has one
parameter (the penalty), therefore simplifying calibration and
interpretation. 

A key feature of DiffSegR is the use of the per-base log 2 -
FC signal for segmentation analysis, a strategy that carries
three main advantages. First, it scales with the intensity of
the difference up to a normalization constant. Second, it dis-
criminates between up-regulated and down-regulated DERs
and third, it is largely insensitive to local variations in cover-
age as they are reproducible (Supplementary Figure S36) and
cancel out when taking the difference of the logs (log 2 -FC).
Moreover, in contrast to the two-level (DER and not-DER
or expressed and not-expressed) and three-level (up-regulated
DER, down-regulated DER, not-DER) segmentation models
used by other approaches (Figure 1 ), FPOP does not make any
assumptions on the number of levels in the log 2 -FC and can ef-
fectively distinguish between adjacent DERs that involves dis-
tinct RNA maturation processes. As a consequence DiffSegR
detects fewer changes in non-differential regions but detects
more segments in DERs than its competitors (Figure 5 ). This
suggests that DiffSegR is able to effectively summarize the
data, providing a detailed and accurate representation of the
differential landscape while being more selective in its analysis
of not-DERs. 

DiffSegR accurately captures the differential 
landscape 

DiffSegR finds all the extended 3 

′ and 5 

′ ends of transcripts,
as well as accumulated antisense RNA, in RNA-Seq labeled
datasets pnp1-1 and rnc3 / 4 . These labels were previously ver-
ified through molecular techniques, and DiffSegR was able
to identify them with its default settings, while none of the
competitors tested were able to do so. However, the use of the
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same dataset twice in DiffSegR (and its competitors), a proce-
dure so-called double dipping, first for segmentation and then
for differential analysis may result in an inflated false positive
rate ( 59–61 ). We therefore verified that the FPR of DiffSegR
is similar to standard DGE analysis using a blank experiment
(Figure 4 ). A possible explanation to the observed robustness
is the fact that DiffSegR uses different aspects of the data in
its two steps: while the segmentation uses the per-base log 2 -
FC, the DEA relies on normalized counts, per-segment log 2 -
FC, and dispersion. The last three parameters are estimated
by DESeq2. 

We are therefore confident that the numerous DERs iden-
tified outside of the predefined labels in the two chloroplas-
tic RNA-Seq datasets represent bona fide DERs. For example,
387 out of the 434 DERs identified in the pnp1-1 RNA-Seq
experiment did not overlap labels. While an exhaustive molec-
ular validation of these 387 segments is beyond the scope
of this study, numerous evidences suggest they are accurate.
Specifically, DiffSegR identifies 72 DERs overlapping all the
25 plastid introns in the PNPase mutant, a feature previously
shown to reflect a lack of intron degradation following splic-
ing in the mutant ( 47 ). Neither srnadiff nor derfinder RL were
able to capture this feature entirely. Another example suggest-
ing that DiffSegR does not over-segment the differential tran-
scription profile is displayed for genomic area 51012–52156
in Figure 5 .C. While it is not differentially expressed accord-
ing to derfinder RL, srnadiff considers it as a single DER (DER
7 with genomic positions 51003–52154) and DiffSegR identi-
fies 6 contiguous different DERs within it. The multiplicity of
DERs identified by DiffSegR seems to better reflect the shape
of the log 2 -FC and is also consistent with the known roles
of the PNPase in transcript 3 

′ end maturation (DER 1 with
genomic positions 51012–51209 and DER 6 with genomic
positions 51992–52156 for trnV and atpE , respectively) or
the degradation of tRNA 5 

′ precursor (DER 5 with genomic
positions 51889–51991 for trnV ) ( 32 ). Finally, both trnV ex-
ons over accumulate (DERs 2 and 4 with genomic positions
51210–51282 and 51833–51888, respectively) in the mutant,
along with the corresponding intron (DER 3 with genomic
positions 51283–51832). The segmentation in three different
DERs is, once again, an accurate interpretation of the two dif-
ferent biological mechanisms targeting tRNAs and introns in
the mutant ( 47 ,62 ). 

Larger genomes with more zeroes 

DiffSegR is also effective and powerful on genomes larger and
more complex than the chloroplast. It effectively identified the
two RNA locations that have been shown to be degraded by
the Rae1 endoribonuclease in Bacillus subtilis ( 38 ,63 ). This
illustrates one of the big advantages of DiffSegR, it can be
easily used to narrow down the number of genomic regions
worth investigating. From the 4.2 Gb Bacillus genome it iden-
tified 1833 regions (Supplementary Table S7) that contained
the two known cleavage sites, a number that is compatible
with the workforce of most research teams. It is however true
that the segmentation model used by DiffSegR may result in
an over segmentation in profiles containing many base pairs
with a null coverage. This could be problematic when address-
ing even larger genomes, like nuclear ones, and prevent inter-
pretability of the results. 

A straightforward solution would be to apply DiffSegR to
smaller portions of the genome, only keeping the ones with
sufficient coverage. This however comes with issues of its
own as (i) identifying those genomic portions is a segmenta- 
tion problem itself, multiplying the genomic areas complex- 
ifies selection, and (ii) this leads to a triple-dipping problem 

as the data is used three times (identification of the genomic 
area, segmentation within the genomic area and differential 
expression analysis). Alternative strategies would be to inte- 
grate more advanced segmentation methods already available.
More specifically, we believe it could be useful to (i) weight the 
base pair according to its coverage (using a weighted version 

of FPOP, ( 64 )), (ii) consider full length reads at the prize of 
modeling auto-correlation ( 65 ), and (iii) model the discrete 
nature of the data using a negative binomial model ( 66 ). 

Conclusion 

In conclusion, DiffSegR is a powerful tool that provides re- 
searchers with a systematic and accurate way to discover ex- 
pression differences between two conditions using RNA-Seq 

data, without the need for prior annotations. Because it is de- 
signed to compare two conditions, we believe that DiffSegR 

has the potential to change the way researchers approach dif- 
ferential expression analysis, especially considering the wealth 

of RNA-Seq based strategies aimed at capturing specific events 
( 67 ). For example, it has already been used on RNA immuno- 
precipitation sequencing data to study translation initiation 

in plant mitochondria ( 68 ). We anticipate it could similarly 
be used to find newly transcribed RNAs compared to mature 
RNA control in nascent RNA analysis ( 69 ), to find differences 
in ribosome bound RNA in translatome analysis ( 70 ) or to 

discriminate structured (double-stranded RNA) from unstruc- 
tured RNAs in structurome analysis ( 71 ). We expect that the 
use of DiffSegR will lead to new discoveries and insights in 

the field of transcriptomic. 

Data availability 

S oftw are availability 

The latest version of the DIffSegR R package is available at 
https:// aliehrmann.github.io/ DiffSegR/ index.html and https:// 
zenodo.org/ doi/ 10.5281/ zenodo.10017833 . The package in- 
cludes a Vignette which shows on a minimal example how to 

use the main functions. 

Data availability 

• Raw sequences for the rnc3 / 4 dataset have been re- 
trieved from the BioProject database with the accession 

number PRJNA268035. 
• Raw sequences for the pnp1-1 dataset have been re- 

trieved from the SRA database with the accession num- 
ber SRA046998. 

• Raw sequences for the nitrogen deficiency condition 

from the IDEAs dataset are available at GEO database 
with the accession number GSE234377. 

• Raw sequences for the Δrae1 dataset can be accessed 

from the GEO database with the number GSE93894. 
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