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reveals the drivers that shape the 
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Background: The use of omics data for monitoring the microbial flow of fresh meat 
products along a production line and the development of spoilage prediction tools 
from these data is a promising but challenging task. In this context, we produced a 
large multivariate dataset (over 600 samples) obtained on the production lines of two 
similar types of fresh meat products (poultry and raw pork sausages). We describe a 
full analysis of this dataset in order to decipher how the spoilage microbial ecology 
of these two similar products may be shaped differently depending on production 
parameter characteristics.

Methods: Our strategy involved a holistic approach to integrate unsupervised and 
supervised statistical methods on multivariate data (OTU-based microbial diversity; 
metabolomic data of volatile organic compounds; sensory measurements; growth 
parameters), and a specific selection of potential uncontrolled (initial microbiota 
composition) or controlled (packaging type; lactate concentration) drivers.

Results: Our results demonstrate that the initial microbiota, which is shown to 
be  very different between poultry and pork sausages, has a major impact on 
the spoilage scenarios and on the effect that a downstream parameter such 
as packaging type has on the overall evolution of the microbial community. 
Depending on the process, we also show that specific actions on the pork meat 
(such as deboning and defatting) elicit specific food spoilers such as Dellaglioa 
algida, which becomes dominant during storage. Finally, ecological network 
reconstruction allowed us to map six different metabolic pathways involved in 
the production of volatile organic compounds involved in spoilage. We were able 
connect them to the different bacterial actors and to the influence of packaging 
type in an overall view. For instance, our results demonstrate a new role of 
Vibrionaceae in isopropanol production, and of Latilactobacillus fuchuensis 
and Lactococcus piscium in methanethiol/disylphide production. We  also 
highlight a possible commensal behavior between Leuconostoc carnosum and 
Latilactobacillus curvatus around 2,3-butanediol metabolism.

Conclusion: We conclude that our holistic approach combined with large-
scale multi-omic data was a powerful strategy to prioritize the role of production 
parameters, already known in the literature, that shape the evolution and/or the 
implementation of different meat spoilage scenarios.
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Introduction

Meat products are perishable substrates mainly because of 
metabolic activities expressed by microbial communities that 
unavoidably contaminate meat cuts. Once contaminated, meat 
physicochemical properties, i.e., neutral pH, high water activity and 
nutrient abundance, provide excellent conditions for bacterial growth 
during storage that can result in the production of unwanted colors, 
textures or odors that contribute to spoilage (Remenant et al., 2015). 
The microbial ecology of meat products has been the focus of many 
scientific articles in the last decade (see Nieminen et al., 2012; Chaillou 
et al., 2015; Hultman et al., 2015; Ferrocino et al., 2016; Fougy et al., 
2016; Stellato et al., 2016; Ferrocino and Cocolin, 2017; Wang et al., 
2017 as examples). This detailed scrutiny, performed with the use of 
non-cultural 16S rDNA-based amplicon sequencing analyses (also 
referred to as metataxonomic analyses) and in few examples with 
whole genome shotgun metagenomics, led us to revisit the breadth of 
knowledge covering the diversity of microbiota associated with the 
spoilage of these perishable foods. In particular, the presence of 
unexpected species and the detection of some, such as lactic acid 
bacteria species, usually not or seldom revealed by classical plating 
methods, gave a new perception of meat microbiota and putative meat 
spoilers (Chaillou et al., 2015; Saraoui et al., 2016; Andreevskaya et al., 
2018; Säde et  al., 2020). Much of the microbiological data could 
gradually be updated and eventually centralized in specialized food 
databases (de Filippis et al., 2018; Parente et al., 2019), highlighting the 
predominant role of various psychrotrophic bacterial species 
belonging mainly to the Proteobacteria (Photobacterium, 
Pseudomonas, Psychrobacter, Serratia) and Firmicutes (Brochothrix, 
Carnobacterium, Lactococcus, Latilactobacillus, Leuconostoc) phyla, as 
well as the large variety of assemblies of these bacteria.

However, above all, the integration of all these studies has made it 
possible to better formulate the key research questions about the 
microbial ecology that surrounds meat spoilage phenomena. Many 
biotic parameters (i.e., microbiota present in the raw food, their 
components and relative abundance) and environmental parameters 
such as storage conditions (i.e., gas mixtures used for packaging, 
temperature) and process (i.e., addition of preservative compounds) 
provide an extraordinary array of functional diversity. Various 
microbial assemblages between the different groups mentioned above 
can be observed depending on these parameters. This has led to an 
overwhelming number of spoilage situations that are hard to tackle 
and that limit our capacity to produce fundamental knowledge in this 
research field. A given spoilage microbiota and its functional activity 
is thus a unique outcome that combines all the variables along a 
production process, from the time the animal is slaughtered to the 
final product at the end of its shelf life.

The implementation of large-scale sampling strategies (hundreds 
of samples) to map the microbial flow along a production process can 
be  very interesting to delineate how microbial communities are 
structured in a process-dependent manner and the main steps 

involved in the variations (Stellato et al., 2016; Higgins et al., 2018; 
Säde et al., 2020; Zagdoun et al., 2020). Moreover, tools for multivariate 
analysis of a combination of various datasets (Luong et  al., 2021) 
obtained through different approaches such as microbiome, 
metabolome and different physicochemical or microbiological data 
may contribute to enriching our knowledge about spoilage occurrence 
by detecting situations more or less favorable to spoilage development. 
Although statistical correlations have drawbacks and cannot prove the 
existence of a biological phenomenon, they can nevertheless be used 
to generate hypotheses. Once this task completed, it should be easier 
for food microbiology researchers and process engineers to focus on 
certain types of microbial communities, to study them in detail, and 
to look for innovative solutions to reduce their spoilage potential. This 
strategy can also serve to identify relevant process-specific biomarkers 
to improve predictive tools for the reliable estimation of the shelf life 
of fresh meat products. Nevertheless, this type of approach is still not 
widespread despite its undeniable potential in terms of food safety and 
meat production sustainability (reducing food waste).

For this purpose, we have produced a large multivariate dataset 
obtained on the production lines of two similar types of fresh meat 
products (poultry and raw pork sausages) and have made it available 
for the scientific community (Poirier et al., 2020). In the present study, 
we  describe a full analysis of this dataset and decipher how the 
spoilage microbial ecology of these two similar products is 
nevertheless shaped differently depending on the parameters 
characteristic of each one.

Materials and methods

Dataset presentation

The data presented in this article and their production methods 
are detailed in our data paper (Poirier et al., 2020). The two meat types 
were chosen because of their similar recipe (batter of 75–80% ground 
meat and 15–20% fat mixed with spices, both including potassium 
lactate as a preservative). Process parameters were subject to 
controlled variations. The first parameter, the concentration of 
potassium lactate that is commonly used as a chemical preservative, 
was modulated in the meat batter: a full normal dose (2 and 1.13% wt/
wt, for pork and poultry, respectively; the one generally used in the 
production facilities that were studied), a half dose, or none. The 
second parameter, packaging atmosphere, was one of three different 
types that are also routinely used in the studied factories: air (~21% 
O2 – ~78% N2), CO2-enriched and O2-depleted packaging (50% CO2–
50% N2, further referred to as O2- packaging), and O2/CO2-enriched 
packaging (70% O2–30% CO2, further referred to as O2+ packaging).

Several types of analyses were performed for each sample for the 
purpose of providing a comprehensive microbial ecology of spoilage 
during storage and to show how the process parameters influence this 
phenomenon. The analyses include meat type; gas (O2 and CO2) 
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content in headspace packages, sausage pH, chromametric 
measurements, plate counts (total mesophilic aerobic colonies and 
lactic acid bacteria), sensory properties of the products, meta-
metabolomic quantification of volatile organic compounds (VOCs) 
and bacterial community metataxonomic analysis. Bacterial diversity 
was monitored using two types of amplicon sequencing: 16S rDNA 
V3-V4 and the GyrB encoding gene (Poirier et al., 2020) at different 
time points during storage for the different conditions (576 samples 
for gyrB and 436 samples for 16S rDNA were obtained). Sequencing 
data were generated using Illumina MiSeq. The sequencing data were 
deposited in the bioproject PRJNA522361. Sample accession numbers 
vary from SAMN10964863 to SAMN10965438 for the gyrB amplicon, 
and from SAMN10970131 to SAMN10970566 for 16S rDNA (Poirier 
et al., 2020).

Unsupervised statistical analyses

Analyses of alpha bacterial diversity were carried out with 
phyloseq R package, v 1.36.0 (McMurdie and Holmes, 2013). Kruskal-
Wallis test was used to compare alpha diversity and spoilage intensity 
at different sampling times. Dendrograms that visualized sample 
clustering according to their bacterial community composition were 
plotted on the basis of their weighted Unifrac distance (Hamady et al., 
2010) and the Ward D2 clustering method (Ward, 1963).

As a global approach, unsupervised principal component analyses 
(PCA) and correlation circles associated with PCA results were plotted 
with the ade4 R package, v1.7.19 (Dray and Dufour, 2007). Centered 
scaled PCA results were performed with sensory analysis and volatile 
organic compound quantification datasets. Bacterial community 
compositions within meat samples were first ordered according to the 
Bray–Curtis dissimilarity index values using a principal coordinate 
analyses (PCoA) and then plotted using the ggplot2 R package, v 3.3.6 
(Wickham, 2016).

Supervised statistical analyses

The MixOmics R package, v 6.17.29 (Rohart et al., 2017), was 
used to implement supervised partial least square discriminant 
analysis (PLS-DA) and plot sample distribution according to their 
bacterial population composition and to preliminary defined groups 
on factorial planes. The objective of this supervised approach was to 
more precisely target robust bacterial indicators associated with 
variations in environmental parameters. For this analysis, data were 
transformed with centered log ratio (CLR) transformation to account 
for compositional structure of the scaled data (Aitchison, 1982). 
Briefly, the log (base 2) of each count divided by its corresponding 
geometric mean was calculated. Performance of the PLS-DA model 
was checked using 5-fold cross validation repeated 10 times (perf 
function). This analysis enables the calculation of an error rate that 
targets the number of components to be  kept. The number of 
components corresponding to the best error rate was then selected. 
A sparse PLS-DA (sPLS-DA function) enabling the selection of the 
most discriminant bacterial populations (variables) within PLS-DA 
results, was also conducted with this package. This selection is also 
based on the calculation of an error rate according to an evaluation 
of the PLS-DA model (tune.splsda function) using 5-fold cross 

validation repeated 10 times. The number of variables corresponding 
to the best error rate is then selected.

Correlation analyses between 
heterogeneous multi-omics datasets

Dataset integration was performed using Data Integration 
Analysis for Biomarker discovery, DIABLO (Singh et  al., 2019), 
implemented in the mixOmics framework. In our correlation analysis, 
we combined a centered log ratio (CLR) normalized relative bacterial 
abundance table aggregated at the species level using the tax_glom 
function of the phyloseq R package with the CLR normalized volatile 
organic compounds (VOCs) abundance table. DIABLO extends 
sparse Generalized Canonical Correlation Analysis (sGGCA) for 
multi-omics and supervised integration. It performs multivariate 
dimensionality reduction and selects correlated variables (based on 
latent component scores) across datasets. Feature selection is 
performed internally using lasso penalties. The data are then projected 
into a smaller dimensional subspace spanned by the components for 
prediction. Tuning of the component and variable number were 
performed using 5-fold cross validation repeated 10 times. The 
number of variables corresponding to the best error rate is 
then selected.

Construction of the ecological network

Construction of the ecological network was performed with 
Gephi software, v 0.9.2 (Bastian et al., 2009). The node and edge table 
was configured from the subset mixDIABLO analysis (see Results 
section) using hit frequency and cumulative r values to weigh the 
edges. The network was constructed using the forceAtlas2 algorithm 
(Jacomy et al., 2014).

Results

Summary overview of the dataset and of 
the analysis strategy

Technical details about the experimental design can be found in 
our data article (Poirier et  al., 2020). Briefly, we  monitored the 
production of two meat products: poultry and pork chipolata-type 
sausages. We assessed how uncontrolled input characteristics (meat 
type) and associated microbiota influence the spoilage of raw sausages, 
while two additional process variables (potassium lactate 
concentration and packaging atmosphere) were subjected to 
controlled variations (see Material and methods section).

The large-scale sampling involved ten batch replications spanning 
six months of production and made it possible to gather over 360 
samples per meat type along the production chain (10 replicates x 3 
packaging conditions x 3 lactate concentrations x 4 sampling times). 
Sausages were stored until day 22, mimicking the conditions used for 
use-by-date determination, and sampled at day 2, 7, 15, and 22. On 
the basis of these samples, we produced multivariate data from the 
monitoring of the physicochemical parameters (pH of sausage, gas 
mixtures in the pack head space, sausage color determined by 
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chromametry), bacterial loads, microbiota diversity, including both 
16S rDNA (taxonomic assignment of operational taxonomic units at 
the genus level (Poirier et al., 2018)) and gyrB (taxonomic assignment 
of operational taxonomic units at the species and subspecies level) 
amplicon sequencing, metabolomic analysis of VOCs, and sensory 
analysis using six descriptors evaluated by a trained panel.

Bacterial growth and alpha diversity 
dynamics depend on the raw food input 
(meat type)

The analysis of microbial α-diversity showed that the total number 
of OTUs initially contaminating pork (Figure 1A) and poultry sausage 
(Figure  1B) were relatively similar (196 ± 43 and 185 ± 25 OTUs, 

respectively). However, the initial contamination level of poultry 
sausage (5.8 ± 0.6 log10 CFU/g) was significantly higher than that of the 
pork samples (4.3 ± 0.7 log10 CFU/g) (Poirier et al., 2020). This higher 
contamination level found in poultry was also associated with a faster 
bacterial growth dynamics during the storage of poultry sausages 
(Figure  1D). Indeed, the population level enumerated in poultry 
sausages reached 8.6 ± 0.6 log10 after 7 days and then stabilized around 
these values, whereas in pork sausages, the population level reached 
8.3 ± 0.5 log10 after 15 days (Figure 1C) and stabilized only after 22 days 
(Poirier et al., 2020).

The evolution of microbial α-diversity was consistent with 
bacterial growth, similarly showing 7 days of difference in dynamics 
between the two meat types. Within poultry sausages, diversity 
decreased down to 148 ± 16 OTUs after 7 days, and stabilized around 
these values until the end of the storage experiment at 22 days. On the 

FIGURE 1

Boxplot analysis of both gyrB alpha diversity (number of observed OTUs) (A,B) and of bacterial growth in log10 CFU/g (C,D) according to sampling time. 
A,C  =  Pork samples. B,D  =  Poultry samples. Number of samples analyzed  =  538 for both food matrices (240 for pork and 298 for poultry). Statistical 
analysis performed with Kruskal-Wallis test for alpha diversity and with ANOVA followed by a Tukey test for bacterial growth (*** for p  <  0.001; * for 
p  <  0.01; for p  <  0.05).
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other hand, a greater simplification of α-diversity in pork sausages 
produced a linear decrease during storage down to 86 ± 30 OTUs after 
22 days (~40% lower than for poultry).

Intrinsic food type characteristics also drive 
the bacterial community structure

Beyond the number of bacterial cells and species present in the 
sausage samples, we were also interested in identifying the species 
making up these communities. As shown in Figure 2A, hierarchical 
clustering based on weighted Unifrac distance, revealed that, bacterial 
communities found in pork sausages and poultry sausages greatly 
differed in their structure, except in a few of the samples. However, 
Latilactobacillus curvatus and Leuconostoc carnosum were two species 
constantly recovered among the dominant bacteria in both food 
products and might be considered as a bacterial signature of this type 
of meat product. Bacterial community structure of poultry sausages 
confirmed the results shown in Figure  1, indicating much higher 
species diversity than that of pork sausages. Poultry sausage samples 
also showed considerable inter-sample variability with at least three 
main branches in the compositional clustering tree.

A sparse partial least square discriminant analysis (sPLS-DA) was 
performed to statistically confirm the differences observed in 

Figure 2A. It enabled the selection of the most discriminative species 
between the two types of meat. Spatial distribution of sausage samples 
on a factorial plane based on the relative abundance of these selected 
species is illustrated in Figure 2B. This representation showed that 
both meat types were exclusively separated along the first component, 
indicating that meat type is the most important variable explaining the 
clustering of samples based on bacterial community structure. A total 
of 31 species were identified as being able to discriminate the two 
sausage types. Figure  2C shows a classification of these species 
according to their discriminating weight. The discriminating species 
in pork sausage all belonged to the sub-dominant bacterial population 
(not visible among the top 20 species shown in Figure 2A), indicating 
that the dominant bacterial population of pork sausages is also found 
in poultry sausages.

Conversely, many of the discriminating species in poultry 
sausages were identified as being part of the dominant population. 
Furthermore, these dominant poultry populations showed 
considerable relative abundance variations among samples, suggesting 
that intrinsic meat characteristics structured these communities. 
These results prompted us to separate the pork dataset from that of the 
poultry dataset in order to further assess the influence on bacterial 
community structure and dynamics of the variables we  chose: 
potassium lactate concentration and packaging atmosphere 
during storage.

FIGURE 2

Clustering of sausage samples and determination of sausage-type specific populations. (A) Clustering of sausage samples according to the 
composition of the bacterial community. Analysis was only performed with samples collected at 8, 15, and 22  days (blend samples and sausages at day 
2 were discarded because of the small number of pork samples with enough DNA and of the high number of species detected in early samples but 
that were no longer found later on). Before analysis, diversity data were merged at the species level. Overall, the dataset was composed of 494 samples 
encompassing 149 species. Clustering was performed with weighted Unifrac distance and Ward’s clustering algorithm. Relative abundance of the 
TOP 20 species is shown with a color code (blue/green gradient for Firmicutes and red/yellow gradient for Proteobacteria). (B,C) Sparse partial least 
square discriminant analysis (sPLS-DA, see Materials and methods) on the microbial diversity of sausage samples with discrimination based on meat 
type. The plot in (B) shows the distribution of samples along the two principal components (X-variate 1 and 2) and the weight of each on the overall 
variation observed. The plot in (C) shows all the bacterial species with a significant loading weight on the distribution of samples along component 1. 
Asterisks indicate the poultry vs. pork discriminating species that belong to the dominant population.
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Packaging atmosphere has a strong 
structuring effect on the bacterial 
community of poultry sausages

Weighted Unifrac hierarchical clustering performed on a poultry 
sample subset (Figure 3A) revealed that the three main branches of 
the tree separating the various bacterial community structures were 
strongly associated with the three different packaging atmospheres. 
Statistical sPLS-DA analysis (Figure 3B) confirmed this trend and 
made it possible to discriminate samples according to the bacterial 
species that were the most affected by the packaging atmosphere. Our 
analysis revealed that samples initially stored under air packaging 
were discriminated along the first component. This discrimination 
was exclusively explained by the strong domination of aerobic 
Pseudomonas species, in particular, the psychrotrophic species 
Pseudomonas fragi and Pseudomonas psychrophila. sPLS-DA 
confirmed that discriminant populations found in samples stored 
under O2+ conditions were mainly assigned to Brochothrix 
thermosphacta, Psychrobacter and Leuconostoc species, whereas 
Lactococcus piscium and Hafnia alvei were discriminating species of 
anaerobic storage conditions (Figure 3C).

We noted that cluster separation on the sPLS-DA factorial plane was 
less marked for air-stored samples than for the two other types. This 
phenomenon was notably linked to the fact that under air packaging, a 
progressive shift to anaerobic conditions already occurred at 7 days of 
storage because of oxygen consumption associated with CO2 production 
by the microbiota (data available in our data paper (18)). Overall, our 

results demonstrate that although there is a fast microbial growth and early 
stabilization of the microbial population level in poultry sausages (~7 days), 
the packaging used for storage mediates strong dynamic structuring.

Finally, we performed three sub-settings of the poultry sausage 
dataset according to the packaging parameter. These sub-settings aimed 
at evaluating the role of the lactate concentration (third parameter) on 
additional structuring of the bacterial community in poultry sausages. 
However, this strategy could not reveal any effect of lactate concentration 
(analysis not shown). A similar analysis performed on pork samples did 
not reveal any similar structuring effect of atmosphere packaging on 
bacterial populations (data not shown).

The dynamics of bacterial communities in 
pork sausages are strongly dependent on 
how the meat is pre-processed before 
sausage production

Surprisingly, the bacterial dynamics in pork sausage samples 
evolved differently than those of poultry sausage samples. Indeed, 
although packaging did not reveal any bacterial community 
structuring effect, we observed a strong bimodal clustering of the meat 
batches over time. As shown in Figure 4 upper panels, two groups of 
batches (P1, P3, P4, P5 vs. P2, P6, P8, P9, P10, and P11) could 
be  distinguished. Differences in terms of community structure 
increased over storage time, independently of the packaging or lactate 
parameter. Thorough scrutiny of the metadata associated with the 

FIGURE 3

Clustering of poultry sausage samples according to the species composition of the bacterial community in correlation with atmosphere packaging. 
(A) Clustering was performed with weighted Unifrac distance and Ward’s clustering algorithm. Samples are colored according to the packaging type. (B,C) 
Sparse partial least square discriminant analysis on the microbial diversity of poultry sausage samples with discrimination based on packaging type. The plot 
in (B) shows the distribution of samples along the two principal components (X-variate 1 and 2) and the weight of each on the overall variation observed. 
The plot in (C) shows all the bacterial species with a significant loading weight on the distribution of samples along component 1 and component 2.
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sampling strategy revealed that this binary structuring was correlated 
with the way the pork meat was pre-processed before being prepared 
for the meat blend (Figure 4 lower panels).

In general, mid-shoulder meat is used to prepare pork sausages, 
but in some cases, additional deboning and defatting processes are 
applied in order to improve meat quality. This type of meat is usually 
referred to as shoulder 4D (boneless without rind or shank and fat 
trimmed). As shown in Figure  5, the main consequence of this 
pre-process step leads to the dominance of the bacterial species 
Dellaglioa algida (formerly referred to as Lactobacillus algidus), a well-
known psychrothrophic meat-borne spoilage lactic acid bacterium 
(Jääskeläinen et al., 2016; Andreevskaya et al., 2018; Mansur et al., 
2019; Säde et al., 2020). This may result from an initial contamination 
by this species as a consequence of additional meat processing steps, 
whereas mid-shoulder samples are dominated by Leuconostoc 
carnosum and Latilactobacillus curvatus. Further breakdown of the 
pork sausage samples according to the type of shoulder did not reveal 
any significant influence of packaging or lactate concentration on the 
bacterial community structure (data not shown).

Sensory spoilage detection is time- and 
packaging-dependent

Next, our analytical strategy focused on the spoilage characteristics 
of the sausage samples in order to investigate the role of the different 
parameters on this phenomenon and to estimate the possible 

correlations of the various structures of the bacterial communities 
with spoilage. The kinetics of the global spoilage intensity for pork and 
poultry sausages during storage are shown in Figures  6A,B, 
respectively. These boxplots indicate a clear correlation between 
storage time and spoilage sensory intensity for both products. 
Furthermore, spoilage intensity of poultry sausages after 7 days of 
storage was comparable to the level reached by pork sausages after 
15 days of storage. This faster spoilage kinetics thus corroborates the 
higher contamination level and the faster microbial growth during 
storage observed in poultry sausages. Nevertheless, we  next 
investigated in more detail the various spoilage sensory descriptors 
evaluated by the sensory panel (ethereal, sulfurous, prickly, rancid, old 
cheese or fermented).

These descriptors were analyzed for both pork and poultry 
sausages together and the results are presented in Figure 7. Among the 
various parameters tested, neither the meat type nor the packaging 
atmosphere seemed to significantly influence the sensory spoilage 
intensity (Figure 7). On the other hand, all sausage samples were 
discriminated along the factorial plane according to the storage time 
(60% of variance) i.e., spoilage increases with time, but also depends 
on other variables. In fact, we noticed that sausage samples located on 
the right part of the PCA factorial plane showed little discrimination 
between them. Indeed, these early storage time samples were 
considered as being non-spoiled (little sensory variation). On the 
other hand, late storage time samples showed more obvious 
discrimination along the second axis (12.8% of variance). No influence 
of lactate concentration was observed (data not shown).

FIGURE 4

Clustering of pork sausages in correlation with storage time and primary cuts used for sausage making. Principal coordinate analysis (PcoA) of pork 
sausage samples using the Bray–Curtis dissimilarity index. From left to right, several PcoA analyses are shown on the sub-dataset representing the 
storage time. On upper panel, the samples are colored according to the ten meat batches analyzed (P1-P11), each dot representing a sausage sample, 
and on lower panels, the samples are colored according to the type of primary meat cuts used for sausage making.

https://doi.org/10.3389/fmicb.2023.1286661
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Poirier et al. 10.3389/fmicb.2023.1286661

Frontiers in Microbiology 08 frontiersin.org

The volatile spoilage metabolic profiles of 
meat sausages corroborate the sensory 
analyses

Our sensory analysis results prompted us to investigate in more 
detail the metabolic profiles of VOCs found in the food samples and 
resulting from bacterial metabolism. Overall, total VOC quantification 
by gas chromatography coupled with mass spectrometry (GC–MS) 
enabled the detection of 22 molecules (Figure 8). Our first analysis 
compared the quantification of these molecules, from the control 
(fresh sausage) to those of samples at the end of storage (22 days) when 
molecules are assumed to have reached higher concentrations. For 
seven molecules (sabinene, alpha-pinene, acetone, alpha-terpinene, 
alpha-phellandrene, alpha-thujene and hexanal), the concentration 
was not significantly different at these two times. Thus, these VOCs 

were estimated to be  natural molecules present in the sausage 
ingredients (meat or spices) and not produced by the microbiota. For 
the remaining 15 molecules, we observed a significant production 
during storage, and differences could be detected between pork and 
poultry sausages.

Among these differences, we noticed that some molecules such as 
2-pentanone and 2-butanone are already present in large amounts in 
fresh pork sausages but not in fresh poultry sausages. The reverse 
situation occurs for allyl methyl sulfide. The most abundant molecules 
were ethanol and ethyl acetate, with an average production level about 
1.8-fold higher in pork sausage than in poultry sausage. In contrast, 
the diversity and production level of all other molecules were higher 
in poultry sausages. Thus, VOC characterization clearly revealed the 
differentiated microbial metabolic activities between both types 
of meat.

FIGURE 5

Clustering of pork sausage samples according to the species composition of the bacterial community. Samples are colored according to the primary 
meat cuts. Clustering was performed with weighted Unifrac distance and Ward’s clustering algorithm.

FIGURE 6

Boxplot analysis of sensory data for both pork (A) and poultry (B) sausages according to storage time. Trained members of the sensory jury gave 
intensity values (from 0 to 6) to describe the global spoilage intensity. For every sample, the values of this descriptor were averaged between the juries. 
In total, 160 samples (80 for pork and 80 for poultry) were analyzed with the seven descriptors. Statistical analysis was performed with ANOVA followed 
by a Tukey test (*** for p  <  0.001). *NE, Not Evaluated, because these samples were all strongly spoiled and not suitable for sniffing analysis.
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Correlations between the 15 discriminant VOCs and the 
packaging atmosphere were also identified by PCA at each sampling 
time and for both meat products (Figure  9). Interestingly, the 
packaging influence on VOC production begins earlier (7 days) 
during storage time for poultry sausages than for pork sausages 

(22 days). This corroborates our previous observation revealing that 
packaging has a more direct influence on the microbiota of poultry 
sausages than that of pork sausages. The PCA also revealed that, as 
already demonstrated for the bacterial diversity analysis and sensory 
analysis, in samples stored with air positioned between the two other 

FIGURE 7

Principal component analysis of sausage spoilage based on six specific quantitative sensory descriptors (1 – ethereal, 2 – sulfurous, 3 – prickly, 4 – 
rancid, 5 – old-cheese, 6 – fermented odors given by the jury as described in the caption of Figure 6 for global spoilage intensity) and after reduced 
centered normal distribution (normalization). On the plots of (A–C) samples are colored according to meat type, storage time and gas mixture used for 
packaging, respectively.

FIGURE 8

Comparative analysis between blend samples and sausage samples at 22  days of storage of 18 VOCs significantly detected in both types of samples. 
Results for poultry sausages are colored in orange (left panel) and those for pork sausages are colored in blue (right panel). Sausage samples (day 2) are 
shaded in gray and printed on the top of samples analyzed after 22  days of storage to compare whether the production during storage is significant 
and to discriminate compounds naturally present in meat, independently from bacterial growth and metabolism. Molecule quantity is shown in log2 of 
pic area and VOCs are listed, ranging from the most concentrated (ethanol) to the least concentrated (methanethiol).
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groups, it is the result of the progressive switch from aerobiosis to 
anaerobiosis. Nevertheless, VOC analysis revealed a stronger 
clustering depending on the packaging condition than did sensory 
analysis. Lactate concentration did not impact VOC production (data 
not shown).

Correlation circles presented in Supplementary Figure S1 were 
plotted with the most discriminated samples stored under O2+ or 
O2- packaging and collected at different storage times. They 
enabled the identification of the specific influence of each VOC 
on the spatial distribution of samples on the factorial plane. 
Notably, they highlighted that for both types of meat products, 
compounds such as methanethiol, dimethyl sulfide and allyl 
methyl sulfide were specifically associated with O2- packaging. 
This confirms the high “sulfurous” ranking attributed by the 
sensory panel to these samples. Moreover, 1-propanol, 2-butanol 
and 2-butatone were also correlated with O2- packaging for both 
meat products.

Together with ethanol and ethyl acetate (produced under all 
conditions but at higher levels under O2- packaging), they might also 
contribute to the fermented alcoholic sensory description associated 
with this packaging. VOCs related to O2+ packaging were also 
consistent for both types of sausages. Acetoin, diacetyl and 3-methyl-
1-butanol were strongly associated with this packaging, thus 
corroborating the “rancid” and “ethereal” sensory description of these 
samples. Finally, compounds such as isopropanol, 2- and 
3-methylbutyraldehyde had a more complex pattern of production 

and could not be  significantly associated with either packaging, 
storage time or type of meat.

Metabolic ecological network 
reconstruction reveals that bacterial 
communities are structured on the use of 
six main spoilage catabolic pathways

The results described above suggested a strong correlation 
between VOC concentration, bacterial community structures and 
packaging. To further investigate the role of each bacterial community 
in the metabolic processes leading to the production of these 
molecules, we carried out the reconstruction of an ecological network 
on the basis of a matrix of correlations between bacterial species 
abundance and VOC concentrations.

We performed several mixDIABLO analyses from the MixOmics 
package, a tool dedicated to highlighting the correlation between 
heterogeneous multi-omics datasets, especially when a high number 
of repeated measurements are available. Overall, we  were able to 
collect 317 sausage samples for which both bacterial species 
abundance and VOC concentrations were dynamically collected 
during storage. However, since each variable of the experimental 
design (storage time, meat type, lactate concentration and packaging 
type) could represent a major source of variation, we  supervised 
several variable-driven subset analyses to guide the integration 

FIGURE 9

PCA analysis using reduced centered normal distribution (normalization) of VOC profiles (using only the 15 discriminating compounds) between 
sausage samples. Poultry samples are on the top; pork samples are at the bottom. Three PCAs were carried out from 7 to 22  days of storage. Samples 
are colored according to packaging.
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process. For each subset, positive correlation values from (r ≥ 0.5) 
were collected to produce a matrix of correlations between the two 
types of omics data (bacterial species and VOC abundances; see 
design in Supplementary Figure S2). On the basis of the analysis of 36 
subsets, only 21 enabled the identification of 233 significant positive 
correlations involving 27 bacterial species and 14 VOCs. As shown in 
Supplementary Figure S2, comparative analysis between O2- and O2+ 
packaging revealed the highest number of correlations, whereas the 
comparative analysis of air and O2+ packaging failed, in most cases, to 
produce such correlations, except for the end of storage at 22 days 
when air packaging has probably switched to anaerobiosis. Similarly, 
data from the end of storage (22 days) produced more significant 
correlations than those from the beginning of storage (7 days) since 
metabolites accumulate over time and microbial diversity decreases. 
Finally, data from poultry sausages provided more correlation hits 
than those from pork.

However, combining both datasets allowed the breakthrough of 
about 30% new correlations not seen in the individual meat type 
subsets. Redundant correlations between the various mixDIABLO 
subset analyses were merged to produce 113 unique correlations. The 
sum of r values corresponding to these redundant correlations were 
used to assign a weight for each of these 113 unique correlations. 
Using these data, we  built an ecological network of interactions 
(Figure 10). We then cross-referenced the correlations obtained by this 
network with the genomic knowledge of the identified species and the 
metabolic pathways listed either in the literature or in specific 
databases (i.e., KEGG or MetaCyc) in order to identify the main 
metabolic activities. The network revealed six main independent 
metabolic pathways involved in the synthesis of VOCs associated with 
the sensory profile of spoiled sausages with specific associations of 
bacterial species for each of them. Globally, Firmicutes were the 
largest group associated with spoilage, with mainly lactic acid bacteria 
under O2- conditions and B. thermosphacta under O2+ packaging. 
Only Pseudomonas and Psychrobacter were correlated with spoilage 
under O2+ packaging.

First of all, the pathway related to ethanol and ethyl acetate 
production was strongly correlated with lactic acid bacteria, in 
particular, Latilactobacillus and Leuconostoc species, with an increased 
rate under the O2- modality. The second pathway involves the 
anaerobic production of isopropanol by sub-dominant Vibrionaceae, 
probably from the acetone that is naturally present in large quantities 
in both types of sausages (see Figure 8). The third pathway connects 
two sub-pathways and possibly the role of two different microbial 
communities acting successively. It comprises the aerobic production 
of diacetyl and acetoin by B. thermosphacta, Pseudomonas, and 
Leuconostoc species. In principle, this sub-pathway ends up in the 
production of 2,3-butanediol, although this VOC was not detected in 
the sausage samples. However, 2,3-butanediol may also be  the 
substrate for 2-butanone and 2-butanol production, which, according 
to our results, was strongly correlated with O2-packaging and with 
L. curvatus and Leuconostoc gelidum. The succession of these two 
pathways may be particularly efficient under air packaging, where a 
switch progressively occurs through O2 consumption to CO2 
production. The fourth pathway corresponds to the anaerobic 
production of 1-propanol from 1,2-propanediol involving mainly 
L. curvatus and L. piscium. Like 2,3-butanediol described above, 
1,2-propanediol, usually produced from acetol and the methylglyoxal 

reductase pathway in lactic acid bacteria, was not detected in the 
spoiled samples, indicating a rapid conversion of this molecule to 
1-propanol.

The two remaining pathways involve catabolism of amino acids. 
It comprises the conversion of leucine/isoleucine to 2- or 
3-methybutaraldehyde and 3-methylbutanol under aerobiosis. 
Correlation analysis revealed that B. thermosphacta, Pseudomonas and 
Leuconostoc species are the main producers of these compounds, 
whereas D. algida and Carnobacterium species may also contribute. 
Finally, anaerobic catabolism of methionine to methanethiol and 
dimethyl sulfide was strongly correlated with L. piscium, 
Latilactobacillus fuchuensis and, to a lesser extent, to sub-dominant 
Enterobacteriales. On the other hand, the production of allyl methyl 
sulfide, a sulfurous compound linked to garlic (used as a spice 
ingredient in the sausages), was not associated with any known 
microbial pathway. The positive correlations with many of the 
bacterial species identified may suggest an indirect effect of bacterial 
metabolism on the release of this compound from the spice mix.

Discussion

Meat spoilage is a phenomenon driven by an intricate combination 
of biotic, environmental, and process parameters. To decipher the 
spoilage routes leading to various spoilage situations, we produced a 
large multivariate dataset obtained on the production lines of two 
similar types of fresh meat products (poultry and raw pork sausages) 
and by working together with two production facilities in France. Our 
objective was to prioritize the parameters, already known in the 
literature, that shape the evolution and/or the implementation of 
different spoilage scenarios.

Our study highlighted the robustness of the primary bacterial 
community that was initially structured on the fresh meat batter and 
by the pre-process implemented to prepare raw meat. Our data 
demonstrate, despite the variations detected in each of the ten batches 
monitored during the six months of sampling, that the bacterial 
communities in poultry meat are distinct from those in pork. Our 
results also illustrate the selective diversity process related to the 
exponential growth phase of the bacterial community, a process that 
stops when this community reaches the stationary phase. The 
differences observed between the two sausage types may result from 
differences in the nature of meat: animal type (feathered bird vs. 
mammal), slaughtering, evisceration, butchering, and cutting 
practices are different for poultry and pork and may differently 
influence initial contamination.

Packaging atmosphere (the most downstream parameter in the 
production) could affect the microbial assemblage and activity of 
poultry sausages due to the major presence of Proteobacteria, a group 
encompassing species sensitive to oxygen and CO2 levels. On the other 
hand, in pork sausages that were mainly contaminated by lactic acid 
bacteria, community structuration remained unchanged during 
storage and according to packaging type, whereas variations could 
be observed in their metabolic activity. Interestingly, in both products, 
modulations of lactate concentration used as a preservative did not 
influence either the structuration or the metabolic activity of bacterial 
communities. In the meat samples analyzed in this work, the 
potassium lactate was used in addition to another preservative, 
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FIGURE 10

Ecological network showing positive correlations between VOC concentration and microbial taxa abundance and proposed main pathways causing 
raw sausage meat spoilage. Upper part. Metabolites are shown as green circles and microbial taxa as either blue circles (Firmicutes) or orange circles 
(Proteobacteria). Links depict the positive correlations based on multiple sPLS-DA mixDIABLO analysis (see main text and Methods section). The 
thickness of the link is proportional to the strength of the correlation (frequency and r values) and the color highlights the packaging modality (blue for 
O2- and yellow for O2+). The size of each node (circle) is proportional to the number of correlations. Lower part. Outline of the six main pathways 
producing the VOCs associated with spoilage (a subset of ecological networks is available in Supplementary Figure S3 for each pathway). As above, 
colors are according to the packaging modality. Detected VOCs are shown with a frame, whereas gray (arrows) or black (VOCs) colors such as the one 
used for 2,3 butanediol highlight the intermediate position of this compound between two sub-pathways, or compounds that are not detected. Code 
for enzymatic reactions are shown for every catabolic step: PDC, pyruvate decarboxylase; PDH, pyruvate dehydrogenase; ADHE, bifunctional 
acetaldehyde/alcohol dehydrogenase; AAT, alcohol acetyltransferase; α-ASL, α-acetolactate synthase; DAR, diacetyl reductase; BDH, butanediol 
dehydrogenase; PDUH, propanediol dehydratase; PDUQ, propanal reductase; MGSA, methylglyoxal synthase; MGR, methylglyoxal reductase; DHAT, 
1,2 propanediol dehydrogenase; BCAT, α-ketoglutarate-dependent branched-chain aminotransferase; KDC, 2-keto acid decarboxylase; ADH, alcohol 
dehydrogenase; MEGL, methionine-γ-lyase; MDD, methanethiol methyltransferase.
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sodium chloride (~1% w/w). We therefore believe that the effect of 
potassium lactate on the spoilage communities was not sufficiently 
marked compared to that of sodium chloride.

The use of metataxonomic data has often been put forward by 
the food microbiology community as a promising approach to 
better understand microbial flows along the food chain (Ferrocino 
and Cocolin, 2017; De Filippis et al., 2018). The development of 
predictive tools for spoilage or tools for monitoring a production 
line is often considered as a major stake inherent in this type of 
approach. However, our results show that this challenge can only 
be met with an ambitious sampling strategy that makes it possible 
to elucidate not only the impact of the variables associated with 
the different production routes, but also to delineate the chain 
reaction associated with each variable (meat > process > 
packaging). Moreover, our data demonstrate, on the one hand, 
that the initial microbial community composition may or may not 
directly influence the effect provoked by the most downstream 
parameter (packaging), and that some process parameters (e.g., 
deboning and defatting of pork shoulder) may elicit specific 
contamination by food bacterial spoilers (D. algida). For this 
reason, and despite similarities between the two meat products 
that were analyzed in this study, we  can conclude that the 
construction of general predictive tools for spoilage of meat 
products remains a difficult objective to reach. From our point of 
view, each production unit in the world may harbor a 
characteristic microbial ecology associated with each of its 
associated processes.

To strengthen our point of view, we  have recently proposed 
another exploratory statistical workflow on the poultry data subset 
described in this article (Luong et al., 2021). This approach, which 
used multiblock path modeling workflow (Cariou et al., 2019), already 
showed causal links between some bacterial species and some VOCs. 
The integrated holistic approach developed here appears more 
conclusive because it enabled an overview of the spoilage 
phenomenon, in particular to identify similarities or differences 
between the two types of meat as well as to go further in understanding 
the underlying metabolic pathways.

When studying microbial meat spoilage with only metataxonomic 
data, it is difficult to precisely obtain the confirmation of “who is doing 
what” in a complex microbial community, even if, independently, the 
metabolites produced at the end of storage are often well known and 
characterized (Casaburi et al., 2015; Remenant et al., 2015). However, 
we were able to make very interesting observations about metabolic 
interactions because our holistic approach that integrated 
metabolomics and metataxonomics with recent statistical tools, 
improved the understanding of spoilage phenomenon by identifying 
relevant process-specific biomarkers and by correlating them with 
specific metabolites and spoilage phenotypes. Reconstruction of 
metabolic ecological networks associated with bacterial species and 
environmental parameters also revealed the possible modulation of 
burden sharing within the community members.

To start with, we revealed the possible connection of Vibrionaceae 
in isopropanol production from acetone, a pathway which may 
involve a secondary alcohol dehydrogenase (SADH; EC:1.1.1.80; 
K23259), an enzyme that is encoded in many genomes including those 
of Vibrionaceae, such as species of Photobacterium and Vibrio. 
According to our data (Figure 8), acetone is naturally present in raw 

meat batter. Secondly, L. fuchuensis and L. piscium exhibited metabolic 
activities associated with sulfur compound production such as 
methanethiol and dimethyl sulfide, respectively. Such activities are 
often associated with species members of Enterobacteriales like 
Serratia or Hafnia (Casaburi et al., 2015). We partly confirmed this 
view, whereas L. fuchuensis and L. piscium show the strongest positive 
correlation with the production of these spoilage-related metabolites. 
Although L. piscium spoilage of pork meat has been reported as 
characterized by buttery and sour odors (Remenant et al., 2015), our 
observation is interesting because it echoes previous data on the main 
role of another Lactococcus species, Lactococcus lactis, and its role in 
sulfur compound production from methionine or cysteine in cheese 
(Hanniffy et al., 2009). Furthermore, within the genus Latilactobacillus, 
our data show that L. fuchuensis would represent a species with greater 
spoilage potential than L. sakei and L. curvatus (Remenant et al., 2015) 
due to the production of these sulfur compounds from 
methionine catabolism.

The construction of an ecological network also offers the 
advantage of being able to connect all the metabolic pathways and 
the different actors in an overall view. For instance, it is possible 
to observe the central position of Leuconostoc species in the 
network (see Figure  10) and, in particular, the link that these 
species play between aerobiosis- and anaerobiosis-induced 
catabolic pathways. In this way, we  have been able to cross-
reference several observations that lead us to propose the potential 
existence of a commensal link between two of the most frequent 
species for both sausages: L. carnosum (with possibly L. gelidum) 
and L. curvatus. This hypothesis links two different pathways: the 
acetoin production pathways and the propanediol dehydrogenase 
pathway (PDU pathway).

Acetoin production follows two different pathways in bacteria, 
one taking place under aerobiosis conditions through spontaneous 
decarboxylation of acetolactate into diacetyl, followed by conversion 
to acetoin (Papadimitriou et  al., 2016). Our results show that 
B. thermosphacta, Pseudomonas species, Psychrobacter cibarius and 
Leuconostoc species are the main producers of acetoin during 
aerobiosis in raw sausages, and these data corroborate many previous 
studies on meat spoilage (Stanley et al., 1981; Casaburi et al., 2015; 
Illikoud et al., 2019; Papadopoulou et al., 2020). The second pathway 
is instead an anaerobic process that takes place under low carbohydrate 
availability through acetolactate decarboxylation by the ALD 
(α-acetolactate decarboxylase) enzyme to acetoin and conversion of 
acetoin to 2,3-butanediol by the BDH (butanediol dehydrogenase) 
enzyme (Papadimitriou et al., 2016). In this pathway, 2,3-butanediol 
is therefore the end product because its production provides additional 
NADH reoxidation to the bacterial cells. Leuconostoc species are 
known to use this pathway quite actively, in particular, during 
citrolactic fermentation (Cogan and Jordan, 1994; Marty-Teysset et al., 
1996; Zaunmuller et al., 2006). Interestingly, 2,3 butanediol could not 
be identified in the sausage samples as VOC using GC–MS analysis, 
whereas such a molecule should have been detectable with our 
metabolomic methodology. On the other hand, Leuconostoc species 
were positively correlated with 2-butanone and 2-butanol production 
under anaerobic conditions. Using these observations, we made the 
link with the PDU pathway.

The propanediol dehydrogenase or PDU pathway is encoded by 
a large pdu gene cluster in bacteria. This cluster is responsible for the 
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production of the enzymatic complex and its cognate intracellular 
polyhedral body formation (Bobik et  al., 1999). The pathway 
converts 1,2 propanediol to 1-propanol or to propionate. The 
substrate, 1,2 propanediol, may have several origins in bacteria but 
the main one is from glycerol and DHAP catabolism via the 
methylglyoxal reductase pathway and is often associated with 
phospholipid catabolism. Furthermore, a recent study showed that 
the PDU pathway displays broad substrate specificity in 
Lactobacillaceae and that the large protein complex is capable of 
converting 2,3 butanediol into 2-butanol (Russmayer et al., 2019). A 
detailed mining of the genomes of the many strains from the various 
species identified in our sausage bacterial communities (data not 
shown) revealed that only strains from L. curvatus may possess the 
pdu gene cluster (Terán et al., 2018), which is then absent from the 
L. carnosum and L. gelidum genomes that we analyzed. Finally, the 
ecological network shown in Figure 10 clearly establishes a positive 
correlation between L. curvatus with both 1-propanol and 
2-butanol production.

The most straightforward explanation arising from these 
observations is that 2,3 butanediol is the molecule that links both 
pathways and that provides the possible commensal relationship 
between L. carnosum/gelidum and L. curvatus. Under anaerobiosis, 
Leuconostoc species would convert acetoin to 2,3 butanediol, which is 
then used as a substrate by L. curvatus to produce 2-butanol. Both 
members then receive the mutual beneficial NADH reoxidation in the 
process. From our point of view, this hypothesis also provides an 
explanation of the very frequent domination of raw sausage microbial 
communities by these two species.

However, these assumptions made thanks to statistical correlations 
between heterogeneous data still need to be assessed. Nevertheless, 
our observations open great perspectives for synthetic ecology 
approaches (for example, the reconstruction of microbial consortia to 
decipher metabolic interactions) in order to reproduce and decipher 
this trophic relationship. The use of metagenomics and 
metatranscriptomics would also be of great interest to characterize the 
response of these communities to variations in environmental and 
process parameters.

Our study also highlights the limitations associated with single 
gene-based amplicon sequencing (either 16S rDNA-based or gyrB-
based as in the present study) to describe spoilage phenomena. To 
enrich our knowledge of this problem and provide predictive tools 
for reliable estimation of the shelf life of fresh meat products, a 
holistic approach that combines the description of detailed 
structuration and activity (gene expression) of microbiota in various 
environmental conditions is needed. Industrials must be involved in 
this process to foster large sampling campaigns in representative 
contamination conditions.

We believe that our approach can bring real benefits to the 
development of close collaboration between academia and the food 
industry. For instance, many food industries are facing simultaneous 
and frequent changes in practices at several points in the supply 
chain, all of which are likely to modify the diversity of microbial 
communities and impact food safety. The identification of molecular 
biomarkers associated with the different parameters of a production 
chain could represent a source of innovation. The integration of these 
multi-variable data (enlarge perhaps to whole genome shotgun 
sequencing) by advanced statistical approaches could deliver a list 

and a combination of molecular biomarkers (i.e., genes), whose 
simple and rapid search (quantitative PCR) can be easily implemented 
in the company’s quality control process, and as far upstream as 
possible of processing.
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