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• A database of hydrogeochemical studies
in coastal aquifers was developed.

• The reviewed techniques were explained
and applied to a practical case.

• R scripts for the reviewed techniques are
presented.

• Sixty-two percent of the reviewed studies
did not report raw data.

• TDS, EC, and TH are redundant variables
if major ions are also used.
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Seawater intrusion is among the world's leading causes of groundwater contamination, as salty water can affect
potable water access, food production, and ecosystem functions. To explore such contamination sources, multivariate
analysis supported by unsupervised learning tools has been used for decades to aid in water resource pattern recogni-
tion, clustering, and water quality data variability characterization. This study proposes a systematic review of these
techniques applied for supporting seawater intrusion identification based on the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement and subsequent bibliometric analysis of 102 coastal
hydrogeological studies. The most relevant identified methods, including principal components analysis (PCA),
hierarchical clustering analysis, K-means clustering, and self-organizing maps, are explained and applied to a case
study. Although 74 % of the studies that applied dimensional reduction methods, such as PCA, associated most of
the database variance with the salinization process, 77 % of the studies that applied clustering methods associated
at least one water sample cluster with the influence of seawater intrusion. Based on the review and a practical demon-
stration using the open-source R software platform, recommendations are made regarding data preprocessing,
research opportunities, and publishing information necessary to replicate and validate the studies.
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1. Introduction

Anthropogenic activities and climate change have had significant nega-
tive impacts on the world's water resources over the last 200 years, and
these effects are expected to intensify (Amanambu et al., 2020; Burrell
et al., 2020; Ferguson and Gleeson, 2012). This situation is magnified in
coastal plain areas, which are home of 70 % of the world's population
(Alfarrah and Walraevens, 2018). Many of these areas are located in arid
and semi-arid climates with insufficient surface water resources, leading
to a critical dependence on groundwater (Mianabadi et al., 2020; Vaux,
2011). Coastal areas with Mediterranean and tropical climates tend to in-
crease surface water and groundwater use to meet their needs (Busico
et al., 2018; Yin et al., 2021). However, groundwater overexploitation re-
duces freshwater outflow to the sea and represents an additional adverse ef-
fect in many coastal zones. Such exploitation causes seawater to migrate
towards fresh groundwater resources, and the resultingwater mixture is ex-
tracted by production wells used for public water supply, irrigation, or in-
dustry (Alfarrah and Walraevens, 2018). This constitutes a severe threat
to coastal water supply systems and is one of the leading causes of ground-
water contamination (Michael et al., 2017; Polemio and Zuffianò, 2020;
Tully et al., 2019).

Seawater intrusion has been identified in approximately 100 countries
and regions around theworld, and approximately 32%of coastal metropol-
itan cities are estimated to be threatened by it (Cao et al., 2021). Saltywater
associated with this source and other salinization phenomena, such as irri-
gation return flow or sewage system leakages, cause health problems, such
as diarrheal diseases and issues related to hypertension, like stroke, heart
attack, and preeclampsia. Similarly, saline water leads to the deterioration
of water quality for irrigation purposes (Damonte and Boelens, 2019; Naser
et al., 2017; Rakib et al., 2020; Tully et al., 2019). Thus,monitoring and un-
derstanding the natural and human relations in groundwater systems is es-
sential for developing appropriate and sustainable management strategies
for coastal aquifers (Lall et al., 2020; Michael et al., 2017). However, inves-
tigating groundwater requires multidisciplinary approaches that incorpo-
rate environmental, geological, physical, and social aspects and analyses
of normally limited physical and chemical information (Díaz-Alcaide and
Martínez-Santos, 2019; Michael et al., 2017).
2

Analyses and models have been developed to determine the mecha-
nisms underlying the seawater intrusion phenomenon (Cao et al., 2021;
Enemark et al., 2019). However, hydrological processes are highly com-
plex, dynamic, and non-linear at both spatial and temporal scales; there-
fore, local or regional studies are subject to great uncertainty (Kalteh
et al., 2008; Rajabi et al., 2018). Consequently, one of the biggest chal-
lenges facing exploratory studies is to identify whether a sample of brackish
water originates from seawater intrusion or another source of groundwater
salinization, as shown in Fig. 1 (Abu-alnaeem et al., 2018; Mirzavand et al.,
2020). From this perspective, authors have argued that a proper interna-
tional tool platform based on hydrogeological data is urgently needed to
verify the occurrence and influence of seawater intrusion (Cao et al., 2021).

In this context, machine learning techniques have benefitted various
complex studies in hydrological research (Bertrand et al., 2022; Rajoub,
2020; Tahmasebi et al., 2020). While supervised techniques predict and op-
timize models based on known outputs, unsupervised techniques learn
more about the internal dependencies among explanatory variables
(Berry et al., 2020; Díaz-Alcaide and Martínez-Santos, 2019). Multivariate
analysis supported by unsupervised machine learning tools has been used
for decades to characterize the range and variability of environmental
water tracers across broad temporal and spatial scales, and the number of
studies using these tools is increasing exponentially (Gredilla et al., 2013;
Sergeant et al., 2016). Although the unsupervised nature of these tech-
niques does not enable direct identification of dynamic water processes,
obtaining water quality patterns greatly supports the interpretation of
various phenomena (Li et al., 2018; Wunderlin et al., 2001). Therefore, it
is essential to review how these methods have been applied to hydrogeo-
chemical data to identify patterns that help differentiate seawater intrusion
from other sources. Such a review should permit the proposal for a typology
of usable tools and their limitations based on the specific objectives and
constraints of researchers.

This bibliometric review study followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher
et al., 2009), which allowed the review to be conducted more objectively.
This systematic reviewwas based on a flow chart, and different restrictions
where applied to limit the document search, extraction, and analysis. First,
we searched for papers published from 2000 to 2022 (22 years) that



Fig. 1. Coastal groundwater squeeze. (1) Groundwater overexploitation; (2) agricultural contamination; (3) urban sprawl and development; (4) aquaculture contamination;
(5) land reclamation dredging and navigation; (6) mining contamination; (7) seawater intrusion; (8) connate saline water; (9) marine transgression; (10) sea spray;
(11) episodic flooding; (12) evaporative concentration; (13) rocks dissolution; (14) salt filtering by clay; (15) irrigation return flow; and (16) effluents and spills.
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applied unsupervised learning tools to analyze hydrochemical data on
coastal aquifers presumably affected by seawater intrusion. Subsequently,
the articles were filtered using predetermined rules to eliminate incorrect
selections. Finally, the selected articles were analyzed to assess how unsu-
pervised learning tools have been applied to support seawater intrusion pat-
tern recognition. The objective was to provide a reference for researchers
and professionals whowish to apply thesemethodologies to identify hydro-
geochemical processes in coastal aquifers. A database was established to
generate a range of available similar studies to which a specific approach
can be compared. Additionally, the most appropriate identified methods
applied to the La Paz (Mexico) coastal aquifer case and the reviewed tools
were delivered using an open-source data science software.

2. Background

2.1. Seawater intrusion identification

Seawater intrusion monitoring and assessment has been performed
using four approaches: hydraulic head measurements, groundwater
models, geophysical methods, and environmental tracer analysis (Cao
et al., 2021; Werner et al., 2013). Hydraulic head measurements consider
hydraulic gradient evaluations because landward gradients can reveal sea-
water intrusion susceptibility (Jasechko et al., 2020). However, hydraulic
heads in the mixing zone are difficult to interpret owing to salinity; density
variations occur at different elevations of an observed piezometer (Werner
et al., 2013). In groundwater flow and transport models, multiple types of
3

environmental data are integrated to numerically simulate variable density
flow (Costall et al., 2020). Although such models are among the most com-
plete approaches, the calibration stage can be tedious and time-consuming,
and obtained results may be unsatisfactory (Carrera et al., 2010). Geophysi-
calmethods are used tomap the subsurface groundwater salinity distribution
in one, two, and three dimensions based on the differences in the electromag-
netic properties of fresh and saltywater (Werner et al., 2013). Thesemethods
also require calibration to differentiate the received signals from the litholog-
ical structure and salinity distribution (Cao et al., 2021).

Environmental tracers, such as major ions, have been broadly recog-
nized as valuable tools for determining seawater intrusion (Li et al., 2020;
Mirzavand et al., 2020). Compared with other approaches, tracers rely on
multivariate analysis and are used to describe the groundwater system;
moreover, hydrochemical data are easy to obtain owing to their low test
costs and the high demand for exploration (Liu et al., 2021). Major ions
are analyzed at different sample points based on multiple bivariates and
composite plots, such as Piper, Stiff, and Gibbs diagrams (Mirzavand
et al., 2020). These tracers have concentrations higher than 5 mg/L and ac-
count for over 95 % of the total solute content (Poeter et al., 2020). Gener-
ally, terrestrial groundwater tends to be of the alkaline earth bicarbonate
type, and the concentration of Ca2+ often exceeds that of Mg2+. Seawater
has much higher concentrations of major ions (except for Ca2+ and HCO3

−)
and someminor ions than groundwater, and its water composition does not
vary significantly at the global scale, because the long residence time in the
ocean implies mixing and homogenization (Jiao and Post, 2019). The char-
acteristics of groundwater from different coastal aquifers and standard



Table 1
Median values of the chemical composition of different coastal aquifer case studies and standard seawater. Values in brackets show the variation range.

Parameter La Paz (Mexico) - Alluvium Arid
(Tamez-Meléndez et al., 2016)

Göksu (Turkey) - Alluvium
Mediterranean
(Güner et al., 2021)

Jaffna (Siri Lanka) Karstic Monsoon
(Chandrajith et al., 2016)

Shenzhen (China)
Granite Monsoon
(Shi et al., 2018)

Standard Seawater
(Jiao and Post, 2019)

Chloride, Cl− (mg/L) 385 (54.5–2960) 141.2 (72–1597.6) 250 (30–3500) 26.1 (4.1–3260) 19,804
Sodium, Na+ (mg/L) 137 (36.7–1080) 122.3 (19.5–880.1) 130 (25–1500) 20.4 (4.2–1730) 11,033
Sulphate, SO4

2− (mg/L) 64.3 (7.9–490) 193.6 (105.6–321.5) 49 (12–430) 29.5 (2.2–379.7) 2776
Magnesium, Mg2+ (mg/L) 39.5 (9.3–344) 31.1 (13.4–125.6) 24 (1.9–220) 4.4 (0.3–225) 1314
Calcium, Ca2+ (mg/L) 104 (27.8–658) 50.7 (15.8–136.4) 90 (7.6–660) 55.4 (1–214.8) 422
Potassium, K+ (mg/L) 4.1 (1.5–14) 5.84 (2.4–34.5) 9.8 (0.9–44) 7.7 (0.7–61.8) 408
Bicarbonate, HCO3

− (mg/L) 325 (166–1290) 246.1 (77.8–453.7) 250 (92–601) 165 (0.6–611.2) 107
Nitrate, NO3

− (mg/L) 24.92 (0.7–216) 12.4 (12.1–13.3) 3.1 (1.8–26.1) 2.75 (0–26.5) –
Total dissolved solids, TDS (mg/L) 1054 (348–5828) 554 (157–3941) 765 (221–6604) 279 (23–6760) 36,000
pH 7.2 (6.8–8.3) 7.8 (7.5–8.2) 7.59 (6.8–8.2) 7.4 (4.6–7.9) 8.1
T (°C) 29.7 (25–33.4) 20.9 (20.2–23.1) 30.5 (29.6–31.8) 23.4 (15.4–29.5) –
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seawater are listed in Table 1, and a Piper diagram of these data is shown in
Fig. 2.

Tracer analysis encompasses many parameters in addition to the
chemical composition, including biological, physical, and physicochem-
ical parameters, such as temperature (T), pressure, density, electrical
conductivity (EC), sampling position location, sampling date, sampling
depth, and isotopic signatures, such as δ 2H (deuterium) and δ18O
(oxygen-18) (Jiao and Post, 2019; Werner et al., 2013). Consequently,
meaningful conclusions regarding water sources can only be made by
Fig. 2. Piper diagram for the different coastal aqui
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combining the different parameter types. Exploring these multivariate
data relationships is supported by the application of unsupervised
learning techniques (Liu et al., 2021; Werner et al., 2013). For example,
Table S1 shows multivariate data from the sampling campaign
performed in August 2013 for the Mexican La Paz coastal aquifer
(Section S1). The aquifer and database were analyzed by Tamez-
Meléndez et al. (2016) and Torres-Martínez et al. (2021), who identified
different salinization and nitrification sources supported by the multivari-
ate analysis of hydrogeochemical and isotopic tracers.
fer case studies and seawater listed in Table 1.
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2.2. Unsupervised pattern recognition in hydrogeology

The spatial variability ofwater samples can provide insights into aquifer
heterogeneity and connectivity; thus, a robust classification and association
scheme is important for the characterization of hydrogeological systems
(Güler et al., 2002). Multivariate analysis of the physical, chemical, and bi-
ological characteristics of water resources supported by unsupervised learn-
ing tools has been used for decades to characterize data, select meaningful
variables, and recognize pattern data structures and trends (Gredilla et al.,
2013; Sergeant et al., 2016). Unlike supervised methods, which aim to pre-
dict variables and optimize parameters based on known outputs, unsuper-
vised techniques aim to delineate the underlying internal relationships of
the features (Díaz-Alcaide and Martínez-Santos, 2019; Berry et al., 2020).
In the absence of certainty about “real outputs” from the provenance of
water samples, unsupervised methods are preferred for the broad identifi-
cation of the latent features, because the output is not restricted to a specific
response (Tahmasebi et al., 2020).

Unsupervised pattern recognition techniques do not necessarily estab-
lish cause-and-effect relationships; they rather present information in a
compact format as the first step in the complete analysis for generating hy-
potheses and performing hydrogeochemical data interpretation (Berry
et al., 2020). Unsupervised techniques for pattern recognition have been
commonly employed to analyze complex datasets and integrate environ-
mental and pollution data (Fdez-Ortiz de Vallejuelo et al., 2011). These
techniques apply mathematical methods to generate object data, graphical
representations of the newly generated data, and interpretations of the re-
sulting objects (Gredilla et al., 2013). These techniques can be divided
into threemain groups: (1) dimensional reductionmethods (DRM), (2) clus-
ter analysis (CA), and (3) artificial neural networks (ANN) (Fig. 3).

DRM aims to limit n-dimensional information about objects to a set of
reduced and more representative dimensions (Ayesha et al., 2020). In this
manner, each observation can be graphically depicted in 2D or 3D plots
that show the most relevant relations in the database. Principal component
analysis (PCA) is the most commonly used method, and a full review of the
most relevant methods can be found in Ayesha et al. (2020). CA techniques
are the most widely used pattern recognition methods, and their objective
is to assign observations to the same cluster based on the degree of
Fig. 3. Classification of patter
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similarity among the variables (properties) that characterize the observa-
tion (Gredilla et al., 2013). A full review of traditional and recent develop-
ments in CA techniques can be found in Saxena et al. (2017). Finally, the
use of ANN has been increasing, and this method simulates the nervous sys-
tem in human beings to create models for pattern recognition (Gredilla
et al., 2013). The most popular method for multivariate analysis is the
self-organizing map (SOM), which performs segmentation similar to CA
and allows for a topological representation of the database. A reviewof gen-
eral ANN for pattern recognition can be found in Abiodun et al. (2019).

3. Material and methods

3.1. Focused question and search strategy

To delineate the type and methods of unsupervised learning techniques
that have been used to identify seawater intrusion in coastal aquifers, this
bibliometric review study follows the above-mentioned PRISMA statement
(Moher et al., 2009). A systematic computerized literature search was con-
ducted inMay 2022 using Scopus and theWeb of Science. The combination
of three keywords [“seawater AND intrusion AND cluster”, or “seawater
AND intrusion AND unsupervised”, or “seawater AND intrusion AND
multivariate”, or “saltwater AND intrusion AND cluster”, or “saltwater
AND intrusion AND unsupervised”, or “saltwater AND intrusion AND mul-
tivariate”] was used to search for original articles released from 2000 to
2022, based on the search fields of “keyword”, “abstract” and “title”.
After obtaining raw data, articles were excluded based on the following
criteria: duplicate studies, no DOI, papers published before 2021 that did
not have any citations, analyses that did not consider major ions, articles
in which the search keywords did not match unsupervised machine learn-
ing or multivariate methodologies applied for water quality, analyses that
were not applied to groundwater, and full-text articles that were notwritten
in English, Spanish, Portuguese, or French.

3.2. Data extraction and analysis

The full text of the final papers selected for the analysis were assessed.
General information on the article identification process, study case
n recognition techniques.
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description, unsupervised learning application, and hydrogeochemical
techniques was extracted. The data variables extracted for each section
are shown in Table S2. If the articles did not specify the variable “climate”,
then this variable was included based on the location of the study area and
the Köppen climate classification (Cui et al., 2021). Furthermore, if the
article did not specify the variable “surface of the study area”, then this
variable was computed using QGIS software (v.3.26, QGIS Development
Team, 2022) based on the study boundaries shown in the study area figure
without considering the sea surface.

Once the database was filled, a frequency analysis was performed for
categorical variables of interest. Additionally, the ratios of “number of sam-
ples” to “surface area” (sample density per area) and “number samples” to
“number of variables” (sample density per variable) were computed. If a
study used different databases separately, then the databases were consid-
ered independent in the analysis. In parallel, the application of the most
relevant unsupervised learning techniques was described and discussed.
The methods were applied to the La Paz aquifer database (Table S1) for a
practical demonstration using the open-source R studio software.

4. Results and discussion

Fig. 4 illustrates the scheme of the methodology used. Of the 199 iden-
tified documents, 94 were excluded because they did not comply with the
filtration characteristics detailed in the methodology section. Data ex-
tracted from the remaining 102 articles were analyzed (Table S2).

4.1. Bibliometric analysis

4.1.1. Research characteristics
Most of the research articles belonged to the subject areas of environ-

mental science (43 %), earth and planetary sciences (29 %), and
Fig. 4. Flow chart of the literature se
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agricultural and biological sciences (11 %) (Fig. 5a). This associations re-
lated to the principal objective of the research studies, whichwas to explore
the natural and anthropogenic processes of the study areas based on a phys-
ical context using an interdisciplinary approach. The three subject areas
medicine (4 %), engineering (3 %), and social science (3 %) are associated
with the studies focused on understanding the effect of groundwater pro-
cesses on health and the social relationships of the study cases. Interest-
ingly, although search keywords for computer science were included, no
items were associated with this field.

The areas investigated in the reviewed studies were located in 31 coun-
tries (Fig. 5b). The country with the greatest number of studies was India at
19, followed by Tunisia and China at ten and seven, respectively. Similar to
the seawater intrusion phenomenon, problems in coastal aquifers are usu-
ally associated with overexploitation in arid and semi-arid climates where
little groundwater recharge occurs (Parizi et al., 2019). Of the 102 studies,
32 were associated with this type of climate (Köppen classification) in
Egypt, Saudi Arabia, Oman, Mexico, Tunisia, Iran, and Djibouti. However,
this phenomenon has also been identified in countries with Mediterranean
climate, such as Turkey, Greece, Morocco, Lebanon, and Italy. Similarly,
countries with humid and subhumid climates and with greater water avail-
ability, such as Ghana, Bangladesh, India, Mozambique, and Thailand, also
presented seawater intrusion concerns.

4.1.2. Research data
Hydrochemical analyses in the reviewed studies were highly variable

owing to differences in the biophysical and socioeconomic settings and
sampling strategies. The most extensively analyzed area was in Morocco
(710,850 km2), with 542 samples analyzed for nine variables (Ez-zaouy
et al., 2022), while the smallest area studied was a portion of Manukan
Island in Malaysia (0.02 km2), with 162 samples analyzed for 13 variables
(Aris et al., 2012). Thus, while the Morocco study had a sample density per
arch and identification process.



Fig. 5.Research characteristics. (a) Documents by Scopus subject area; (b) Study cases location and salinity (total dissolved solids; TDS< 600mg/L can be considered as good
water quality) (WHO, 2011).
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area of 0.0004 samples/km2 and a sample density per variable of 30.11, the
Manukan Island study had a sample density per area of 8100 samples/km2

and a sample density per variable of 12.46. From a performance perspec-
tive, the higher the number of samples and the higher the sample density
per area, the better the analysis applied to the data sets (USGS, 2018). For
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multivariate analysis, the sample density per variable should be as large
as possible, although there is no clear rule on the most relevant proportion
(Knapp and Campbell-Heider, 1989). Table S2 shows the number of sam-
ples, variables, sample density per area, and sample density per variable
for each document, and Table 2 summarizes the 102 studies.



Table 2
Data characteristics of the reviewed studies.

Variable Mean Minimum Median Maximum

Samples 403 9 59 30,809
Variables 14 5 12.5 31
Ratio sample/area (samples/km2) 90.56 0.0004 0.09 8100
Ratio sample/variable 13.38 0.75 4 669.76
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4.2. Description of unsupervised learning techniques

4.2.1. Principal components analysis
PCA is the most commonly used DRM for reducing larger sets of corre-

lated variables into smaller and interpreting datasets regarding the variabil-
ity of the information (Jolliffe and Cadima, 2016; Björklund, 2019; Ayesha
et al., 2020). Principal components (PCs) are uncorrelated linear combina-
tions of the original variables such that the sum of their explained variance
is equal to that of the original variables. The variances of the PCs are eigen-
values, whereas the coefficients of the linear combinations are eigenvectors
extracted from the covariance or correlation matrix of the data set (Olsen
et al., 2012). Typically, a correlationmatrix is used if the variables have dif-
ferent measurement scales to standardize the effects and no distributional
assumptions are required (Jolliffe, 2002; Jolliffe and Cadima, 2016). In ad-
dition to the coefficients, the original variables are associated with the PCs
using values between−1 and 1 “loadings”, representing each variable's in-
fluence on each component. Values close to −1 or 1 indicate significant
positive or negative influence, and values close to 0 indicate little influence
(Jolliffe and Cadima, 2016).

There are many ways to adapt the PCAmethod to achieve modified ob-
jectives or analyze data of different types (Jolliffe and Cadima, 2016). For
instance, including categorical variables is possible with a generalization
of the PCA method, called multiple correspondence analysis (MCA)
(Audigier et al., 2017; Greenacre and Pardo, 2011). Another important ad-
aptation is orthogonal rotation, which usually applies varimax criterion to
simplify the interpretation of the previously computed PCs (Jolliffe and
Cadima, 2016). The varimax rotation goal is to maximize the variance of
the loadings within the components, thus making larger loadings even
larger and smaller loadings even smaller, while preserving the cumulative
variance of the components (Denis, 2020). The rotation idea is borrowed
from factor analysis (FA), which consists of an array of multivariate statisti-
cal methods and is sometimes confused with the specific PCA concept
(Jolliffe and Cadima, 2016;Marefat et al., 2019). Currently, statistical pack-
ages compute PCs using FA, which allows for rotation to be applied in the
same software module (Ayesha et al., 2020; IBM, 2021; Minitab, 2022).

In water research, the PCA method seeks to represent a set of multivar-
iate observations in a lower data matrix arranged along interpretable axes
corresponding to known environmental gradients (e.g., warming water
temperature and decreasing dissolved oxygen). With the variability aligned
to the gradients, it is possible to determine which individual variables are
responsible for the greatest observed variation in each axis. This helpful
characteristic of PCA may assist monitoring programs by prioritizing lim-
ited resources by measuring variables that explain the majority of water
quality regime variations (Sergeant et al., 2016). In general, the use of
PCA in the reviewed studies was exploratory and, mainly determined the
processes and variables that explained most of the variance in the aquifer
samples. Additionally, four of these studies used PCA as a pre-processing
step for some cluster methods (Table S2). In this manner, the database
was reduced to the principal components and clusters were created using
the PCs as new variables.

PCAwas applied in 77 of the 102 studies. In addition, one study applied
MCA, and ten studies applied FA without specifying the extraction method
(e.g., PCA, maximum-likelihood method, unweighted least-squares
method); however, PCA is set by default in many software programs, such
as SPSS and Minitab (IBM, 2021; Minitab, 2022). Of the 88 studies, 63 ex-
tracted PCs for analysis based on the Kaiser rule (eigenvalues>1) (Braeken,
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2017), and 66 used varimax rotation. Seventy-nine studies associated the
first component (PC1) or its equivalent in MCAwith words and expressions
related to the salinization process, including seawater intrusion, and five of
these mentioned mixed salinization and anthropogenic influences
(Table S2). Other expressions associated with PC1 were “natural pro-
cesses”, “hardness”, “contamination sources”, and “dilution of groundwa-
ter”. On average, the variance of the first component of the 66 studies,
with PC1 related to salinization, was 48 %. Variables with loadings >0.8
in PC1 were recorded for each study (Table S1). The most frequent
variables in descending order were Cl−, Na+, electrical conductivity
(EC), total dissolved solids (TDS), Mg2+, Ca2+, SO4

2−, K+, TH (total
hardness), Br−, HCO3

−, Sr2+, and salinity, which are typically involved in
the salinization process (Jiao and Post, 2019).

Two characteristics that may affect PCAs of coastal aquifers were iden-
tified: sample density per variable and the redundancy of variables. Table 2
shows that the sample density per variable of the studies had amedian of 4.
In the review, 17 out of 102 studies (14 out of 88 in PCA) used less than two
samples per variable, and themost extreme study had a ratio of 0.75 (9 sam-
ples and 12 variables) (Kumar et al., 2020). Regarding the redundancy of
variables, some have been identified as strongly correlated or highly line-
arly dependent on others in the form z = m·x + n·y + … + b (King and
Jackson, 1999; Senawi et al., 2017). The variables salinity, TDS, and EC
generally have very high correlations with each other and can be consid-
ered redundant. Moreover, TDS can also be considered redundant when
all major ions are considered (e.g., Celestino et al., 2018; Tiwari et al.,
2019; Salem et al., 2021), because TDS can be understood as linear combi-
nation of these ions (sum). Similarly, TH can be interpreted as redundant
(e.g., Gilabert-Alarcón et al., 2018; Sangadi et al., 2022), because it repre-
sents a linear combination of bivalent cations (Boyd et al., 2016). According
to the above, 91 of the 102 studies used redundant variables (81 of 88 in
PCA).

To compare different methods of use, PCA was applied to the La Paz
coastal aquifer database (Table S1). The correlation matrix gave the same
weight to the variables and, considered all variables, excluding EC and
TDS. Table 3 shows the components and their loadings extracted based
on the Kaiser rule (eigenvalues >1) and their varimax rotation when ex-
cluding EC and TDS. Fig. 6 shows a plot of the scores in the first two direc-
tions. PC1 had high loadings in EC, TDS, and major ions, the second had a
good loading inNO3

−, and the third component hadmoderate loadings in T,
pH, and DO, which were associated with the salinization process, nitrifica-
tion, and oxygen solubility change, respectively. The high affinity of PC1
with the major ions indicated the salinization process (the closer to −1
or 1 the loading, the greater the affinity), nitrification based on the affinity
of PC2 with NO3

− variations; and oxygen solubility based on the affinity of
PC3with T and DO, except with varimax rotation, in which pH loading was
increased and T was reduced. Although the MCA method was applied in
Hajji et al. (2020), this study was excluded from the comparison, since
there were no defined categorical variables in the study case; however
Section S2 provides documentation for its application.

Table 3 shows the effects of variable redundancy on the PCA of La Paz.
PC1 explained 62.8 % of the variance when all variables were considered,
and EC and TDS could be considered redundant (R2 = 0.99). The variance
of PC1 decreased to 60 % when EC was removed from the analysis. In the
third case, which did not consider EC or TDS, PC1 had a variance of
56.6 %. It should be noted that when considering TDS and EC, their load-
ings were 0.99 in PC1, indicating that the variance of the component was
in the same direction as that of the variables. With the above, redundant
variables artificially increased the apparent relevance of some processes
and a significant loss of information did not occur when theywere removed
(Fig. 6). On the contrary, identifying and eliminating this class of variables
increased the sample density per variable from 3.6 to 4.2. Regarding the ap-
plication of the varimax rotation, the redistribution of the accumulated var-
iance stands out, and it reduced the importance of the rotated PC1 and
increased the variance in the other two. Fig. 6 shows the scores of the
rotated PC1 and PC2, where the rotation of the data pattern to the new
orthogonal basis was inferred.



Table 3
Unrotated and varimax rotated factor loadings for the first three PCs with different variables in the La Paz database.

Variable All Variables Without EC Without EC & TDS Without EC & TDS (varimax)

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 RPC1 RPC3 RPC2

T −0.18 −0.41 −0.62 −0.18 −0.41 −0.62 −0.19 −0.42 0.62 −0.03 0.16 −0.75
pH −0.58 −0.28 0.52 −0.59 −0.26 0.52 −0.60 −0.24 −0.51 −0.40 −0.72 0.00
DO −0.34 −0.56 0.61 −0.35 −0.56 0.61 −0.36 −0.54 −0.61 −0.05 −0.89 −0.08
EC 0.99 −0.12 0.00 – – – – – – – – –
Ca 0.92 −0.24 −0.13 0.91 −0.25 −0.13 0.91 −0.27 0.12 0.92 0.23 −0.01
Mg 0.92 −0.20 −0.06 0.91 −0.22 −0.06 0.91 −0.24 0.04 0.92 0.20 0.07
Na 0.89 0.10 0.18 0.89 0.08 0.18 0.89 0.07 −0.19 0.78 0.19 0.42
K 0.82 −0.38 0.05 0.82 −0.4 0.05 0.82 −0.41 −0.07 0.92 −0.02 −0.01
HCO3 0.80 0.27 0.16 0.80 0.25 0.16 0.80 0.24 −0.16 0.63 0.28 0.50
Cl 0.97 −0.19 −0.02 0.96 −0.21 −0.02 0.96 −0.22 0.01 0.96 0.19 0.11
NO3 as N 0.47 0.72 0.20 0.48 0.70 0.2 0.49 0.70 −0.19 0.16 0.42 0.75
SO4 0.88 0.02 0.14 0.88 0.00 0.14 0.88 −0.01 −0.15 0.81 0.18 0.34
TDS 0.99 −0.06 0.04 0.99 −0.08 0.04 – – – – – –
Variance 8.17 1.45 1.16 7.20 1.43 1.16 6.22 1.42 1.16 5.31 1.80 1.70
% 63 % 11 % 9 % 60 % 12 % 10 % 57 % 13 % 11 % 48 % 16 % 15 %

Note: Factor loadings >0.6 are in bold.
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4.2.2. Hierarchical cluster analysis
Hierarchical clustering (HCA) forms clusters by dividing data patterns

using a divisive or agglomerative approach (Saxena et al., 2017). In the ag-
glomerative approach, the first connections correspond to the closest pairs
of objects based on Euclidean distance or other indicators. Subsequently,
the initial groups are connected to the closest group based on their similar-
ities through a linkage algorithm (e.g., complete-linkage or Ward's-link-
age), and the process is repeated until only one group remains (Strauss
and von Maltitz, 2017; Székely and Rizzo, 2014). The results are presented
in a dendrogram that shows the connection between the different group
levels and the linkage distance regarding the samples (R-mode) or the var-
iables (Q-mode). In general, for this and the other clusteringmethods, attri-
butes are “normalized” (standardized) with functions such as the z-score to
give all attributes appropriate and comparable importance (Bouguettaya
et al., 2015). While this method can consider observations and variables
at multiple levels of grouping, the disadvantage of HCA is that it is sensitive
to noise and outliers (Saxena et al., 2017), although the most robust link-
ages (e.g., average and Ward's) may help limit this effect (Bu et al., 2020).

One application of HCA in hydrology is to depict correlation patterns
among water samples, thus enabling a more rapid identification of the
main hydrogeochemical processes thanwith the use of only descriptive sta-
tistics (Nogueira et al., 2019). Among the reviewed studies, 77 of 102
Fig. 6. First two unrotated and varimax rotated direction score
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studies applied HCA in their analysis, 64 applied Q-mode, 25 applied R-
mode, and 8 applied both Q- and R-mode. Of the 77 studies that applied
HCA, 64 also applied PCA to interpret hydrogeochemical data as a comple-
mentary analysis, thus highlighting that HCA and PCA have a strong rela-
tionship. Studies that performed HCA (R-mode) showed similar variable
associations of the hydrogeochemical processes obtained using the PCA
method. Asmentioned in Section 4.2.1, PCAwas used in three studies to re-
duce the data dimensions before clustering through HCA (Table S2). Of the
60 studies that applied the Q-mode, 45 related at least one cluster to the in-
fluence of seawater intrusion and one related at least one cluster to the in-
fluence of brackish/saltwater. Of the 25 studies that applied the R-mode, 20
related one variable cluster to seawater intrusion or other salinization
sources.

Ward's-linkage was the preferred linkage algorithm in these studies. Of
the 77 studies that applied HCA, 52 applied this linkage rule. Ward's
method is distinct from all other methods because it uses an analysis of var-
iance approach to evaluate cluster distances (Sharma and Batra, 2019;
Ward, 1963). Ward's-linkage seems to perform significantly better than
other clustering procedures based on empirical studies that compare the
methods (Willett et al., 1998). Furthermore, three studies used complete
linkage (Saxena et al., 2017), while the remaining did not specify a linkage
method. According to the same trend, 56 studies established the distance
s for different numbers of variables in the La Paz database.



C. Narvaez-Montoya et al. Science of the Total Environment 864 (2023) 160933
criterion, inwhich themost used similaritymeasurewas Euclidean distance
in 54 studies. The other two distance criteria were Manhattan (Strauss and
von Maltitz, 2017) and Pearson (Székely and Rizzo, 2014) (Table S2). The
lack of information regarding the used linkage method and distance crite-
rion can make it difficult to replicate and validate the results of the studies.

As seen with PCA, TDS and EC can be removed from HCA clustering.
When redundant, these variables give greater importance to a specific
variance direction without adding new relevant information and removing
them reduces the complexity of clustering (Fraiman et al., 2008; Mitra
et al., 2002). To demonstrate this, Ward's method of HCA with Euclidean
distance was applied to the La Paz coastal aquifer database for the different
Fig. 7. Hierarchical clustering (HCA) dendrogram for different variables of the La Paz d
total dissolved solids (TDS).
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sets of variables used in PCA, using the R script described in Section S3. Z-
score standardization was used to assign the same weight to all variables,
and four clusters were extracted. Fig. 7 shows that the dendrogram struc-
ture changed by a minor degree when EC or TDS were removed and the
linkage distances were reduced. Clusters that did not consider EC or TDS
were raised in the first two PCs in Fig. 8a to understand their relationship
with the database. From the PCA, Cluster 1 (C1) had a minor salinization
effect; C2 and C4 had an intermediate effect, and C3 had the highest values
in the PC1 direction. Regarding nitrification (PC2), the only cluster with
higher values relative to others was C3. Fig. S2 shows the location of the
sampling points indicating the cluster membership.
atabase. (a) All variables; (b) without electrical conductivity (EC); (c) without EC or
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The PCA andHCA information, sample point location, and extended hy-
drogeochemical facies analysis of the groups in Section S3 indicates that C1
is associated with recharging groundwater, C2 is associated with seawater
intrusionmixture, C3 is associatedwith terrestrial salinization, and C4 is as-
sociated with nitrate-polluted groundwater mixed with seawater intrusion.

4.2.3. K-means clustering
K-means clustering uses a predefined number (K) of centroids to gener-

ate the best adjustment between these centroids and the input data through
an iterative process (Saxena et al., 2017). In the first step, a few centroid
points are randomly selected. Each data point is then assigned to the closest
centroid. The next step is to update the centroids by calculating the central
points of these newly formed clusters using the Euclidean distance. Subse-
quently, the last two steps are repeated until no object changes the cluster
assignment (Bouguettaya et al., 2015). The results may vary because of
the initial random location of the centroids. The algorithm can then be
run multiple times to choose the best result based on the minimum value
of the total sum of squares (TSS). The predefined number (K) of cluster cen-
troids depends on the modeler criteria, although there are heuristic rules to
infer the optimal number. The elbow criteria usually repeats the process by
increasing the number of centroids, and optimal clusters are inferred by
selecting the elbow of the curve between the distortion measurement
and the number of centroids (Yuan and Yang, 2019). Similar to HCA, the
disadvantage of this method is that it is sensitive to noise and outliers
(Saxena et al., 2017).

The fuzzy C-means (FCM) method is a modified form of the K-means
method that uses fuzzy logic theory, in which objects can be partially
assigned to multiple clusters (Mohammadrezapour et al., 2020). The pro-
portion of membership to each cluster depends on the closeness of the
data object to the centroids, and a fuzzy matrix describes this characteristic
with “n” rows (objects) and “c” columns (clusters) (Izakian and Abraham,
2011). This partial assignment increases the expressiveness of the cluster-
ing analysis, thereby presenting amore comprehensive viewof the relation-
ships in the data (Stetco et al., 2015). To perform the segmentation, the
fuzziness must be indicated through the fuzzy partition matrix exponent
“m”, with m >1 (Saxena et al., 2017). Similar to K-means, centroids are lo-
cated randomly and the best combination can be chosen by selecting the
Fig. 8. Clustering without electrical conductivity (EC) or total dissolved solids (TDS) on
(HCA); (b) k-means clustering; (c) fuzzy C-means; and (d) Self-organizing map (SOM) n
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final TSS minimum value between multiple runs. Despite improvements
in the conventional partitioning method, FCM is still sensitive to noise
and outliers (Saxena et al., 2017).

In hydrology, K-means and FCM have been used to depict associations
between water samples and infer sources, which is similar to HCA
(Mohammadrezapour et al., 2020). This review showed that K-means was
used in two studies to identify groups for hydrogeochemical analysis
(Table S2). In these studies, the analysis of the groups indicated the associ-
ation of at least one group with the influence of seawater intrusion. The in-
terpretation of the K-means results was used with complementary
techniques, such as clustering PCA results by Celestino et al. (2018) and
segmentation SOM results by Yin et al. (2021). FCM was applied by Güler
et al. (2012), which enabled the identification of a cluster associated with
seawater intrusion. Additionally, this study allowed the identification of
transitional zones between the clusters through the georeferenced graphi-
cal representation of the fuzzy transitions.

K-means was applied to the La Paz coastal aquifer database for different
variables to test the method and to determine the influence of redundant
variables. Z-score standardization was used to assign the same weight to
all the variables, and four clusters were extracted. The algorithm was exe-
cuted 100 times using the R script described in Section S3, and the result
with the lowest TSS was selected. The sampling cluster assignation had
the same results for all three cases: all variables were considered, EC was
omitted, and EC and TDS were omitted. A fewer number redundant vari-
ables corresponded to a lower TSS (i.e., 598, 552, and 506 for the three
cases, respectively). This highlights the redundancy of TDS and EC with
other chemical parameters, which implies that they can be omitted. Clus-
ters were raised in thefirst twomain components (Fig. 8b), which generally
preserves the same pattern as that observed in the HCA clustering results
(Fig. 8a) but generates a different pattern in the three sample classifications
(Lp-21, Lp-20, and Lp-43). Fig. S7 shows the location of the sampling points
indicating the cluster membership.

As an example of the fuzzy concept, FCM was applied to the La Paz
coastal aquifer database without considering TDS or EC. Z-score standardi-
zation, four centroid clusters with 100 runs, and a fuzzy partitionmatrix ex-
ponent of m= 1.3 were set using the R script described in Section S4. The
result with the lowest TSS was 502.17, and the fuzzy matrix was extracted
the first component (PC1) vs. second component (PC2). (a) Hierarchical clustering
eural segmentation without EC or TDS.
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as shown in Section S4. Fig. 8C shows the FCM cluster pattern on the two
first PCs, in which samples that have been assigned with a proportion
<90 % to a single cluster membership are marked as fuzzy. For instance,
77 % of the Lp-21 sample belongs to C2, 22 % belongs to C1, and <1 % is
assigned between C3 and C4; 81 % of the Lp-30 sample belongs to C3, 17
% belongs to C2, and <2 % is assigned between C1 and C4; and 76 % of
Lp-47 belongs to C1, 20 % belongs to C2, and <4 % is assigned between
C3 and C4. Fig. S8 shows the location of sampling points that indicate the
fuzzy cluster membership.
4.2.4. Self-organizing map
The SOM or Kohonen map is a specific type of ANN for visualizing and

clustering high-dimensional data. It converts the non-linear statistical rela-
tionships between high-dimensional data into simple geometric relation-
ships projected on a low-dimensional display, usually a regular two-
dimensional grid of neurons (Kohonen, 2001; Wehrens and Kruisselbrink,
2018). The SOM neural network consists of an input and output layer
(Kohonen layers). The input layer contains as many nodes as variables in
the data set, whereas the output layer neurons are connected to every neu-
ron from the input layer through adjustable weights or network parameters
that form theweight vectors. Theweight vectors constrain the reproduction
of the input objects through the output layer in an ordered but not regular
mesh that preserves the data topology (Kalteh et al., 2008; Wehrens and
Kruisselbrink, 2018). After training, the input objects are assigned to the
output layer neurons, and some neurons may not contain objects, thus in-
creasing the difficulty of interpreting the SOMmap. Reports have suggested
that the map size should be varied to avoid as many empty neurons as pos-
sible since these do not represent the data pattern (Céréghino and Park,
2009; Li et al., 2018).

The first and most important step in applying the SOM method is data
gathering and standardization to prevent variables from having a higher
impact than others, such as in clustering techniques. The second step con-
sists of defining several neurons associated with the weight vectors; typi-
cally, the heuristic rule of w ¼ 5

ffiffiffiffi

m
p

is used, where m is the number of
samples and w is the number of output layer neurons (Céréghino and
Park, 2009; Yin et al., 2021). The initial values of the weight vectors of
the neurons are established randomly. The next step is training, in which
the weight vectors simultaneoulsly update their relative values for one
Fig. 9. Self-organizing map (SOM) grid for different numbers of variables of the La Paz d
total dissolved solids (TDS).
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input pattern and a neighborhood function. The neuron with the closest
match to the presented input pattern is called the winner neuron or best-
matching unit, and the next input pattern is used as the new target. It is rec-
ommended that the number of iterations be at least 500 times the number
of neurons in the output layer. The last step is information extraction and
visualization. Typically, a 2D projection of the final output neural mesh is
used (Kalteh et al., 2008).

From the perspective of water research, a trained SOMmap is a valuable
tool for visualizing the data and obtaining insights into the system under in-
vestigation, such as satellite imagery data classification, rainfall-runoff
analysis, and water quality associations (Kalteh et al., 2008; Olkowska
et al., 2014). This review found two studies that combined SOM with K-
means and HCA clustering to visualize and cluster hydrogeochemical data
(Nguyen et al., 2015). This visualization highlighted the patterns of each
variable's influence in 2D neuron maps and showed the sample clusters ob-
tained in the SOMmap projection. The combinedmethodologies permitted
a better interpretation of the hydrogeochemical processes and identified at
least one cluster associated with seawater intrusion.

SOM was applied to the La Paz database. Z-score standardization
was used to assign the same weight to all variables, and 35 neurons
(w ¼ 5

ffiffiffiffiffiffi

47
p

) with an array of five columns and seven rows were used,
while 18,000 (35 × 500) iterations were set. The R script and additional
parameters are described in Section S5. Fig. 9 shows the results of the
final representative weight vectors and their neuron locations. In general,
the patterns of the three analyses were very similar. In the upper right
part, there were samples with the highest values of major elements, TDS
and EC; in the bottom part, there were the samples with the highest DO
and pH values; and in the middle left part, there were the samples with
the lowest values of all variables. Neurons 26 and 31 showed the highest
nitrate values, and EC and TDS were redundant in the analysis because
the weight vectors of the major ions had the same pattern as EC and TDS,
indicating that there was no new information when these variables were
considered.

To provide a more robust interpretation of the results, HCA clustering
was used with the neuron weight vector results when excluding EC and
TDS (Ward's method, Euclidian distance, and 5 clusters). The SOM grid
map segmentation with clusters is presented in Fig. 10 with the mean re-
sults of TDS, NO3-N, and DO on the SOM grid. The neurons associated
with the samples and neuron clusters are shown in Fig. 8c, and Fig. S9
atabase. (a) All variables; (b) without electrical conductivity (EC); (c) without EC or



Fig. 10. Self-organizing map (SOM) grid of La Paz database: (a) Weight vector hierarchical clustering (HCA); (b) Total dissolved solids (TDS) mean value projections in the
SOM grid; (c) HCO3

−-N mean value projections in the SOM grid; (d) Dissolved oxygen (DO) mean value projections in SOM grid.
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shows the sampling point location, indicating the SOM code cluster mem-
bership. The clustering result and its interpretation are similar to those of
HCA, K-means, and FCM. In contrast, SOM shows the internal structure of
the groups and their relationship to topology. It should also be noted that
five clusters are required to arrive at a segmentation similar to the other
methods. When four clusters with the indicated SOM features were set,
C2 and C3 belonged to the same group and Lp-47 sample formed a single
cluster.

4.3. Seawater intrusion pattern recognition

The reviewed unsupervised learning techniques were used to conduct
exploratory analyses of the hydrogeochemical processes governing coastal
groundwater quality. The PCA, MCA, and HCA (R-mode) techniques were
used to associate hydrogeochemical processes based on the similarity and
variance of the data variables. Grouping and segmentation techniques,
such as SOM, HCA (Q-mode), K-means, and FCM, made it possible to
13
assemble water samples with similar characteristics, mainly hydrogeo-
chemical facies, which were associated with different sources, such as sali-
nization from evaporation, seawater intrusion, or anthropogenic impacts,
based on the support of different discrimination criteria. However, owing
to their unsupervised nature, these techniques do not allow the clusters to
be directly associated with the sources. It is undeniable that simplification
of the databases and pattern recognition facilitated the interpretation of
hydrogeological processes in each case study.

Monitoringmajor ions as chemical tracers of environmental processes is
of enormous importance because they account for 95 % of TDS (Poeter
et al., 2020). In general, PCA also highlighted the relevance of the variance
of these constituents in PC1. On average, the salinization process was the
most relevant and explained 48 % of the data variance in the studies. Al-
though it could be argued that there is a bias becausemajor ions are always
considered for sampling analysis, 22 studies with a PC1 average variance of
43 % considered at least 15 different variables, which is twice the number
of major ions. Other variables that were highly relevant in PC1 when
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associated with salinization processes were F− (Askri et al., 2022), Fe
(Awaleh et al., 2018; Galazoulas and Petalas, 2014; Kim et al., 2005), chem-
ical oxygen demand (Wang et al., 2022), Sr (Hyung et al., 2021), Mn
(Hyung et al., 2021), B (Güner et al., 2021), Se (Papazotos et al., 2020),
Br (Sae-Ju et al., 2020), Cr (Galazoulas and Petalas, 2014), NH4

+ (Salem
et al., 2021), total viable count (Gokul et al., 2019), Li (Souid et al.,
2018), As (Houssein et al., 2017), sodium adsorption ratio (Taşana et al.,
2022), and seawater intrusion generalized index (Alameddine and Fadel,
2021). Table S2 shows other studies in which these variables were relevant
to PC1.

Because the greatest variance is in the direction of salinization, it can be
understood that this process partially biases the formed clusters. For the
case of La Paz, it can be seen in Fig. 8 that data clusters are partitioned in
the directions of the first two principal components, although separation
is more predominant by PC1. Although clusters appear to be effective, it
should be noted that clusters methods are sensitive to “outliers” or “anom-
alies” (Saxena et al., 2017), such as Lp-47 (water recharge), Lp-40 (high sa-
linity), and Lp-31 (high nitrate concentration) (Fig. 8a). These outlier
observations are of great interest and should be identified because they
can affect the interpretation of the related clusters. HCA and SOM present
features against this because it is possible to identify the outliers in the den-
drogram and SOM segmentation pattern, respectively. Another characteris-
tic for differentiating groundwater groups is the optimal number of clusters.
An average of 3.7 clusters was used in the studies that relate at least one
group to seawater intrusion influence, and 91 % of these studies did not
use a criterion for selecting the optimal number of clusters. As Pacheco
Castro et al. (2018) stated, a hydrogeological sense should be used to select
the final number of clusters, and the number should be increased until sig-
nificance is observed.

The most commonly used criteria for identifying seawater intrusion in
the cluster results are associatedwith the chemical characteristics of seawa-
ter and its interaction with the aquifer. Associations were sought based on
samples similar to seawater, such as those with high salinity values, high
chlorine concentrations, and Na+-Cl− facies (Jiao and Post, 2019). The in-
teraction between seawater and the solid aquifer matrix is also an indicator
because when the sea wedge advances (seawater intrusion), reverse cation
exchange may occur, in which Na+ is exchanged for Ca2+ in the signature
of groundwater; however, when the wedge recedes (freshening), direct cat-
ion exchange occurs, with Ca+ exchanged for Na+ (Giménez-Forcada,
2010). These evolution trends are understood from different diagrams
that have been developed over the years, such as Piper (Moreno Merino
et al., 2021), Durov (Chadha, 1999), Stiff (Lee, 1998), and HFE-D
(Giménez-Forcada, 2010). Cation exchange in water samples can also be
identified by comparing the excess and deficit of ions in the theoretical
mixture of recharge water and seawater (fraction of seawater) through
end-members (Nogueira et al., 2019; Papazotos et al., 2020). These discrim-
ination techniques based on major ions appear to be effective in places
where seawater intrusion is the main source of salinization. However,
under arid and hyper-arid conditions, it is difficult to differentiate the
sources of high salinization values with similar signatures (Sabarathinam
et al., 2021).

Apart from facies and tracers, the salt origin can be inferred by compar-
ing the chemical and isotopic concentration ratios of groundwater samples
and seawater, such as Na+/Cl−, Ca2+/Cl−, Mg2+/Ca2+, Ca2+/Mg2+,
Cl−/HCO3

−, (Jiao and Post, 2019; Lee and Song, 2007), Cl−/Br−

(Bertrand et al., 2022), Cl−/Si (Sabarathinam et al., 2021), δ34S(SO4
2−)

(Hyung et al., 2021; Kim et al., 2019), δ13C(Dissolved Inorganic Carbon),
δ11B, B/Cl−, and 87Sr/ 86Sr (Awaleh et al., 2018). In addition, a more
composited relationship based on major ions has been used to infer the in-
fluence of salinization intrusion, such as the Simpson ratio for evaluating
the salinization degree and the chloro-alkaline index (CAI) for evaluating
the degree of ion exchange (Ha et al., 2022; Wang et al., 2022). Depending
on the major ions, the results obtained from the CAI and Simpson index re-
flect the results of different salinization sources, not only seawater intru-
sion. Overall, most of the reviewed studies used the Piper diagram and/or
major ion relations as discriminant techniques, and only four studies
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included major ion ratios as inputs in the multivariate analysis (Table S2).
In contrast, 20 articles used isotopes (mostly δ2H and δ18O) for analysis,
of which only five included isotopes as inputs for multivariate analysis
(only δ2H and δ18O) (Table S2). However, these two variables are related
to water sources, which can be seawater, among others, and not directly re-
lated to salinization.

The lithology of the study area is also a discriminating factor for
salinization identification. The saturation indices of minerals based on ther-
modynamic and geochemical mass balances help to characterize ground-
water influenced by different sources of mineralization, showing whether
water is under- or oversaturated with respect to given minerals, such as
halite, gypsum, calcite, and dolomite (Parkhurst and Appelo, 2013). Gener-
ally, the zone affected by seawater intrusion is undersaturated with respect
to halite (Güler et al., 2012; Sabarathinam et al., 2021). Less complex tech-
niques to compare the groundwater interaction with the solid matrix are
the Gibbs diagram (Marandi and Shand, 2018) and Na-normalized
diagrams (Gaillardet et al., 1999). The first compares water samples to
the pattern of world water resources, thus indicating the influence of evap-
orites (along with seawater intrusion) and rock interactions with recharge
water, while the second associates the water samples with different regis-
tered carbonates, silicates, and evaporite rock end members. In these
three discriminant techniques, the influence of seawater intrusion can be
confused with that of evaporation and evaporite mineral dissolution.
Thus, the results should be compared with the lithologies of the study
area to identify associations and discrepancies. Table S2 lists the studies
that have used these techniques.

Hydraulic characteristics are also important for interpreting hydrogeo-
chemical data. Knowledge of flows, hydraulic gradients, and sample grid
spatial configuration helps to identify the mineralization process to which
water is subjected along flow lines. For instance, proximity to the coast is
associated with the influence of seawater intrusion, such as in Hajji et al.
(2020), El Yaouti et al. (2009), and Yik et al. (2012). In addition, when in-
land salinity is unclear, the hydraulic gradient, sea-level rise, and ground-
water overexploitation may suggest associations with seawater intrusion
extension (Ferguson and Gleeson, 2012). For instance, while the Red
River delta aquifer (hydraulic gradients <10−4) in Vietnam has a seawater
extension of hundreds of kilometers and salinization deposits from the Ho-
locene seawater intrusion (Larsen et al., 2017), the Caplina/Concordia
aquifer system (hydraulic gradients of the order of 10−2) in Peru/Chile
has a seawater intrusion extension of approximately 10 km,which ismainly
due to overexploitation (Narvaez-Montoya et al., 2022). This review identi-
fied four studies that used hydraulic conditions (distance to the coast, field
slope, and hydraulic head) as inputs for unsupervised techniques
(Table S2). It is necessary to continue including this type of variable in
this class of studies since they present a meaningful value for the associa-
tions and interpretations of coastal hydrogeology.

Even with an understanding of the study area, data, and unsupervised
applied techniques, it is difficult to distinguish seawater intrusion from
other phenomena with total confidence. Mechanisms that involve salty
water of different origins from the sea or fossil seawater stored inside the
aquifer can result in similar geochemical signatures, such as high concen-
trations of ions and alteration of facies through cation exchange. Therefore,
data can be misinterpreted. In most studies, it is not assured that the water
samples originate from seawater intrusion; rather, the samples are usually
associated with this source. Apart from the environmental tracer and gen-
eral hydraulic feature analysis, it is necessary to implement complementary
studies, such as geophysical methods and numerical groundwater models,
to understand this phenomenon. In this review, only eight case studies of
this type were identified (Table S2).

4.4. Recommendations for unsupervised hydrogeochemistry data analysis

Several aspects were identified that might be useful for researchers and
professionals to improve the analysis using reviewed unsupervised tech-
niques. Except for coastal hydrogeology, most of the recommendations to
be adopted for water research are based on data analysis.



C. Narvaez-Montoya et al. Science of the Total Environment 864 (2023) 160933
For the preprocessing of raw data, TDS, EC, and TH can be considered
redundant variables when used together and when major ions are consid-
ered, such as in the Laz Paz analysis example. The exclusion of these vari-
ables helps limit the complexity of the analysis by eliminating the
multiplicity of the same effect without losing important information. How-
ever, the variables must be redundant; for instance, TDS and EC were not
considered redundant in the study of Zhu et al. (2020) because their corre-
lation coefficient was 0.73. To detect undesirable redundancies, tools for
computing the correlation matrix and detecting linear dependencies are in-
cluded in Section S7. Similarly, increasing the sample density per variable
can improve the significance of the results ofmultivariate analysis. Multiple
rules of thumb have been generated to designate theminimum value of this
relationship, however, the values differ considerably (2:1 to 30:1) because
these studies applied different multivariate techniques and different meth-
odologies (Knapp and Campbell-Heider, 1989).

Second, data should be standardized to assign the same weight to all
meaningful variables. Most studies that performed standardization used
the z-score, which consists of centering the variables with a mean of zero,
scaling to unit variance, and retaining the magnitude proportions. Other
methods for standardizing the variables can be found in Miuigan and
Cooper (1988). Note that PCA does not require standardization to assign
equal importance to the variables if the correlation matrix (by default) is
used, because the raw data correlation matrix is equal to the standardized
data correlation matrix (Jolliffe and Cadima, 2016). Moreover, using loga-
rithm transformations for preprocessing is not recommended since the re-
viewed techniques are exploratory and do not require distributional
assumptions (Jolliffe, 2002; O'Hara and Kotze, 2010). Most environmental
data, including geochemistry data, follow a skewed positive distribution
(Andersson, 2021; Govett et al., 1975). Log-transforming search strategies
are usually used for normal distributions, although such transformations
are not necessary, such as in Pacheco Castro et al. (2018). The reason for
this is paradigmatic and unclear, although the transformation implies that
the mechanisms are multiplicative on the scale of the raw data (Govett
et al., 1975; O'Hara and Kotze, 2010), and which distorts the data's internal
relationships. Of the 102 studies, 21 transformed their data (20 %).

Reproducibility of the results and further exploration of related hypoth-
eses require access to raw data (Alsheikh-Ali et al., 2011). Although journals
encourage the sharing of data and other useful materials related to research,
such sharing does not occur in many cases. Only 39 of the 102 reviewed
studies (38 %) provided the raw data for their analysis. These relevant
data can be placed in the supportingmaterial of studies, which generally per-
mits multiple formats; moreover, data can be both shared and protected
(through DOI's) in ad-hoc repositories, such as Zenodo (Sicilia et al.,
2017). Regarding the accessibility of unsupervised technique tools, there is
no major problem in accessing different software, such as Minitab, SPSS,
Stata/SE, and STATISTICA. However, the tools must be made available to
the general public for reproducibility and validation.

Furthermore, given that this research is applied to water resources,
which are associated with the human right to access water and UN-
Sustainable Development Goal 6 (clean water and sanitation), it is neces-
sary to socialize raw data, methods, and results as best as possible. This
work highlights the importance of sharing data and using open source soft-
ware to validate, reproduce, and replicate the research. The techniques ap-
plied to the La Paz database were executed using open-source R Studio
environment. R scripts and documentation for discriminant techniques,
such as Piper, are provided in the Supplementary material.

4.5. Research opportunities

Most studies have used several techniques independently to explore and
interpret hydrogeochemical data. The integration of at least two techniques
was identified in a few studies that integrated HCA and K-means with prior
dimension reduction via PCA (e.g., Aris et al., 2012; Celestino et al., 2018;
Hasan et al., 2021; Osiakwan et al., 2021) and that combined HCA or K-
means with SOM to obtain clusters over the data topology (e.g., Nguyen
et al., 2015; Yin et al., 2021). It is possible to continue integrating these
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techniques with other diagrams, thus creating new analysis strategies.
Moreover, although unsupervised learning has a bias component because
themodeler is the onewho givesmeaning to the results, the new techniques
and procedures must be more objective and consider elements of the data,
such as the variance and amount of data.

One problemwith interpreting cluster data is that when considering all
variables, all processes are integrated; therefore, the mechanisms featuring
the highest variance can overshadow the others. To solve this problem,
Mora et al. (2021) used an HCA double clustering approach, whereby the
HCA (R-mode) was first executed on the data, and each determined set of
variable groups was associated with a hydrogeochemical process, such as
salinization. Sample clusters were then formed from each group of vari-
ables (process) by applying HCA (R-mode) to the data. In this way, the sam-
ples were clustered according to an identified process, thus identifying the
level of influence and associating different sources. Oneway to improve the
strategy of sample clustering using a different process is to use PCA instead
ofHCA (R-mode) to determine the variables and infer the general process in
the first stage. In this way, the variables are not only associated with a pro-
cess, but clarity is also obtained based on the importance of the processes
that lead to data variance. For instance, three relevant processes were iden-
tified in the La Paz case, and their variance contributions were calculated
(salinization accounted for 62.8 % of the total variance, nitrate contamina-
tion accounted for 6 %, and oxygen solubility change accounted for 5.6 %).
Thus, three sets of HCAs (Q-mode) clusters can be generated with the most
relevant variables of each component (highest loading).

Exploring coastal hydrogeochemical data with alternatives to the re-
viewed techniques is possible. For instance, independent component analy-
sis (ICA), a DRM, can be used instead of or parallel to traditional PCA. ICA
extracts independent sources (directions) by exploring statistically indepen-
dent patterns from the observations of an unknown linear mixture. This
technique is more powerful than others based on uncorrelated components,
such as PCA (Calabrese, 2019; Kano et al., 2004). Another DRM that can be
used to reveal the global structure of hydrogeological datasets and is not
based on linear relations but rather on probabilistic distributions, is T-
stochastic neighbor embedding. This technique maximizes the relationship
between the closest observations and minimizes the influence of the most
distant observations (Ayesha et al., 2020).

For novel clustering applications in coastal aquifers, model-based clus-
tering can associate observations to multiple clusters since this method cre-
ates groups based on a mixture of component models (Fürnkranz et al.,
2011); and density-based clustering can create clusters based on contiguous
dense regions and identifying and eliminating the influence of “anomalies”
in the data (Hahsler et al., 2019). Another cluster that can avoid the large
influence of anomalies is K-medoids, in which an actual point (medoid) is
used to represent the cluster center rather than themean point as the center
of a cluster (k-means) (Mannor et al., 2011). Anothermethodology that can
be used to detect anomalies is insolation forest (Lesouple et al., 2021).

Although the previously detailed methods may constitute the recogni-
tion pattern methodologies with multiple applications, cases with more
complicated features use the ANN. SOM has been extensively used to iden-
tify internal relationships in hydrogeochemistry. However, other ANN pres-
ent good alternatives to the Kohonen map. Adaptive resonance theory 2 is
an unsupervised network that classifies samples based on their memory,
which makes it possible to include new samples after training, classify
existing clusters, or create newones (Fan et al., 2008).Moreover, gas neural
networks can be used to preserve data topology, such as SOM, but avoids
empty neurons (Du, 2010). Another neural network that can be applied
to reduce dimensions and extract the most relevant information from a da-
tabase is an autoencoders (Fdez-Ortiz de Vallejuelo et al., 2011). In addi-
tion, graph neural networks can represent database interdependencies
and non-linear relationships (Wu et al., 2021).

Delimiting the seawater intrusion phenomenon as much as possible is
of great importance because a misinterpretation can lead to incorrect
decision-making regarding the management of the aquifer. As indicated in
Section 4.3, hydrogeochemical and hydraulic variables could constitute rele-
vant environmental gradients in the salinization process, although their use is
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still limited. It is necessary to continue advancing in the use of these variables
and understanding their significance for seawater identification. Other
variables that could be used and related to seawater intrusion are those asso-
ciated with microplastics and stygofauna (groundwater fauna) (Li et al.,
2021; Shapouri et al., 2016). On the other hand, the variables used in
water research studies are a mixture of compositional data, which are part
of a whole (e.g., chemical compounds) and non-compositional data
(e.g., physical variables) (Herms et al., 2021). Generally, the compositional
nature of some variables is analyzed using composite plots such as the
Piper diagram (Section 2.1) after applying unsupervised techniques. The
study of Boente et al. (2018) stated that applying the compositional data anal-
ysis (CoDa) approach for a complementarymultivariate analysis could enable
the exploration of relative enrichment spots and evaluation enrichment
trends, thus complementing the results when the compositional nature is
not considered.

5. Conclusions

This work reviews how unsupervised learning has supported seawater in-
trusion pattern recognition in coastal aquifers worldwide over the last 22
years. PCA, the most frequently used DRM, enabled the identification of envi-
ronmental gradients, among which the most relevant was associated with
salinization andpresented an average explained variance of 48%.Meanwhile,
HCA, K-means, FCM, and SOM facilitated the segmentation of samples into
clusters, which were subsequently assigned to hydrochemical impacts and
sources, thus delineating seawater intrusion. The application of the reviewed
techniques to the La Paz case study enabled the visualization and comparison
of their performances. It was shown that redundant variables, such as TH, EC,
and TDS, do not provide new information and further complicate the analysis.
On the other hand, the clusteringmethods and SOMapplications did not show
relevant changes in cluster patterns. However, HCA and SOM present advan-
tages for outlier identification, while FCM represents transitional zones be-
cause it can assign samples to multiple clusters. Although the application of
these methods has supported the identification of seawater intrusion, new
techniques with greater precision for differentiating sources must be adopted.

In addition to advancing pattern recognition techniques, the need to
complement studies with other approaches, such as flow models and geo-
physical methods, was shown. By collecting information of a different na-
ture, the phenomena of seawater intrusion can be better delimited
spatially and temporally, which enables appropriate management. Further-
more, this review supports the idea that both journals and authors are re-
sponsible for uploading the necessary information to reproduce and
validate studies. In addition to ensuring that access to information makes
the studies reproducible, it also favors the socialization of information of
general interest for water resources management.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.160933.
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