
HAL Id: hal-04283788
https://hal.inrae.fr/hal-04283788v1

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A mediation system for continuous spatial queries on a
unified schema using Apache Spark

Thi Thu Trang Ngo, François Pinet, David Sarramia, Myoung-Ah Kang

To cite this version:
Thi Thu Trang Ngo, François Pinet, David Sarramia, Myoung-Ah Kang. A mediation system for
continuous spatial queries on a unified schema using Apache Spark. Big Earth Data, 2024, 8 (1),
pp.115-141. �10.1080/20964471.2023.2275854�. �hal-04283788�

https://hal.inrae.fr/hal-04283788v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20

Big Earth Data

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tbed20

A mediation system for continuous spatial queries
on a unified schema using Apache Spark

Thi Thu Trang Ngo, François Pinet, David Sarramia & Myoung-Ah Kang

To cite this article: Thi Thu Trang Ngo, François Pinet, David Sarramia & Myoung-Ah Kang
(09 Nov 2023): A mediation system for continuous spatial queries on a unified schema using
Apache Spark, Big Earth Data, DOI: 10.1080/20964471.2023.2275854

To link to this article: https://doi.org/10.1080/20964471.2023.2275854

© 2023 The Author(s). Published by Taylor
& Francis Group and Science Press on
behalf of the International Society for
Digital Earth, supported by the International
Research Center of Big Data for Sustainable
Development Goals, and CASEarth Strategic
Priority Research Programme.

View supplementary material

Published online: 09 Nov 2023.

Submit your article to this journal

Article views: 292

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbed20
https://www.tandfonline.com/journals/tbed20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20964471.2023.2275854
https://doi.org/10.1080/20964471.2023.2275854
https://www.tandfonline.com/doi/suppl/10.1080/20964471.2023.2275854
https://www.tandfonline.com/doi/suppl/10.1080/20964471.2023.2275854
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2023.2275854?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2023.2275854?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2023.2275854&domain=pdf&date_stamp=09 Nov 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2023.2275854&domain=pdf&date_stamp=09 Nov 2023

ORIGINAL RESEARCH ARTICLE

A mediation system for continuous spatial queries on a
unified schema using Apache Spark
Thi Thu Trang Ngo a, François Pinet b, David Sarramia c and Myoung-Ah Kang a

aUniversité Clermont Auvergne, ISIMA, Aubière, France; bUniversité Clermont Auvergne, INRAE, UR TSCF,
Clermont-Ferrand, France; cUniversité Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

ABSTRACT
Recent advances in big and streaming data systems have enabled
real-time analysis of data generated by Internet of Things (IoT)
systems and sensors in various domains. In this context, many
applications require integrating data from several heterogeneous
sources, either stream or static sources. Frameworks such as Apache
Spark are able to integrate and process large datasets from different
sources. However, these frameworks are hard to use when the data
sources are heterogeneous and numerous. To address this issue, we
propose a system based on mediation techniques for integrating
stream and static data sources. The integration process of our
system consists of three main steps: configuration, query expres-
sion and query execution. In the configuration step, an adminis-
trator designs a mediated schema and defines mapping between
the mediated schema and local data sources. In the query expres-
sion step, users express queries using customized SQL grammar on
the mediated schema. Finally, our system rewrites the query into an
optimized Spark application and submits the application to a Spark
cluster. The results are continuously returned to users. Our experi-
ments show that our optimizations can improve query execution
time by up to one order of magnitude, making complex streaming
and spatial data analysis more accessible.

ARTICLE HISTORY
Received 29 August 2022
Accepted 23 October 2023

KEYWORDS
Streaming data; streaming
data integration; mediator;
geospatial data; continuous
queries

1. Introduction

In recent years, the rapid development of sensor and Internet of Things (IoT) technologies
has brought benefits for many sectors, particularly in agriculture and environmental
applications. To process the high volumes of data generated by these technologies, big
data management systems such as Apache Spark (Zaharia et al., 2012) and Apache Flink
(Carbone et al., 2015) have become the reference tools for enabling analytics. However,
these tools lack support for integrating different data sources under a uniform schema,

CONTACT Thi Thu Trang Ngo thi_thu_trang.ngo@doctorant.uca.fr Université Clermont Auvergne, ISIMA, LIMOS-
UMR CNRS 6158, Aubière, France

Supplemental data for this article can be accessed online at https://doi.org/10.1080/20964471.2023.2275854.

BIG EARTH DATA
https://doi.org/10.1080/20964471.2023.2275854

© 2023 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth,
supported by the International Research Center of Big Data for Sustainable Development Goals, and CASEarth Strategic Priority Research
Programme.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://orcid.org/0000-0003-3719-7073
http://orcid.org/0000-0001-7011-9216
http://orcid.org/0000-0002-7062-9707
http://orcid.org/0000-0001-5810-4599
https://doi.org/10.1080/20964471.2023.2275854
http://www.digitalearth-isde.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2023.2275854&domain=pdf&date_stamp=2023-11-09

which can be a major challenge for users without knowledge of big and streaming data
integration.

Consider an example where a physicist wants to analyze IoT sensor data col-
lected all around Europe. The physicist is interested in the quality of air near
buildings of industrial areas. Then, he/she must join data from different data
sources for his/her queries, e.g. streams of sensors, city buildings, industrial
zones. Suppose the physicist uses GeoSpark (Yu et al., 2015), (i) he/she must
handle the heterogeneity of data sources, e.g. documents, streams, relational
database, and (ii) he/she must manage each data source schema. The complexity
of handling these issues increases considerably with the number of data sources.
Moreover, this task is not straightforward for users without knowledge of big and
streaming data integration.

To our knowledge, there are no SQL-based mediator systems to handle both stream
and spatial data. Stripelis et al., (2018) proposed Spark Mediator middleware that allows
integrating static data sources only. However, their solution is not available to the
research community. Al Jawarneh et al., (2021) proposed a novel system called
MeteoMobil that utilizes Apache Spark, for advanced climate change analytics. The
system supports real-time queries that join mobility and environmental data. Their system
is based on the filter-refine spatial join approach (Wood, 2008). This approach is imple-
mented as well in GeoSpark. However, the current version of their system only supports
single queries, including statistics like sum and average, and aggregations.

In this work, we propose a system based on mediation techniques to analyze spatial
stream-static data in real time with seamless integration. To achieve this, we propose an
interface and a customized SQL grammar that allows users to express continuous queries
with streaming and spatial semantics. Given a set of local data sources and an application
requirement: first, an administrator configures the system, i.e. he/she designs a mediated
schema and defines the mappings between the mediated schema and the data sources.
Second, users express queries on the mediated schema in a dedicated SQL grammar and
our system rewrites the query into an Apache Spark application. Finally, the Apache Spark
application is submitted to an Apache Spark cluster and the result is returned to the user
continuously. The use of customized SQL for expressing queries on the mediation system
is an advantage, as SQL is widely used for analytics across different disciplines.

Our proposal presents a novel system architecture based on mediation techniques to
handle the integration of heterogeneous data sources through configuration files, allow-
ing users to query the mediated schema using a dedicated SQL grammar. We also
propose a mediator algorithm to parse and rewrite the user query into a Spark applica-
tion, and an optimization technique to improve the performance of continuous queries,
which are handled by GeoSpark and Apache Spark using time-based sliding windows. Our
system can handle both static and streaming data sources, as well as spatial vector data
and continuous spatial queries. Additionally, we propose to optimize Spark query execu-
tion time for continuous spatiotemporal analytic queries, which outperform Spark query
plans, as shown in our experiments. To demonstrate the effectiveness of our approach, we
present a use case involving the analysis of temperature and air humidity measures
collected by moving sensors.

The contributions of this work are:

2 T. T. T. NGO ET AL.

● A mediation system for integrating heterogeneous stream-static spatial data sources.
● A dedicated SQL grammar for the expression of continuous spatial queries with time-

based sliding windows.
● Implementation of a query tuner in the mediation system.
● Evaluation of the mediation system with respect to several parameters.

The paper is organized as follows: after discussing the related work and background, we
introduce the mediator SQL grammar. Then, we describe the use case to explain our work
and architecture of the system. We present the local schemas and integrated schemas of
our use case. Finally, we evaluate the system with respect to several aspects and we
conclude and provide perspectives for future work.

2. Background and related work

In this section, we present the main related work and concepts relevant to our work. As we
address data integration for stream and spatial data sources, we first recall the mediation
technique for data integration, then we present the systems and frameworks for proces-
sing streaming and spatial data.

2.1. Data integration system based on mediation

Data integration is the process of combining data from different sources and providing the
user with a unified view (Lenzerini, 2002). Mediator system is a popular technique used in
data integration that provides a uniform view of data from different sources (Halevy, 2001;
Wiederhold, 1992). Mediation systems comprise of a mediated schema (also called global
schema or unified schema) and mapping techniques. Two popular mediator techniques are
GAV (Global as View) and LAV (Local as View). GAV defines relations in the global schema
based on relations in local schemas, while LAV defines relations in local schemas based on
relations in the global schema. When a query q is submitted, the mediator (i) uses the
mapping (between global schema and sources) to rewrite the query q into a set queries Q
and then (ii) executes the queries q’∈Q on the corresponding data sources, (iii) gets and
merges the result and returns it to the user.

In the context of spatial data integration (Boucelma et al., 2003), introduce VirGIS, a WFS-
Based spatial mediation system to integrate data from heterogeneous GIS (Geographical
Information Systems), complying with openGIS standards and specifications such as GML
(Geography Markup Language) and WFS (Web Feature Service). However, existing systems,
including VirGIS, do not handle streaming data or large datasets. Tatbul (2010) notes that
integrating a streaming processing engine (SPE) with other SPE or DBMS (database manage-
ment system) is challenging, and the research field is promising, and still open as new use
cases appear, and systems are very heterogeneous, which makes integration harder.
Stripelis et al., (2018) proposed the Spark Mediator middleware to address big data integra-
tion but only allowed integration of static data sources, and their solution is not publicly
available. For our system, we consider local data sources with both static data and streaming
data as well as spatial data.

BIG EARTH DATA 3

2.2. Geospatial data and queries

Geospatial data refer to information that is associated with a specific geographical area or
location on the Earth (Lee & Kang, 2015; Robert, 2003). It can be represented in three main
ways (Alam et al., 2021):

● Graph data consist mainly of road network forms (e.g. transportation map).
● Raster data are described via geographical images (e.g. satellite images of air

pollution).
● Vector data are mainly geometry objects (i.e. points, lines, and polygons). They are

determined usually by one or a set of geospatial coordinates pair latitude and
longitude.

In our system, we consider spatial data in the form of geometry objects. There are three
basic spatial data queries and mostly all possible queries are made of these three (Pandey
et al., 2018):

● Spatial range query is to return all objects s from a set of geometry objects S that are
inside a range R (e.g. return all museums within 10 km from the Eiffel Tower).

● Spatial join query is to consider at least two datasets of spatial data R and S, and
apply join statement (e.g. intersect, contains, within) and return set of all pairs (r,
s)⊆(R,S) (e.g. from two datasets restaurant and cinema, return the cinemas that are in
the same neighborhood of an Italian restaurant).

● K-Nearest Neighbors query (also called KNN query) is to take a set of objects S, a
query point p, and a number k ≥ 1 as input, and find a subset of S of size k that are the
nearest to p (e.g. return 5 nearest by restaurant).

Additionally, the Dimensionally Extended Nine-Intersection Model (DE-9IM) was intro-
duced by (Clementini & DiFelice, 1996) as a set of topological operations that include
Equals, Disjoint, Intersects, Touches, Crosses, Within, Contains, and Overlaps. Later, DE-9IM
was adopted by the Open Geospatial Consortium (OGC) (OGC, 2023) became the OGC-
compliant for join predicates. To comply with the OGC standards (Alam et al., 2018),
integrated DE-9IM into GeoSpark (Yu et al., 2015), one of the most popular spatial
processing systems.

2.3. Streaming processing frameworks for big spatial data

In this section, we first present the concept of big streaming data processing. Then, we
present Apache Spark and its extension projects to handle spatial data operators, which
are essential in understanding the later contribution.

2.3.1. Streaming data processing
Data stream processing is the technique of analyzing and manipulating continuous and
rapidly changing data that flows in a continuous stream, such as sensor data from sensor
IoT devices. To process these data streams effectively, different approaches are required.
This is because data streams can come from various sources, in different formats, with

4 T. T. T. NGO ET AL.

varying levels of complexity, and at high velocity. In addition, these data streams may
contain different types of data, such as structured, semi-structured, and unstructured
data.

Streaming or real-time processing involves a series of actions on a set of streaming data
at the time they are generated (Alam et al., 2021; Tatbul, 2010). The most popular
streaming processing tasks consist of aggregations (e.g. sum, average), transformations
(e.g. changing data format), ingestions (e.g. inserting the incoming data to a database).
However, streaming processing is difficult due to two main characteristics (Kreps et al.,
2011; Kwon et al., 2008):

● Delivery guarantees concern the guarantees that a record will be processed, and
there are three main types of delivery guarantees: (i) at-least-once means data will be
processed at least one time and multiple attempts are made to deliver the message
until at least one succeeds, (ii) at-most-once means data will be processed one or less
than one time. The record may be lost in case of failures. (iii) Exactly-once means that
a record is guaranteed to be processed one and only one time even in case of
failures. The last method is the hardest when dealing with streaming data.

● Fault tolerance means the system has capabilities to handle cases of failures such as
network failures. Solution to achieve fault tolerance can be deduplicating or
checkpointing.

Hereafter, Apache Spark and its extension frameworks for the streaming big spatial data
are recalled. Then, the three most popular big stream processing frameworks for spatial
data, i.e. Apache Spark, Apache Flink, and Apache Storm are analyzed to understand their
achievements on the streaming data processing challenges.

2.3.2. Apache Spark and Spark-based systems for big spatial data
2.3.2.1. Apache spark. Apache Spark (Zaharia et al., 2012) is a high-performance cluster
computing system designed to process large amounts of data efficiently. Unlike tradi-
tional systems such as Hadoop (Shvachko et al., 2010), which reply on disk-based storage,
Spark operates primarily in-memory. Spark’s core feature is the Resilient Distributed
Databases (RDDs) data abstraction, which involves distributing sets of items across a
cluster of machines. RDDs are created through parallelized transformations such as
filtering, joining, or grouping, and can be recovered in case of data loss thanks to their
lineage that tracks how each RDD was built from other datasets through transformations.
This lineage feature ensures fault tolerance of Spark by rebuilding lost data.

Spark’s workflow management is achieved through a Directed Acyclic Graph (DAG),
with nodes representing RDDs and edges representing RDD operations. RDDs can
undergo two types of transformations: narrow and wide. Transformations are operated
on partitions of RDDs. Narrow transformations do not require data to be shuffled across
partitions to produce the subsequent RDD. Conversely, wide transformations require data
to be shuffled across partitions to create the new RDD. Examples of operations that
require wide dependency include Reduce, GroupByKey, and OuterJoin, which initiate a
new stage and lead to stage boundaries.

Spark offers four primary modules, including (i) SparkSQL (Armbrust et al., 2015) for
structured data processing and SQL operations, (ii) Spark Structured Streaming (Armbrust

BIG EARTH DATA 5

et al., 2018) for processing unbounded structured datasets, (iii) MLlib (Meng et al., 2016)
for machine learning, and (iv) GraphX (Gonzalez et al., 2014) for graph processing. These
modules make Spark a versatile and powerful tool for big data processing and analysis.

SparkSQL (Armbrust et al., 2015) is a module of Spark designed explicitly for processing
structured data. It provides two primary features that enhance its functionality. First, it
presents a higher-level abstraction, called a DataFrame, which structures data as a table
with columns, much like a relational database. Second, it includes a flexible optimizer,
known as Catalyst, which is represented as a tree and follows a general rule library for
manipulating the tree. The Catalyst tree transformation framework involves four phases:
analysis, logical optimization, physical planning, and code generation. Catalyst optimizes
the query plan, as shown in the rounded rectangles in Figure 1, by analyzing and
optimizing a logical plan, proposing physical plans with their respective costs, and
generating code.

Table 1 displays a comparison of the three popular big streaming frameworks, high-
lighting their relevant aspects of streaming data processing (Chintapalli et al., 2016;
Inoubli et al., 2018). Apache Spark offers several processing approaches, such as real-
time, batch, and micro batch, making it a versatile choice. However, these features come
at the cost of higher latency and resource consumption. Additionally, Spark has the
advantage of supporting SQL and connecting natively to a wider range of data sources.

While Spark and SparkSQL offer powerful data processing capabilities, they do not
have built-in support for spatial data and its operations. To address this limitation, we
present GeoSpark (Yu et al., 2015) and compare it with the most widely used Spark-based
systems for spatial data handling in the following sections.

2.3.2.2. GeoSpark. GeoSpark (Yu et al., 2015) is an extension layer of Apache Spark that
enables the loading, processing, and analysis of large-scale spatial data. It uses the Spatial
RDD (SRDD), which enhances the native RDD with spatial data types such as point, line,
and polygon. It supports fundamental spatial operations as well including range query,
kNN query, and join query.

To improve the speed of spatial query processing, GeoSpark incorporates several
indexing techniques, including R-tree (Guttman, 1984), and Quad-tree (Finkel & Bentley,
1974) for the SRDD. These techniques, combined with the implementation of the Filter
and Refine model (Wood, 2008), significantly improve the performance of spatial query.
Recently, GeoSpark has been endorsed by the Apache Foundation and has been renamed
Apache Sedona (Sedona, Apache, 2022). In addition to GeoSpark (Yu et al., 2015), several
other Spark-based systems have been extended for spatial data processing, including

Figure 1. Phases of query planning in SparkSQL (Armbrust et al., 2015).

6 T. T. T. NGO ET AL.

SpatialSpark (You et al., 2015), Simba (Xie et al., 2016), SparkGIS (Baig et al., 2017), and
LocationsSpark (Tang et al., 2020). Table 2 displays a comparison of big streaming spatial
frameworks.

We selected GeoSpark as the processing engine for our mediation system based on
four key factors. Firstly, due to its ability to meet our specific requirements, including
comprehensive support for geospatial queries in SQL, as well as accommodating multiple
types of geometries. Secondly, it supports time-based sliding window continuous queries.
Thirdly, GeoSpark has strong community support and contributors compared to other
spatial systems based on Flink and Storm, as reported in Tantalaki et al. (2020). Finally, it is
noteworthy that GeoSpark is on the verge of joining the Apache Software Foundation as
Apache Sedona.

2.4. Summary

To summarize, existing work in the literature has studied intensive data integration.
However, works that focus on spatial data integration do not address streaming or
large data sets. Additionally, existing works on data integration in the context of Big
Data neither consider streaming nor spatial data. Moreover, data processing frameworks
lack support for integrating different data sources under a uniformed schema. Handling
the integration of a large number of heterogeneous data sources is indeed challenging.

Table 1. Comparison of architectural characteristics of Spark, Storm and Flink (Chintapalli et al., 2016;
Inoubli et al., 2018).

Apache Spark
(Zaharia et al., 2012)

Apache Storm
(Storm, Apache, 2014;
Toshniwal et al., 2014)

Apache Flink
(Carbone et al., 2015)

Processing
approach

Real-time, Micro Batch Streaming Streaming - Trident Run time streaming

Streaming
engine

Spark streaming processes data
streams in micro-batches

Designed as DAG with spouts,
bolts and streams used to
process data

A streaming engine for
such workloads; micro-
batch, and batch

Data format Discretized Stream or also called
DStream (it is a continuous stream
of data), DataFrames

Tuples DataStream

Programming
languages

Python, Java, Scala Java, Scala Python, Java

Cluster
manager

Hadoop YARN (Vavilapalli et al., 2013),
Kubernetes, Standalone, Apache
Mesos

Zookeeper Hadoop YARN, Kubernetes

Streaming
query

SparkSQL, Structured Streaming No No

Latency Few seconds Sub-second Sub-second

Sliding window Time based Time based and count based Time based
Message Exactly-once At-least-once Exactly-once

CPU
consumption

** * ***

RAM
consumption

*** ** ***

Processing
power

100x faster than Storm Millions of tuples per second
per nodes

1000s per nodes

BIG EARTH DATA 7

Ta
bl

e
2.

 T
he

 fo
ur

 p
op

ul
ar

 b
ig

 s
pa

tio
-t

em
po

ra
l s

ys
te

m
s

(A
la

m
 e

t
al

.,
20

21
).

Sy
st

em
 T

yp
e

U
nd

er
ly

in
g

Sy
st

em
/

Ar
ch

ite
ct

ur
e

Sp
at

ia
l d

at
a

ty
pe

s
Pa

rt
iti

on
in

g
In

de
xi

ng
Q

ue
ry

La

ng
ua

ge
Su

pp
or

te
d

Q
ue

rie
s

To
rn

ad
o

(M
ah

m
oo

d
et

al

.,
20

15
)

Sp
at

io
-t

ex
tu

al

St
re

am
Ap

ac
he

 S
to

rm
{s

rc
id

, o
id

, (
x,

 y
),

t,
te

xt
} A

-G
rid

A-
G

rid
Ad

ap
tiv

e
In

de
xi

ng

G
lo

ba
l:

Sp
at

ia
l (

A-
G

rid
) L

oc
al

:
Sp

at
io

-t
ex

tu
al

 (K
D

-T
re

e)

At
la

s
(S

Q
L-

Li

ke
)

Sn
ap

sh
ot

, C
on

tin
uo

us

(R
an

ge
, k

N
N

, J
oi

n)

SS
TD

(C

he
n

et
 a

l.,

20
20

)

Sp
at

io
-t

ex
tu

al

St
re

am
Ap

ac
he

 S
to

rm
Po

in
t

Q
T-

tr
ee

 (S
pa

tia
l,

Te
xt

ua
l)

G
lo

ba
l:

Q
T-

tr
ee

 L
oc

al
: O

bj
ec

t,
Q

ue
ry

N
/A

Sn
ap

sh
ot

, C
on

tin
uo

us

(R
an

ge
, k

N
N

, T
op

-k
)

G
eo

Fl
in

k
(S

ha
ik

h
et

 a
l.,

20

20
)

Sp
at

ia
l S

tr
ea

m
Ap

ac
he

 F
lin

k
Po

in
t

G
rid

G
rid

-b
as

ed
N

/A
Co

nt
in

uo
us

 (R
an

ge
, k

N
N

,
Jo

in
)

G
eo

Sp
ar

k
(A

pa
ch

e
Se

do
na

)
(Y

u
et

 a
l.,

 2
01

5)

Sp
at

ia
l S

tr
ea

m
Ap

ac
he

 S
pa

rk
Po

in
t,

Li
ne

St
rin

g,

Po
ly

go
n,

Re

ct
an

gl
e

U
ni

fo
rm

-G
rid

Vo

ro
no

i,
R-

Tr
ee

,
Q

ua
d-

Tr
ee

, K
D

B-

Tr
ee

R-
Tr

ee
, Q

ua
d-

Tr
ee

Ex
te

nd
ed

Sp

ar
k

SQ
L

Ra
ng

e,
 k

N
N

, S
pa

tia
l J

oi
n,

D

is
ta

nc
e

Jo
in

8 T. T. T. NGO ET AL.

Hence, in this paper, we investigate stream-static data integration with geospatial cap-
abilities for real-time analytics of environmental data.

3. A mediator for continuous spatial queries

In this section, we describe our proposal, a mediation system for integrating multiple
heterogeneous data sources. Our system relies on GeoSpark (Apache Sedona) as a
processing engine. Our main contribution is a mediator that simplifies integration of
both stream and static spatial data. We provide a dedicated SQL grammar for the
expression of continuous spatial queries. The mediator translates user continuous spatial
queries on a mediated schema into a Spark app. For integration, we apply the GAV
approach for the mediation, i.e. Global As View. The mediator administrator defines the
mapping of entities of mediated schema to entities of local schemas.

3.1. System design assumptions

The system design relies on several key assumptions. It is built around the implementa-
tion of sliding windows, which are defined by two critical parameters: window length and
sliding interval. Additionally, it incorporates a watermark feature to effectively handle late
data. The system processes data in micro-batches, a deliberate choice made for its
efficiency in addressing the specific demands of the intended use cases.

The solution assumes a substantial volume of data generated by sensor and IoT
technologies in agriculture and environmental applications. These data are expected to
be diverse and potentially complex due to the integration of various data sources. The
solution further assumes that data sources can be highly heterogeneous, including
documents, streams, and relational databases. It anticipates that these sources may
exhibit varying data formats, structures, and characteristics. Additionally, the system
assumes that the data under consideration possesses a spatial component, such as
geographic coordinates.

The solution also considers that potential users may not possess extensive knowledge
of big and streaming data integration. This assumption critically shapes the system
design, aiming for user-friendliness and intuitiveness, especially for individuals who may
not be experts in these technologies. Furthermore, the solution presupposes a demand
for real-time analytics, reflecting the physicist’s continuous need to monitor and analyze
IoT sensor data. It also assumes that an administrator will be responsible for configuring
the system, entailing the design of a mediated schema and the definition of mappings
between the mediated schema and the data sources.

3.2. Dedicated SQL grammar and supported queries

In this section, we describe the SQL syntax supported by our mediation system. The
syntax is dedicated to express aggregation queries with continuous spatial semantics and
time-based sliding windows such as “get continuously an aggregation of sensor measure-
ments in the last m units of time, every n units of time, within a certain geographical area”.

Figure A3 in the Appendix illustrates the grammar. The system supports data retrieval
statement SELECT. This statement is used to retrieve rows from relations in the mediated

BIG EARTH DATA 9

schema. Regarding the SELECT statement, the system supports the clauses WHERE,
GROUP BY, HAVING and ORDER BY with the same semantics as in ANSI SQL.
Additionally, we introduce the clause WINDOW to express continuous queries. The
WINDOW clause is used to return results with respect to the sliding window. It accepts
two parameters, (i) window length and (ii) sliding length. Both parameters can be
expressed in either seconds, minutes, or hours. We note that this clause is not available
in standard ANSI SQL. Regarding the list of spatial functions and predicates (Clementini &
DiFelice, 1996), which defined topological operations Equals, Disjoint, Intersects, Touches,
Crosses, Within, Contains, and Overlaps as the Dimensionally Extended Nine-Intersection
Model (DE-9IM), and later DE-9IM was adopted by OGC, our mediation system supports
those adopted by OGC such as intersects, distance. Additionally, later, it became OGC-
compliant for join predicates (Alam et al., 2018) and implemented it into GeoSpark (Yu et
al., 2015).

3.3. Motivating example

We present our proposal using a motivating use case example that involves integrating
four data sources. We begin by illustrating the local data sources. Then, we describe the
integrated schema that corresponds to the requirement of the data analysis. Finally, we

Figure 2. Local and integrated schema.

10 T. T. T. NGO ET AL.

provide an example of a continuous query related to the integrated schema that can be
executed within our system.

Figure 2 displays the UML class diagram for the local data sources and the integrated
schema (IS).

● Data source 1 (S1) includes two tables (i) department and (ii) commune in France. A
department is an administrative region, while a commune refers to a French town in
France. The table schemas for these tables are as follows:
○ S1.department(departmentCode, departmentName, regionName)
○ S1.commune(communeCode, communeName, communeShape, regionName,

regionShape, departmentCode)
● Data source 2 (S2) stores the geographical coordinates of buildings, categorized as

industrial, residential, administrative. The table schema for this source is as follows:
○ S2.building(boundaries, type)

● Data source 3 (S3) contains both static and stream data, with static information
stored in the device and measure tables, while the observations table contains
streaming data. The table schemas for this source are as follows:
○ S3.observation(measureID, measureTime, value, location, deviceID)
○ S3.device(deviceID, deviceName, applicationID, applicationName)
○ S3.measure(measureID, measureName)

● Data source 4 (S4) presents a continuous stream of data collected by active sensors,
with each record containing a timestamp and location information. The table
schema for this source are as follows:
○ S4.observation(measureName, measureTime, value, location, deviceID,

deviceName, applicationID, applicationName).

The requirement of the integration is to be able to analyze environmental indicators
around residential areas, industrial zones, and so on. Hence, the integrated schema
has four relations: Sensor, Building, Commune, and Region. The relations in the
integrated schema are mapped to the relations of local schemas using the GAV
mapping technique. These mappings are listed in Table 3. The relations in the
integrated schema.

One considers the following type of continuous queries that involves the aggre-
gation of sensor measurements with a specific geographic area over a time window:
get continuously an aggregation of sensor measurements in the last m units of time,
every n units of time, within a certain geographical area. In the context of our use case
example with the data sources we have considered, we could retrieve the average air
temperature and air humidity measured in the last hour within a 10 m radius of
buildings in Clermont-Ferrand, France (zipcode = 36000), every 10 min. This query can
be expressed with our SQL-like syntax within our system, as shown in Figure 3. We
note that the letter G denotes the global schema.

BIG EARTH DATA 11

Ta
bl

e
3.

 T
he

 r
el

at
io

ns
 in

 t
he

 in
te

gr
at

ed
 s

ch
em

a.

G
lo

ba
l s

ch
em

a
Re

la
tio

ns

G
.re

gi
on

(r
eg

io
nN

am
e,

ge

om
et

ry
)

⊇
S1

.d
ep

ar
tm

en
t(

de
pa

rt
m

en
tN

am
e,

 d
ep

ar
tm

en
tC

od
e,

 r
eg

io
nN

am
e)

G
.re

gi
on

(r
eg

io
nN

am
e,

ge

om
et

ry
)

⊇
S1

.c
om

m
un

e(
co

m
m

un
eN

am
e,

 c
om

m
un

eC
od

e,
 c

om
m

un
eS

ha
pe

, r
eg

io
nN

am
e,

 r
eg

io
nS

ha
pe

, d
ep

ar
tm

en
tC

od
e)

G
.c

om
m

un
e(

zi
pc

od
e,

 n
am

e,

ge
om

et
ry

)
⊇

S1
.c

om
m

un
e(

co
m

m
un

eN
am

e,
 c

om
m

un
eC

od
e,

 c
om

m
un

eS
ha

pe
, r

eg
io

nN
am

e,
 r

eg
io

nS
ha

pe
, d

ep
ar

tm
en

tC
od

e)

G
.b

ui
ld

in
g(

ge
om

et
ry

, t
yp

e)
⊇

S2
.b

ui
ld

in
g(

bo
un

da
rie

s,
 t

yp
e)

G
.s

en
so

r(
de

vi
ce

ID
, s

en
so

rN
am

e,

ap
pl

ic
at

io
nI

D
,

ap
pl

ic
at

io
nN

am
e,

da

ta
_a

irH
um

id
ity

,
da

ta
_t

em
pe

ra
tu

re
, l

oc
at

io
n,

tim

es
ta

m
p)

⊇
S3

.o
bs

er
va

tio
n(

m
ea

su
re

ID
, m

ea
su

re
Ti

m
e,

 v
al

ue
, l

oc
at

io
n,

 d
ev

ic
eI

D
) ∧

S3

.d
ev

ic
e(

de
vi

ce
ID

, d
ev

ic
eN

am
e,

 a
pp

lic
at

io
nI

D
, a

pp
lic

at
io

nN
am

e)
 ∧

S3

.m
ea

su
re

(m
ea

su
re

ID
, m

ea
su

re
N

am
e)

, m
ea

su
re

N
am

e=
”t

em
pe

ra
tu

re
”

G
.s

en
so

r(
de

vi
ce

ID
, s

en
so

rN
am

e,

ap
pl

ic
at

io
nI

D
,

ap
pl

ic
at

io
nN

am
e,

da

ta
_a

irH
um

id
ity

,
da

ta
_t

em
pe

ra
tu

re
, l

oc
at

io
n,

tim

es
ta

m
p)

⊇
S3

.o
bs

er
va

tio
n(

m
ea

su
re

ID
, m

ea
su

re
Ti

m
e,

 v
al

ue
, l

oc
at

io
n,

 d
ev

ic
eI

D
) ∧

S3

.d
ev

ic
e(

de
vi

ce
ID

, d
ev

ic
eN

am
e,

 a
pp

lic
at

io
nI

D
, a

pp
lic

at
io

nN
am

e)
 ∧

S3

.m
ea

su
re

(m
ea

su
re

ID
, m

ea
su

re
N

am
e)

, m
ea

su
re

N
am

e=
”a

irH
um

id
ity

”

G
.s

en
so

r(
de

vi
ce

ID
, s

en
so

rN
am

e,

ap
pl

ic
at

io
nI

D
,

ap
pl

ic
at

io
nN

am
e,

da

ta
_a

irH
um

id
ity

,
da

ta
_t

em
pe

ra
tu

re
, l

oc
at

io
n,

tim

es
ta

m
p)

⊇
S4

.o
bs

er
va

tio
n(

m
ea

su
re

N
am

e,
 m

ea
su

re
Ti

m
e,

 v
al

ue
, l

oc
at

io
n,

 d
ev

ic
eI

D
, d

ev
ic

eN
am

e,
 a

pp
lic

at
io

nI
D

, a
pp

lic
at

io
nN

am
e)

, m
ea

su
re

N
am

e=
”t

em
pe

ra
tu

re
”

G
.s

en
so

r(
de

vi
ce

ID
, s

en
so

rN
am

e,

ap
pl

ic
at

io
nI

D
,

ap
pl

ic
at

io
nN

am
e,

da

ta
_a

irH
um

id
ity

,
da

ta
_t

em
pe

ra
tu

re
, l

oc
at

io
n,

tim

es
ta

m
p)

⊇
S4

.o
bs

er
va

tio
n(

m
ea

su
re

N
am

e,
 m

ea
su

re
Ti

m
e,

 v
al

ue
, l

oc
at

io
n,

 d
ev

ic
eI

D
, d

ev
ic

eN
am

e,
 a

pp
lic

at
io

nI
D

, a
pp

lic
at

io
nN

am
e)

, m
ea

su
re

N
am

e=
”a

irH
um

id
ity

”

12 T. T. T. NGO ET AL.

In the next sections, we will provide a more detailed explanation of the system
architecture and the mediator algorithm, as well as how the mediation system validates
and executes this query.

3.4. System architecture

The system architecture of our mediation system is described in Figure 4, which consists
of two main components: the mediator and Apache Spark. The mediator is composed of
three components: query parser, query rewriter, and query tuner, all of which we
designed.

Figure 4. System architecture.

Figure 3. Running query example Q.

BIG EARTH DATA 13

The workflow of our mediation system is as follows:

● First, the query parser uses a parser tree to analyze the input queries and match the
clauses with the mediator SQL grammar (refer to Section 3.5.1).

● Next, the mediator rewrites the query into a Spark application according to the
mappings provided by the administrator (refer to Section 3.5.2).

● Then, the query tuner modifies the rewritten query according to a set of optimization
rules to achieve higher query execution performance (refer to Section 3.5.3).

● Once a query is submitted to the Spark cluster, Spark workers ingest data from the
data sources and the continuous result is returned to the user.

We will provide a more detailed description of each component in the following sections,
explaining how they work together to achieve the desired behavior.

3.5. Mediator algorithm and components

We propose the global procedure, presented in Figure 5, which takes a user input query
and generates Spark application (also called Spark app). The procedure requires three
inputs: (i) the user query, (ii) the global schema configuration file, and (iii) the local schema
configuration file. Its output is the Directed Acyclic Graph (DAG) of Spark transformations.

The global procedure of our mediator involves five main steps as follows:

(i) The query parser parses and builds the syntax tree.
(ii) For each syntax tree, the query rewriter constructs a Directed Acyclic Graph (DAG)

transformation.
(iii) The transformed DAGs are then combined into a single DAG.
(iv) The tuner optimizes the DAG using methods such as the push-down filter.
(v) The resulting DAG is returned.

Procedure
Input: User query Q on global schema, Global schema config, local schema config
Output: DAG

1. // Query Parser
2. Parse and build syntax tree ST for Q
3. For each table Ti in query Q do
4. Parse and build syntax tree STi of the transformation query of the table Ti

5. // Query rewriter: For each syntax tree: map clauses to spark transformations and build a transformation DAG
6. Build transformation DAG D from syntax tree ST
7. For each STi in ST1…STn do
8. Build transformation DAG Di from syntax tree STi

9. // Assemble the different dags of transformations to make one DAG
10. Assemble D, D1,…Dn into one transformation DAG D
11. // Query tuner: push-down filters, improve joins, …
12. Optimize D
13. // Get and return the DAG
14. Return D

Figure 5. Procedure of rewriting queries.

14 T. T. T. NGO ET AL.

We delve into each of these steps in the subsequent subsections.

3.5.1. Query parser
In the mediator, a parser tree is implemented to parse the query and match the clauses
with regard to the grammar depicted in Figure A3. It also retrieves the expressions of the
clauses, i.e. tables, columns, predicates.

In our generic syntax, the WINDOW clause enables time window-based aggregations
and joins. The clause consists of two values: (i) window interval length and (ii) sliding
length. Consider a query with expression “WINDOW 1 hour 30 minutes”, suppose the
query processing starts at t0 = 12:00, the windows would be [12:00, 13:00], [12:30, 13:30],
[13:00, 14:00], [13:30, 14:30], and so on. When a window end time is earlier than the
current time, the data related to this window is discarded. The parser is implemented with
two components: (i) Tokenizer and (ii) Validator. The tokenizer separates the query into a
list of tokens based on a predefined vocabulary, while the validator validates whether the
query respects the SQL grammar.

While validating the query by our grammar, the syntax tree is constructed with the
recognized items. The syntax tree for the running query example Q is displayed in
Figure 6.

3.5.2. Query rewriter
When a query is submitted, the mediator generates a Structured Streaming Spark appli-
cation which can be represented as Directed Acyclic Graph (DAG) of transformations on
Spark DataFrames. Conceptually, Spark DataFrame is equivalent to a table in relational
databases. Each transformation is applied on a DataFrame (also called df) and produces a
new DataFrame. The initial DataFrames in this workflow are those that load data from the
local sources specified in the query.

Figure 6. Running query example Q: query syntax tree.

BIG EARTH DATA 15

The transformations used in our query rewriting process are provided by Spark
programming model and are listed in Table 4. As SQL is a declarative language and
Spark programming model is functional, there does not exist a one-to-one mapping
between SQL clauses and DataFrame transformations.

Therefore, query rewriter maps each subtree of the syntax tree to a spark transforma-
tion. For instance, the expression “commune.zipcode = 63000” in the WHERE clause is
mapped to the transformation df.filter(“zipcode = 63000”), where “df” refers to the input
DataFrame of this transformation. The inner joins that are defined implicitly in WHERE
clause are as well mapped to “join” transformations. For example, the expression: Distance
(“sensor.location”,”building.geometry”)<10 m, is mapped to the transformation: df_left.alias
(“a”).join(df_right.alias(”b”), exprs=“Distance(‘a.location’,”b.geometry”)<10 m”.

Afterwards, the query rewriter assembles the transformations in the following order:
“filter” -> “join” -> “select” -> “groupby” -> “agg”-> “filter”-> “sort”, while respecting the
order of joins that matches the logic of the query. Figure 7 part A displays the directed
acyclic graph of transformations related to query Q. The initial DataFrames (at the bottom)
are loaded from data sources, and the output DataFrame containing continuous result of
Q is the one that results from the “agg” transformation.

Note that even though the Spark app is implemented as a sequence of transforma-
tions, the processing does not necessarily occur in the same order. Indeed, Apache Spark
has a property called lazy processing where the Spark engine creates one optimized query
plan for all transformations. This technique optimizes parallel processing with minimum
shuffling and temporary disk storage. This is an important advantage when working with
Spark for integrating several data sources. Moreover, Spark allows for further tuning of the
execution. In the next section, we explain some strategies that the mediator can integrate
to achieve better performance, especially for our use cases, i.e. integrating streaming and
static data.

3.5.3. Query tuner
The baseline construction of a Spark app, as presented above, may result in low
performance because it does not utilize Spark performance tuning capabilities.
Although Apache Spark has an optimizer engine, called Catalyst, in its Spark SQL

Table 4. Dataframe transformation description.

Dataframe
tranformation Description

Select projects a set of columns. Column names are obtained from <AttributeList> and
<AggAttributeList>.

filter filter rows by the given condition. The condition is set using the criteria defined in both
<WCondition> and <HavingCondition>.

join joins two DataFrames those columns are presented in a predicate or a function in
<Wcondition>.

groupby groups the DataFrame using a set of columns, which are defined in <GroupbyExpressionList>.
It also handles windowed grouping with elements in <WindowList>.

agg computes aggregates for columns. The aggregation function and aggregated column are
specified in <AggAttributeList>.

sort sort the DataFrame by the column specified in OrderBy.

16 T. T. T. NGO ET AL.

engine, it may not always achieve optimal performance. Hence, Spark allows devel-
opers to tune their applications. It is sometimes necessary to tune the application
using the tools provided by Spark, such as caching, broadcasting. Tuning is comple-
mentary to Catalyst as it enables to clearly define some operations of the query
execution plan. For instance, when joining two DataFrames, one can choose how
the two DataFrames should be partitioned, and such choices can significantly impact
the processing performance.

To optimize the performance of our system, we have implemented a query tuner in the
query rewriter algorithm that performs two main operations:

● Push-down static–static operations.
● Broadcast join for stream–static joins.

Figure 7. Running query example Q: Spark application DAG representation (A) and optimizer Spark
application DAG representations (B).

BIG EARTH DATA 17

Figure 7 displays the logical plans of the query with and without the tuning.
Specifically, Figure 7 part A shows that Spark first joins the static data source building
and a stream, then, it joins the resulting data with the static data sources commune. With
this method, each incoming record is compared to both commune and building sources.

As these data sources are static, the join operation result remains unchanged over time.
Therefore, we propose a strategy in the mediator to assemble the transformations that
improve the overall execution performance. We propose to push-down and run first all
static–static operations, i.e. which include only static data sources. Since, the results of
these operations do not change over time, we do not need to compute them for new
incoming stream records. Moreover, we implicitly cache the results in each worker of the
cluster by specifying a broadcast join, which persists the results of static–static join in each
worker of the cluster. This enables Spark to use this cache copy for computing join
operation with stream data, thereby improving the join performance by avoiding data
shuffling and precomputation. Figure 7 part B displays optimized DAG of transformations.

3.5.4. Setup configurations
In this section, we explain the different inputs that a system administrator should prepare
to integrate the system for a specific use case such as the running query example Q. The
integration module takes two user configuration files: (i) local sources and their schemas,
(ii) global schema and the mapping.

3.5.4.1. Local schemas. The user defines (i) the data store of the local source, and (ii) the
columns along with their data types. The supported data stores for streaming sources
such as Apache Kafka (Kreps et al., 2011), Logstash (Elastic, 2023), or static sources such as
files. The supported data types include such as string, float, datetime, geo-object. Due to
space limitation, a snippet of the local schema configuration file for the motivating
example is presented as shown in Figure A1 in the Appendix.

3.5.4.2. Global schema and mapping. For each table, the user defines the local
sources, the columns, and their data types. The schema mapping is expressed in the
transformation query using SQL. Due to space limitation, a snippet of the configuration
file for the motivating example is presented in Figure A2 in the Appendix.

4. System evaluation

Several works have benchmarked Apache Spark (Zaharia et al., 2012) and Geospark (Yu et
al., 2015) which recently became Apache Sedona, and showed their superiority to com-
petitors (Alam et al., 2021; Pandey et al., 2018). Hence, the evaluation in this section
focuses on the optimization technique of the mediator described in Section 3.5.3.

4.1. Dataset

For the system evaluation, we use two real static datasets and synthetic streams. The first
real dataset building is obtained from OpenStreetMap, and consists of over 423,284
polygons, each record represents a building and described by a polygon (Eldawy &
Mokbel, 2015). The dataset size is over 70 MB. The second real dataset, commune contains

18 T. T. T. NGO ET AL.

over 35,228 polygons represent boundaries of communes (city) in France (Grégoire, 2015).
Its size is 40 MB. The details are depicted in Table 5.

For the synthetic streams, we generate records with real-time timestamps and new
coordinates using a real sensor dataset. The coordinates are chosen randomly within a
defined range to ensure that queries yield results. The frequency of the generation of
streaming records is a variable parameter.

The real sensor dataset are records from sensors measuring temperature. To fulfill the
requirements of this experiment, we eliminate non-essential fields and retain only four
specific fields:

● data_temperature: value of the measurement
● applicationName: name of the project related to the sensors
● data_node_timestampUTC: timestamp of the measurement in UTC time zone
● geometry: location of the measurement

The dataset is available in Github repository related to this paper.

4.2. Hardware

We deployed a Spark Cluster on 9 virtual machines: one master, and eight workers. Each
machine is equipped of 2.60 GHz Intel(R) Xeon(R) CPU E5–2650 v2 with four CPUs, and 8
GB RAM, and running Linux Ubuntu. We used the distribution Apache Spark 3.2.2 with
Python 3.6.

4.3. Metrics

Karimov et al., (2018) have presented a comprehensive list of metrics commonly used to
evaluate streaming systems, including latency and throughput. Latency is evaluated
based on two types: (i) event-time latency, which measures the time interval between
data generation and data ingestion, and (ii) processing time latency, which measures the
time interval between ingestion and output. Meanwhile, throughput is measured by the
maximum throughput and sustainable throughput, which is the system’s throughput
without backpressure that can cause increasing latencies.

In our experiments, we mainly focus on processing time latency, i.e. the time interval
between ingestion and output. We have not reported the mediator’s query rewriting time
as it is negligible, typically only taking few milliseconds. Furthermore, we also compare
the size of shuffled data, which refers to the amount of data exchanged between workers
during data processing to reorganize Spark data partitions. The less shuffled data, the
better the system’s performance.

Table 5. Dataset of building and commune.

Dataset name Geometry Number of geometries Size

Building polygon 423,284 74 MB

Commune polygon 35,228 40 MB

BIG EARTH DATA 19

4.4. Experiments

To evaluate the benefits of the mediator and the optimization proposed in Section 3.5.3. We
have defined three different levels of benchmark queries on our running example, as
described in Section 3.3. The first query, named Q1, is a simple spatial join between the
stream and static sources. The second query, named Q2, is an aggregation query on a measure
with a windowed aggregation on spatial join between two types of sources, a stream source
and a static source. The third query, named Q3, focuses on a full window aggregation query
between two stream sources and a static source. These queries are designed to access the
system’s performance with respect to various aspects and are presented in Figure 8.

For each query, the mediator handles different strategies or methods. We have
reported the average time taken by Spark to process a single batch. Our system’s code
is available on Github.1 The methods we suggested to evaluate are as follows:

● Method A: serves as the baseline, where we do not add any specific tuning to the
query plan generated by Spark SQL optimizer.

● Method B: involves pushing down the computation of joins between static sources.
● Method C: involves pushing down the computation of joins between static sources

and caching the results.
● Method D: is the approach implemented in the mediator, which incorporates the

approach of method C and broadcasts the sensor streaming results to all workers.

Consider λ as the number of records generated by each source every 10 s. Figure 9 displays
the result with λ ¼ 1 and with four Apache Spark1 workers. On the other hand, Figures 10, 11,
and Figure 12 display the evaluation results with eight Apache Spark workers for, respectively,
λ ¼ 1, λ ¼ 10, and λ ¼ 100. First, the results show that the technique in method B does not

Figure 8. Snippet of queries.

20 T. T. T. NGO ET AL.

provide a substantial improvement over the baseline method. For example, in Figure 9, it is
more interesting to filter the buildings with respect to the sensor records rather than joining
the whole datasets commune and building. Note that GeoSpark builds indexes for these two
spatial datasets. However, for higher λ values, we can see in Figure 12, it shows that joining
building and commune first is more efficient because both datasets are indexed. Joining the
larger batch of streaming records with the dataset building has a higher cost. Caching over-
comes this limitation of joining static datasets first. As we can see in Figure 10, even for low λ
values, method C is faster than method A for all queries. The method D, which we imple-
mented in our system, further optimizes the queries. Caching avoids precomputation of
results that does not change over time, however this result (DAG) is distributed over the
cluster workers and requires data shuffling. Hence, the broadcast join method significantly
reduces data shuffling, as depicted in Table 6, and therefore it reduces processing time by up

Q1 Q2 Q3

A 2.2 2 4

B 1.2 1.9 2.2

C 0.7 0.8 2.1

D 0.3 0.7 1.2

0

1

2

3

4

5

Pr
oc

es
si

ng
 ti

m
e

(s
ec

s)

Figure 9. λ ¼ 1 with four worker nodes.

Q1 Q2 Q3

A 2 1.9 3.7

B 1.2 1.8 2.2

C 0.7 0.6 2.1

D 0.1 0.5 0.9

0

1

2

3

4

5

Pr
oc

es
si

ng
 ti

m
e

(s
ec

s)

Figure 10. λ ¼ 1 with eight worker nodes.

BIG EARTH DATA 21

to one of magnitude. Although the broadcast join method comes with a higher memory cost,
the storage usage during the benchmark queries was lower than 10 MB per worker machine.

4.5. Summary

Based on the presented experimental results, it appears that method D is the most efficient
approach. The mediator’s implemented techniques improve the query execution perfor-
mance of Apache Spark compared to the baseline method A. The findings demonstrate that
method B does not offer a significant improvement over the baseline approach. Moreover,
method C outperforms method A for all queries, even for low values of λ. However, our
mediator optimization techniques in method D further enhance query optimization by

Q1 Q2 Q3

A 2.2 2 3.9

B 1.4 1.9 2.2

C 0.7 1 2

D 0.15 0.8 1

0

1

2

3

4

5
Pr

oc
es

si
ng

 ti
m

e
(s

ec
s)

Figure 11. λ ¼ 10 with eight worker nodes.

Q1 Q2 Q3

A 2.6 2.4 4

B 1.4 2.3 2.15

C 0.7 1.2 2

D 0.15 1.1 1.5

0

1

2

3

4

5

Pr
oc

es
si

ng
 ti

m
e

(s
ec

s)

Figure 12. λ ¼ 100 with eight worker nodes.

22 T. T. T. NGO ET AL.

utilizing caching to avoid the precomputation of results that do not change over time and
leveraging the broadcast join method to minimize data shuffling. While this method incurs
higher memory costs, the storage usage during the benchmark queries was lower than 10
MB per worker machine, which is reasonable. It is worth noting that these optimizations are
relevant to the paper’s context, which evaluates continuous queries across integrated
streaming and static sources, but they could also be useful in other use cases.

5. Conclusions

In this paper, we have proposed a mediator that integrates big and streaming data in a unified
schema on top of Apache Spark. The proposed system addresses the challenges of analyzing
streaming geo-reference data without knowledge of big data frameworks. Our system con-
sists of a query parser, a query rewriter, and a query tuner, which manages global and local
schemas, and mappings in configuration files and translates the submitted user queries in SQL
statements for the Apache Spark application. Our optimization techniques significantly
improve the execution performance of the experiment queries compared to Apache Spark
native optimizer. Overall, our system provides an efficient and scalable solution for continuous
spatial queries over a unified schema. The proposed mediator system can be utilized in
various applications such as real-time location-based services, and environmental monitoring.
However, the system mainly considers streaming data from messaging queue systems such as
Apache Kafka and static data from files such as CSV and JSON. For future work, we aim to
support more data sources, both for static data or stream data. Our system optimizes the
Apache Spark application plan by pushing down static–static joins and caching partial results.
We plan to implement push-down techniques to local sources as it may leverage indexes built
in the source databases and reduce the amount of data ingested by Spark engine. Moreover,
we also acknowledge that our system requires an integration administrator role to define
mappings between local and global schemas. In future work, we aim to study dynamic
mapping (Dong et al., 2009) in the context of streaming and spatial data to automatically
infer mappings at query execution time. Dynamic mapping could eliminate the need for
manual mapping definitions and further simplify the mediator system’s integration process.

Note

1. https://github.com/AnnaNgo13/streamgeomed

Acknowledgements

This research was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-
25) and the PhD is funded by the European Regional Development Fund (FEDER).

Table 6. Amount of shuffled data for three queries.

Method/Query C D

Q1 160 MB 142 MB

Q2 164 MB 148 MB
Q3 5 MB 620 KB

BIG EARTH DATA 23

https://github.com/AnnaNgo13/streamgeomed

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Thi Thu Trang Ngo completed her PhD degree in Computer Science from
University Clermont Auvergne, France, in 2023. Prior to that, she received her
MS degree in Computer Science from University of Bordeaux, France. Her
current research focuses on big spatial data, data integration, and spatial
queries within the context of Internet of Things (IoT) environment.

François Pinet holds the position of a research director at the French Research
Institute for Agriculture, Food and Environment located in Clermont-Ferrand,
France. His research expertise lies in agricultural and environmental informa-
tion systems. He actively contributes to the field by serving on various scientific
committees for conferences and journals related to these domains.

David Sarramia is an associate professor in Computer Science at University
Clermont Auvergne since 2008. His primary areas encompass data manage-
ment, IoT flow management using NoSQL and indexing technology.
Additionally, he actively contributes as a reviewer for the Cluster Computing.
Since 2015, he has taken on the role of scientific and technical manager of the
CEBA project, a regional data management platform.

Myoung-Ah Kang is currently an associate professor at the University
Clermont-Auvergne in Clermont-Ferrand, France. She received her M.Sc. in
Computer Science from Pusan National University, Korea in 1996, and later
completed her Ph.D. in Computer Science from INSA Lyon, France in 2001. She
is a member of the database research group in the laboratory LIMOS
(Laboratoire d’Informatique, de Modelisation et Optimisation des Systems,
CNRS UMR 6158). Her research primarily focuses on geographical information
systems and spatial data warehouse. She also has a keen interest in spatial big
data. In addition to her research work, she teaches graduate and undergrad-

uate courses on databases, software engineering and information systems.

ORCID

Thi Thu Trang Ngo http://orcid.org/0000-0003-3719-7073
François Pinet http://orcid.org/0000-0001-7011-9216
David Sarramia http://orcid.org/0000-0002-7062-9707
Myoung-Ah Kang http://orcid.org/0000-0001-5810-4599

24 T. T. T. NGO ET AL.

Data availability statement

The data that support the findings of this study are openly available in GitHub at https://github.
com/AnnaNgo13/streamgeomed.

References

Alam, M. M., Ray, S., & Bhavsar, V. C. (2018, November). A performance study of big spatial data
systems. In Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big
Geospatial Data (pp. 1–9).

Alam, M. M., Torgo, L., & Bifet, A. (2021). A survey on Spatio-temporal data analytics systems. arXiv E-
Prints, arXiv–2103.

Al Jawarneh, I. M., Bellavista, P., Corradi, A., Foschini, L., & Montanari, R. (2021, October). Efficiently
integrating mobility and Environment data for Climate change analytics. In 2021 IEEE 26th
International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD) (pp. 1–5). IEEE.

Armbrust, M., Das, T., Torres, J., Yavuz, B., Zhu, S., Xin, R. & Zaharia, M. (2018, May). Structured
streaming: A declarative api for real-time applications in apache spark. In Proceedings of the 2018
International Conference on Management of Data (pp. 601–613).

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K. & Zaharia, M. (2015, May). Spark sql:
Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data (pp. 1383–1394).

Baig, F., Vo, H., Kurc, T., Saltz, J., & Wang, F. (2017, November). Sparkgis: Resource aware efficient in-
memory spatial query processing. In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (pp. 1–10).

Boucelma, O., Garinet, J. Y., & Lacroix, Z. (2003, November). The virGIS WFS-based spatial mediation
system. In Proceedings of the Twelfth International Conference on Information and Knowledge
Management (pp. 370–374).

Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). Apache flink: Stream
and batch processing in a single engine. The Bulletin of the Technical Committee on Data
Engineering, 38(4).

Chen, Y., Lu, Y., Fang, K., Wang, Q., & Shu, J. (2020). uTree: A persistent B±tree with low tail latency.
Proceedings of the VLDB Endowment, 13(12), 2634–2648. https://doi.org/10.14778/3407790.
3407850

Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M. & Poulosky, P. (2016, May).
Benchmarking streaming computation engines: Storm, flink and spark streaming. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 1789–1792). IEEE.

Clementini, E., & DiFelice, P. (1996). A model for representing topological relationships between
complex geometric features in spatial databases. Information Sciences, 90(1–4), 121–136. https://
doi.org/10.1016/0020-0255(95)00289-8

Dong, X. L., Halevy, A., & Yu, C. (2009). Data integration with uncertainty. The VLDB Journal, 18(2),
469–500. https://doi.org/10.1007/s00778-008-0119-9

Elastic. 2023. Logstash. Retrieved April , 2023. https://www.elastic.co/logstash/ .
Eldawy, A., & Mokbel, M. F. (2015, April). Spatialhadoop: A mapreduce framework for spatial data. In

2015 IEEE 31st International Conference on Data Engineering (pp. 1352–1363). IEEE.
Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure for retrieval on composite keys. Acta

Informatica, 4(1), 1–9. https://doi.org/10.1007/BF00288933
Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., & Stoica, I. (2014). {graphx}: Graph

processing in a distributed dataflow framework. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14) (pp. 599–613).

Grégoire, D. (2015). France Geojson. https://github.com/gregoiredavid/france-geojson .
Guttman, A. (1984, June). R-trees: A dynamic index structure for spatial searching. In Proceedings of

the 1984 ACM SIGMOD International Conference on Management of Data (pp. 47–57).

BIG EARTH DATA 25

https://github.com/AnnaNgo13/streamgeomed
https://github.com/AnnaNgo13/streamgeomed
https://doi.org/10.14778/3407790.3407850
https://doi.org/10.14778/3407790.3407850
https://doi.org/10.1016/0020-0255(95)00289-8
https://doi.org/10.1016/0020-0255(95)00289-8
https://doi.org/10.1007/s00778-008-0119-9
https://www.elastic.co/logstash/
https://doi.org/10.1007/BF00288933
https://github.com/gregoiredavid/france-geojson

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB Journal, 10(4), 270–294.
https://doi.org/10.1007/s007780100054

Inoubli, W., Aridhi, S., Mezni, H., Maddouri, M., & Nguifo, E. M. (2018, August). A comparative study on
streaming frameworks for big data. In VLDB 2018-44th International Conference on Very Large Data
Bases: Workshop LADaS-Latin American Data Science (pp. 1–8).

Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., & Markl, V. (2018, April).
Benchmarking distributed stream data processing systems. In 2018 IEEE 34th international con-
ference on data engineering (ICDE) (pp. 1507–1518). IEEE.

Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka: A distributed messaging system for log
processing. Proceedings of the NetDb, 11(2011), 1–7.

Kwon, Y., Balazinska, M., & Greenberg, A. (2008). Fault-tolerant stream processing using a distrib-
uted, replicated file system. Proceedings of the VLDB Endowment, 1(1), 574–585. https://doi.org/10.
14778/1453856.1453920

Lee, J. G., & Kang, M. (2015). Geospatial big data: Challenges and opportunities. Big Data Research, 2
(2), 74–81. https://doi.org/10.1016/j.bdr.2015.01.003

Lenzerini, M. (2002, June). Data integration: A theoretical perspective. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (pp. 233–246).

Mahmood, A. R., Aly, A. M., Qadah, T., Rezig, E. K., Daghistani, A., Madkour, A., Abdelhamid, A. S.,
Hassan, M. S., Aref, W. G., & Basalamah, S. (2015). Tornado: A distributed spatio-textual stream
processing system. Proceedings of the VLDB Endowment, 8(12), 2020–2023. https://doi.org/10.
14778/2824032.2824126

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D. & Talwalkar, A. (2016). Mllib:
Machine learning in apache spark. The Journal of Machine Learning Research, 17(1), 1235–1241.

OGC. 2023. Open Geospatial Consortium. Retrieved April , 2023. https://www.ogc.org/ .
Pandey, V., Kipf, A., Neumann, T., & Kemper, A. (2018). How good are modern spatial analytics

systems? Proceedings of the VLDB Endowment, 11(11), 1661–1673. https://doi.org/10.14778/
3236187.3236213

Robert, H. (2003). Spatial data analysis theory and practice. Journal of Women S Health.
Sedona, Apache. 2022. Apache Sedona. Retrieved November , 2022. https://sedona.apache.org/ .
Shaikh, S. A., Mariam, K., Kitagawa, H., & Kim, K. S. (2020, October). GeoFlink: A distributed and

scalable framework for the real-time processing of spatial streams. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management (pp. 3149–3156).

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The hadoop distributed file system. In
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (pp. 1–10). IEEE.

Storm, Apache. 2014. ApacheStorm. Retrieved October , 2022. https://storm.apache.org/ .
Stripelis, D., Anastasiou, C., & Ambite, J. L. (2018, June). Extending apache spark with a mediation

layer. In Proceedings of the International Workshop on Semantic Big Data (pp. 1–6).
Tang, M., Yu, Y., Mahmood, A. R., Malluhi, Q. M., Ouzzani, M., & Aref, W. G. (2020). Locationspark: In-

memory distributed spatial query processing and optimization. Frontiers in Big Data, 3, 30. https://
doi.org/10.3389/fdata.2020.00030

Tantalaki, N., Souravlas, S., & Roumeliotis, M. (2020). A review on big data real-time stream proces-
sing and its scheduling techniques. International Journal of Parallel, Emergent and Distributed
Systems, 35(5), 571–601. https://doi.org/10.1080/17445760.2019.1585848

Tatbul, N. (2010, March). Streaming data integration: Challenges and opportunities. In 2010 IEEE 26th
International Conference on Data Engineering Workshops (ICDEW 2010) (pp. 155–158). IEEE.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S. & Ryaboy, D. (2014, June).
Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data (pp. 147–156).

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R. & Baldeschwieler, E. (2013,
October). Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing (pp. 1–16).

Wiederhold, G. (1992). Mediators in the architecture of future information systems. Computer, 25(3),
38–49. https://doi.org/10.1109/2.121508

Wood, J. (2008). Filter and Refine Strategy. In Encyclopedia of GIS. Springer US.

26 T. T. T. NGO ET AL.

https://doi.org/10.1007/s007780100054
https://doi.org/10.1007/s007780100054
https://doi.org/10.14778/1453856.1453920
https://doi.org/10.14778/1453856.1453920
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.14778/2824032.2824126
https://doi.org/10.14778/2824032.2824126
https://www.ogc.org/
https://doi.org/10.14778/3236187.3236213
https://doi.org/10.14778/3236187.3236213
https://sedona.apache.org/
https://storm.apache.org/
https://doi.org/10.3389/fdata.2020.00030
https://doi.org/10.3389/fdata.2020.00030
https://doi.org/10.1080/17445760.2019.1585848
https://doi.org/10.1109/2.121508

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., & Guo, M. (2016, June). Simba: Efficient in-memory spatial
analytics. In Proceedings of the 2016 International Conference on Management of Data (pp. 1071–
1085).

You, S., Zhang, J., & Gruenwald, L. (2015, April). Large-scale spatial join query processing in cloud. In
2015 31st IEEE International Conference on Data Engineering Workshops (pp. 34–41). IEEE.

Yu, J., Wu, J., & Sarwat, M. (2015, November). Geospark: A cluster computing framework for
processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems (pp. 1–4).

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M. & Stoica, I. (2012). Resilient
distributed datasets: A {Fault-Tolerant} abstraction for {In-memory} cluster computing. In 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12) (pp. 15–28).

BIG EARTH DATA 27

	Abstract
	1. Introduction
	2. Background and related work
	2.1. Data integration system based on mediation
	2.2. Geospatial data and queries
	2.3. Streaming processing frameworks for big spatial data
	2.3.1. Streaming data processing
	2.3.2. Apache Spark and Spark-based systems for big spatial data
	2.3.2.1. Apache spark
	2.3.2.2. GeoSpark

	2.4. Summary

	3. A mediator for continuous spatial queries
	3.1. System design assumptions
	3.2. Dedicated SQL grammar and supported queries
	3.3. Motivating example
	3.4. System architecture
	3.5. Mediator algorithm and components
	3.5.1. Query parser
	3.5.2. Query rewriter
	3.5.3. Query tuner
	3.5.4. Setup configurations
	3.5.4.1. Local schemas
	3.5.4.2. Global schema and mapping

	4. System evaluation
	4.1. Dataset
	4.2. Hardware
	4.3. Metrics
	4.4. Experiments
	4.5. Summary

	5. Conclusions
	Note
	Acknowledgements
	Disclosure statement
	Notes on contributors
	ORCID
	Data availability statement
	References

