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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Diversity was insufficient to assess mi
crobial response to environmental 
stress. 

• Rhizosphere networks differed between 
long- and short-termed disturbances. 

• Short-termed anthropic disturbances 
resulted in the lower network stability. 

• Natural environments and long termed 
disturbances favor network stability. 

• Fungi improved the crossdomain net
works stability in the long-termed 
disturbance.  

A R T I C L E  I N F O   
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A B S T R A C T   

Growing pressure from climate change and agricultural land use is destabilizing soil microbial community in
teractions. Yet little is known about microbial community resistance and adaptation to disturbances over time. 
This hampers our ability to determine the recovery latency of microbial interactions after disturbances, with 
fundamental implications for ecosystem functioning and conservation measures. Here we examined the response 
of bacterial and fungal community networks in the rhizosphere of Haloxylon salicornicum (Moq.) Bunge ex Boiss. 
over the course of soil disturbances resulting from a history of different hydric constraints involving flooding- 
drought successions. An anthropic disturbance related to past agricultural use, with frequent successions of 
flooding and drought, was compared to a natural disturbance, i.e., an evaporation basin, with yearly flooding- 
drought successions. The anthropic disturbance resulted in a specific microbial network topology character
ized by lower modularity and stability, reflecting the legacy of past agricultural use on soil microbiome. In 
contrast, the natural disturbance resulted in a network topology and stability close to those of natural envi
ronments despite the lower alpha diversity, and a different community composition compared to that of the other 
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sites. These results highlighted the temporality in the response of the microbial community structure to 
disturbance, where long-term adaptation to flooding-drought successions lead to a higher stability than distur
bances occurring over a shorter timescale.   

1. Introduction 

Soil microorganisms play crucial roles in ecosystem functioning (e.g. 
C and N recycling) (Kuypers et al., 2018) and are the foundation of 
higher trophic strata (e.g. plants, animals). These organisms are of major 
interest for maintaining ecosystem stability (Bardgett and van der Put
ten, 2014; Kuypers et al., 2018), as they interact with each other 
(through intra- and inter-kingdom interactions) and with plants (Has
sani et al., 2018; Trivedi et al., 2020), thereby improving their estab
lishment and survival, while modulating their tolerance and resistance 
to environmental pressures (Berendsen et al., 2012; Hubbard et al., 
2019; Liu et al., 2018). Increasing environmental pressures, direct 
consequences of human activities (e.g. agricultural activities, C emis
sions) or indirectly (e.g. climate change, desertification) have profound 
impacts on soil microbial communities worldwide (Cavicchioli et al., 
2019; Jansson and Hofmockel, 2020; Yuan et al., 2021). Soil microbe- 
microbe interactions are sensitive to variations caused by environ
mental pressures or stresses, such as erosion (Qiu et al., 2021), climate 
warming (Yuan et al., 2021) or land use (de Vries et al., 2012). These 
stresses affect overall microbial community stability, resistance and 
resilience to future extreme events, such as drought (de Vries et al., 
2018; Delgado-Baquerizo et al., 2020), and hamper the myriad 
ecosystem services they provide (e.g. C and N cycling) through the 
extinction of belowground microbial interactions (Malik et al., 2018; 
Viruel et al., 2022; Wagg et al., 2019). 

In recent years, an analytical framework based on co-occurrence 
networks has emerged for studying microbial associations and their 
stability (Barberán et al., 2012; Berry and Widder, 2014; Coyte et al., 
2015). Co-occurrence networks are built using graph theory tools, and 
their structure and topology provide information on associations be
tween microbial taxa, thereby facilitating assessment of the resistance (i. 
e., how a community remains unchanged during a disturbance) and 
resilience (i.e., how a community returns to its initial state after a 
disturbance) of microbial communities coping with environmental 
stress. Although they do not support biotic interactions (Peterson et al., 
2020) and care must be taken for both their construction and interpre
tation (Goberna and Verdú, 2022; Hirano and Takemoto, 2019; Röttjers 
and Faust, 2018), networks provide a useful framework for microbiome 
structure analysis, especially for the study of microbiome responses 
along stress gradients and land use types (Karimi et al., 2019, 2017). For 
instance, Banerjee et al. (2019) observed a decrease in network 
complexity (e.g. betweenness, assortativity, cohesion) and in abundance 
of keystone taxa in conventional agricultural systems as compared to 
organic systems. Decreased network complexity has also been observed 
across soil erosion gradients (Qiu et al., 2021) and in secondary suc
cessions following anthropic disturbance (Yu et al., 2022). Furthermore, 
modifications in microbial associations such as increased positive as
sociations have been observed in an elevation stress gradient of water 
and nutrient availability (Hernandez et al., 2021). However, little is 
known on the systematic links between environmental stresses and 
microbial interaction stability. In particular, it has yet to be determined 
whether increased stress invariably has a negative impact on community 
stability (Hernandez et al., 2021). One aspect of this issue has received 
little attention, i.e., the extent to which disturbances have a legacy effect 
on microbial associations. Assessing (i) whether long-term stresses in
fluence the stability of soil microbial communities to the same extent as 
short-term stresses and, if so, (ii) whether there is a disturbance legacy 
on community resilience and/or resistance, is essential to gain insight 
into how future climatic events and land use changes could affect mi
crobial interactions. 

Here, in a desertic ecosystem, we aimed to investigate the effect of 
stresses (natural and anthropic) occurring on various time scales on 
microbial community diversity, composition and interactions. Using 
natural environments as reference, we hence compared the legacy ef
fects of anthropic and natural disturbances, both subjected to hydric 
constraints, on microbial diversity and network structure and stability. 
We focused on an old date palm farm abandoned 15 years prior to the 
study after 10 years of cultivation with a flood irrigation system, 
resulting in ongoing soil induration, as an anthropic disturbance. We 
compared it to an evaporation basin, i.e., a topologically induced 
microecosystem subject to a natural disturbance involving a succession 
of annual floods and droughts that had occurred over a period of several 
hundred years. We hypothesized that: (i) microbial diversity would be 
impacted by disturbances compared to the natural ecosystem, (ii) the 
microbial network topology (e.g., degree, betweenness, centrality and 
modularity) would differentiate natural and disturbed sites, and (iii) 
stability would be lower in the disturbed sites. 

2. Material and methods 

2.1. Sampling site 

The five sampling sites were located in the Sharaan Nature Reserve in 
AlUla (Medina Province, Saudi Arabia). Three of them were represen
tative of soil disturbances resulting from wetting-dessication succes
sions: (i) from past agricultural uses, where flood irrigation was 
practised daily over the 10 year agricultural usage period before being 
abandoned 15 years prior to the study (OF), (ii) natural recovery from 
past agricultural usage with the same practices as OF, where plants 
recolonized the ecosystem (LR), and (iii) an evaporation basin (EB), i.e., 
a topological depression with yearly wetting-dessication successions due 
to scarce rain events which we considered to be a natural disturbance. 
These sites were compared to two natural undisturbed areas without any 
significant anthropic activities (Nat 1, Nat 2) (Fig. A1, A2). At each of the 
5 sites, 5 bare soil samples and 13 root and rhizospheric soil samples 
under Haloxylon salicornicum salicornicum (Moq.) Bunge ex Boiss. plants, 
i.e., a stress tolerant Amaranthaceae species widespread in desert areas, 
were collected. Rhizospheric soil, in the close vicinity of roots was 
sampled with sterile equipment. All soil samples were sieved to 2 mm 
and root samples were stored in a 2 % CTAB solution at 4 ◦C until mo
lecular analysis. For each sampling point, qualitative variables 
describing the soil cover were measured. 

2.2. Soil chemical composition and pH 

The relative abundance of soil chemical elements (from magnesium 
to uranium) was measured by X-ray fluorescence (XRF). Triplicate soil 
samples were pressed at 20 t for 2 min with 1:3 v:v of SpectroBlend® 
(SCP Science, Baie-D'Urfé, Québec, Canada). Each pellet was then 
analyzed in triplicate with an XRF S1 Titan analyzer (Bruker, Billerica, 
Massachusetts, USA) using the ‘geoexploration’ parameter with a total 
exposure time of 105 s (Supplementary file 1). The nine measurements 
were then averaged and calibrated according to the limit of optical 
detection (LOD) of each analyzed element (provided by Brucker). A pH 
meter (pH Meter Knick 766, Knick international, Berlin, Germany) was 
used to assess pH H2O and pH KCl in a 1:5 v:v of H2O or KCl (1 mol.L− 1). 

2.3. DNA extraction 

To ensure high DNA concentrations, soil DNA extractions were 
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performed after shaking 5 mL of soil in 20 mL of sterile milliQ water. The 
supernatant was centrifugated for 5 min at 12,000 g and the pellet was 
isolated for extraction (Högfors-Rönnholm et al., 2018). Roots were 
washed with sterile water, flash frozen with liquid nitrogen and ground 
with a ceramic ball for 3 cycles of 30 s at 5.0 speed in a FastPrep-24™ 5G 
instrument from MP Biomedicals™ (Irvine, California, USA). Extrac
tions were then performed with the FastDNA Spin kit for soil (MP Bio
medicals™). DNA concentrations were measured by fluorescence with a 
Quant-iT™ PicoGreen™ dsDNA Assay Kit (ThermoFisher Scientific™, 
Waltham, Massachusetts, USA) using a Tecan Spark ® (Tecan Group 
Ltd., Männedorf, Switzerland). The concentration measurement was 
used to normalize the DNA concentrations to 0.3 ng.μL-1 before PCR 
amplification. 

2.4. PCR conditions 

The hypervariable V3-V4 region of the 16S rRNA gene was amplified 
using 479F (5′ CAGCMGCYGCNGTAANAC 3′) and R888 (5′ CCGY
CAATTCMTTTRAGT 3′) primers (Terrat et al., 2015). ITS86F (5′ 
GTGAATCATCGAATCTTTGAA 3′) and ITS4 (5′ TCCTCCGCTTATTGA
TATGC 3′) primers were used to amplify the fungal ITS2 (Op De Beeck 
et al., 2014). Reactions were performed in 20 μL and consisted of 10 μL 
of Buffer Master mix containing Thermo Scientific Phusion™ High- 
Fidelity DNA Polymerase (ThermoFisher Scientific™), 0.5 μL of 
DMSO, 4.5 μL of DNAse free water, 3 μL of DNA (0.3 ng.μL− 1), 1 μL of 
forward primer and 1 μL of reverse primer tagged with a short nucleo
tide sequence. The PCR conditions used were identical for the fungal and 
bacterial amplifications and were performed in a Veriti 96-well Thermal 
Cycler (ThermoFisher Scientific™) under the following conditions: 10 
min initial denaturation, 35 cycles each including denaturation at 94 ◦C 
for 10 s, annealing at 55 ◦C for 20 s, and extension at 72 ◦C for 20 s, with 
a final polymerization extension at 72 ◦C for 7 min. All reactions were 
performed in triplicate and then pooled before deposition on 2 % 
agarose gel, with the corresponding negative control, for amplification 
quality control. 

2.5. Purification of PCR products and preparation of sequencing libraries 

ITS2 region amplification products were purified using Agencourt 
AMPure XP beads (Beckman Coulter Inc., Fullerton, California, USA) 
and performed on a magnetic rack with a 1:1 (v:v) ratio of AMPure XP 
per PCR product. The magnetic beads were then rinsed twice with 70 % 
ethanol before final elution in 70 μL of Qiagen EB buffer. For 16S pu
rification, an additional PCR product migration step on 2 % agarose gel 
(80 V, 90 min) was performed to separate and recover the band specific 
to bacterial 16S (lower band, around 400 bp), and eliminate plant 
chloroplastic 16S DNA (higher band, >600 bp, co-amplified during 
PCR). The recovered bands were purified using the QIAquick gel puri
fication kit (Qiagen, Hilden, Germany). The purified PCR product con
centration was then measured with PicoGreen and one equimolar pool 
(50 ng/sample) for each marker gene (16S and ITS2) was prepared. Each 
pool was finally purified twice using Agencourt AMPure XP beads, 
quantified and finally eluted in 40 μL of EB buffer (Qiagen). 

2.6. Illumina MiSeq sequencing and data processing 

MetaFast library preparation and amplicon sequencing were per
formed on an Illumina 2 × 250 bp MiSeq platform by Fasteris SA, 
Switzerland (www.fasteris.com). We used a pipeline based on VSEARCH 
(Rognes et al., 2016) and available in GitHub (https://github. 
com/BPerezLamarque/Scripts/) for data processing (Perez-Lamarque 
et al., 2022; Petrolli et al., 2021). Briefly, paired-end reads were merged 
using the fastq_mergepairs function with default parameters. We applied 
a quality check and removed merged reads with more than two align
ment errors. Then filtered merged reads were assigned to the respective 
samples based on tagged primers (demultiplexing) with 0 accepted error 

regarding the primers and tag sequences using the Cutadapt tool (Mar
tin, 2011). We removed chimeras de novo by using the VSEARCH 
uchime3_denovo option and assigned the taxonomy to each amplicon 
sequence variant (ASV) using the usearch_global option with default 
parameters. We used SILVA 138.1 and UNITE (v.8.0) databases for 
bacteria and fungi, respectively (Kõljalg et al., 2020; Quast et al., 2012). 
The ASV tables were then filtered from contaminants based on com
parisons with amplified negative controls using the DECONTAM 
(prevalence method) R package (Davis et al., 2018). Only ASVs with 
long sequences (>200 bp), assigned to the bacterial and fungal kingdom, 
presenting an acceptable abundance (≥ 10 reads) and amplified in at 
least one sample, were kept for subsequent analyses. 

2.7. Compositional analysis of X-ray fluorescence soil atomic elements 

As with sequencing data, XRF data are proportions, in relative 
abundance, and are therefore enclosed in a compositional space (a 
simplex), where Euclidean distances are not meaningful (Aitchison, 
1981). Centered log ratio transformation was applied to map data into a 
real space where Euclidean distances could be used for dimensionality 
reduction and visualized using principal component analysis according 
to sites. Only main elements, i.e., Mg, Al, Si, P, K, Ca, Ti, Mn and Fe, were 
retained as variables. Cumulative probability distribution curves were 
plotted to determine the proportional enrichment of each microelement 
between natural and disturbed environments, as recommended by 
Reimann et al. (2012). 

2.8. Microbial alpha and beta diversity analysis 

ASV tables were Hellinger transformed and then a Bray-Curtis dis
tance matrix was used to compute differences in microbial community 
composition per site (Nat 1, Nat 2, OF, LR, EB) and compartment 
(rhizosphere and root) and visualized using non-metric multidimen
sional scaling (nMDS). Permutational analysis of variance (PERMA
NOVA) was then performed to test microbial community differences 
over sites and compartments and the interaction of these two parameters 
(Supplementary file 2). Samples with <5000 reads were discarded, then 
alpha diversity indexes (Chao1: abundance-based richness, and Shan
non: richness estimator that takes evenness into account) were 
computed per amplicon on rarefied ASVs tables at 5000 reads. Wilcoxon 
tests were then applied to test paired differences over sites for each 
rhizospheric and root microbial community. As rarefaction can intro
duce sequencing data bias (McMurdie and Holmes, 2014), we addressed 
this potential issue using a combined strategy to assess the effect of 
sequencing depth on sampling completeness and on the dispersion 
induced on diversity estimation. First, we performed bootstraps on 
rarefaction curves to observe ASV counts by increasing the library size to 
see if a plateau was reached (Fig. A3). Then, using the Mirlyn package 
(Cameron et al., 2021) we performed stepwise bootstraps on read 
numbers per sample to assess Shannon diversity index value changes by 
increasing sequencing depth (Fig. A4). Finally, in each individual sam
ple we tested the dispersion induced by the rarefaction process at 
different sequencing depth (Fig. A4). All of these elements were used to 
determine the rarefaction level. 

2.9. Network construction 

Before network construction, we subsetted new ASV tables from the 
original dataset for each sampling site (Nat 1, Nat 2, OF, LR, EB) and 
compartment (rhizosphere and root) to avoid confusing environmental 
filtering effects. We used rhizosphere samples for network construction 
as the soil-plant root interface is known to be the most responsive to 
environmental changes compared to roots (Shi et al., 2016) we also 
noted this feature in our dataset. Rare taxa were eliminated (<10 reads 
across samples) and prevalence thresholds of 20 % for 16S and 15 % for 
ITS were used. Networks were constructed using SPIEC-EASI (Kurtz 
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et al., 2015), which is robust against compositional data by using clr- 
transformation to remove the unit-sum constraint of compositional 
data, as proposed by Aitchison (Aitchison, 1981). LASSO regularization 
and cross-validation were performed internally using SPIEC-EASI to 
detect the most parsimonious network structure by inverse covariance 
estimation along a lambda path (λ = sparsity). Each network was con
structed with a lambda ratio of 0.01, with 50 lambda values over 999 
cross-validations, while neighborhood selection was performed using 
the Meinshausen and Bühlmann method (‘mb’). Models were selected 
using the Stability Approach to Regularization Selection (StARS) algo
rithm with a stability threshold of 0.05, that was assessed for each 
network construction (n = 11, 10, 10, 9 and 11 samples for Nat 1, Nat 2, 
OF, EB and LR, respectively). Cross-domain interaction networks with 
bacteria and fungi for each site and compartment were constructed 
using the extended SPIEC-EASI method (Tipton et al., 2018). 

2.10. Network structural properties 

Node degree (i.e., the number of connections to other nodes), 
betweenness centrality (i.e., a centrality measure based on the shortest 
path between nodes), average path length (i.e., a robust measure of 
network topology defined as the average number of steps along the 
shortest paths for all possible pairs of network nodes), and positive-to- 
negative edge ratio were calculated with igraph (Csardi and Nepusz, 
2006) and Gephi 0.10 (Interactions proportion at the phylum level is 
available in Supplementary files 3–4). As networks size in both nodes 
and edges number are different, degree was normalized by dividing the 
node degree of each network by n-1, where n is the number of nodes. 
Betweenness centrality was normalized using the formula from igraph: 
Bn = 2B

(n− 1)(n− 2) where Bn is the normalized betweenness, B is the absolute 
betweenness and n is the number of nodes. Modularity was computed 
using the algorithm of Blondel et al. (2008) with the formula of Newman 
(2004) for weighted networks: 

Q =
1

2m
∑

i,j

[

Aij −
kikj

2m

]

δ
(
ci, cj

)
,

where Aij is the weight of the edge between i and j, ki =
∑

j
Aij is the sum 

of weights of the edges attached to vertex i, ci is the community to which 
vertex i is attached, m = 1

2
∑

ij
Aij, the δ-function δ(u, v) is 1 if u = v, which 

reflects the fact that they are in the same module, and 0 otherwise. Q 
values close to 1 mean that there is a higher proportion of within- than 
between-module edges. To assess changes in network centrality across 
sites, we assessed the distribution and then performed Tukey HSD tests 
on ANOVA results of normalized node degree and betweenness cen
trality per network. 

2.11. Network stability analysis 

We performed stability analysis on each network by iteratively 
removing up to 50 % of nodes by degree descending order (degree based 
attack) and calculating the natural connectivity as the mean eigenvalue 
derived from the graph spectrum at each step, as proposed by Peng and 

Wu (2016) with the formula λ(g) =

ln

(

1
N

∑N
i=1

eλi

)

N− ln(N)
, where λ(g) is the nat

ural connectivity of the undirected graph g with N vertices and λi is the 
spectrum of g. The lower the absolute value of the slope, the lower the 
stability. This structural robustness measure allowed us to assess how 
rapidly natural connectivity decreased per site, reflecting the resistance 
of microbial community structure to extinction events. Throughout this 
paper the term ‘stability’ refers to this metric. Stability analysis was also 
performed on the random removal of nodes (random based attack) over 
100 iterations and the mean slope was calculated per network (Fig. A5). 

Degree based attack is performed to assess the importance of highly 
connected nodes, a proxy of keystone taxa, on network structure. While 
removal of random nodes provides an indication on the overall robust
ness of alternative paths on network structure. To test the differences of 
stability, an ANCOVA followed by a pairwise comparisons between each 
pair of sites using the estimated marginal means with a bonferroni 
correction was performed (Supplementary file 5). 

2.12. Topological roles of network nodes 

We further evaluated the topological role of nodes in each network 
(bacterial, fungal and interdomain), particularly their structural role in 
the overall network, by classifying them according to their role in the 
network structure, as proposed by Olesen et al. (2007). Within module 
connectivity (Zi) and among module connectivity (Pi) were calculated 
for each node i with the following equations: Zi = ai − As

σs , where ai is the 
number of intra-module connections of node i, As is the mean of intra- 
module connections in module s and σs is the standard deviation, Pi =

1 −
∑Nm

s=1

(
ais
ai

)2
, where ais is the number of connections of node i in 

module s, even in it's own module, and ai is the degree of node i. They 
were then classified as module hubs (Zi > 2.5) which are structural to 
their own module, network hubs (Zi > 2.5, Pi > 0.62) which are struc
tural for their own module and overall network, connectors (Zi < 2.5, Pi 
> 0.62) which connect different modules, and peripherals (Zi < 2.5, Pi <

0.62) which has few links in their own and to other modules. Detailed 
properties of network and module hubs are provided in Supplementary 
files 6 and 7. 

3. Results 

3.1. Disturbance results in distinct soil cover and chemistry compared to 
natural environments 

Firstly, the old farm (OF) and evaporation basin (EB), corresponding 
respectively to anthropic and natural disturbances, were mainly char
acterized by the presence of soil sealing or crusting resulting from the 
watering-drought succession pattern. This was confirmed by the XRF 
parameters as OF and EB clustered together and were explained by an 
increased proportion of K, Al, Ca, Mn and Fe (Fig. 1). These elements 
were characteristic of the topsoil induration layer, where intense 
flooding events followed by drought had enriched the surface with clay 
microparticles (Al, Fe and Mn enrichment). Secondly, Nat 1 and LR 
clustered together, and Nat 2 was separated from the other sites, with 
the chemical composition differences being explained by the increased 
proportion of Mg and Si. Natural environments (Nat 1, Nat 2) and 
restored land from anthropic disturbance (LR) were characterized by an 
increase in plant litter and surrounding vegetation (Fig. A6). Further 
details on the proportional enrichment of each element are available in 
the Supplementary information (Fig. A7). 

3.2. Microbial diversity is highly impacted by natural long-term 
disturbance 

The evaporation basin (EB), corresponding to a natural long-term 
disturbance, had the lowest bacterial and fungal alpha diversity. Dif
ferences in diversity between the natural sites (Nat1 and Nat 2) were 
greater than diversity differences between the former agricultural site 
(OF) and the restored site (LR) (Fig. 2.A and 2.B). For bacteria, EB had 
significantly lower ASV counts (Chao1) and Shannon diversity index in 
the rhizosphere than all other sites, except for Nat 2 (Fig. 2.A). EB also 
had significantly lower ASV counts and Shannon diversity than the 
natural environments (EB vs Nat 1: p < 0.05; EB vs Nat 2: p < 0.01) and 
restored land (EB vs LR: p < 0.05). Bacterial communities were more 
deterministic in their composition throughout our study as compared to 
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fungi, as indicated in Fig. 2.C and 2.D (Supplementary file 2: 16S re
sidual PERMANOVA R2 = 0.539; ITS2 residual PERMANOVA R2 =
0.681). The site effect was a greater driver of community composition 
compared to the compartment effect (Supplementary file 2: 16S site 
PERMANOVA R2 = 0.211***; ITS site PERMANOVA R2 = 0132***; 16S 
compartment PERMANOVA R2 = 0.139***; ITS compartment PERMA
NOVA R2 = 0.089***). 

3.3. Microbial network topological properties and stability across sites 

Network analysis was used to assess how microbial interactions and 
stability changed across sites, revealing two distinct network structures: 
(1) Nat 1, Nat 2 and EB which had a similar structure; and conversely (2) 
LR and OF whose structures were also similar (Fig. 3.A and 3.B). The 
ratio of positive-to-negative edges was lower for past anthropic distur
bances (Fig. 3.B: OF = 56,5 %, LR = 53.8 %), as compared to natural 
environments (Nat 1 = 63,3 %, Nat 2 = 69,1 %) and the evaporation 
basin (EB = 72,8 %). The modularity and average path length both 
declined for anthropic sites (OF and LR) as compared to natural eco
systems (Nat 1 and Nat 2), which were similar in this regard to the 
natural disturbance (EB). In soil rhizosphere bacterial networks, the 
node normalized degree was higher for both anthropic (OF, LR) and 
natural (EB) disturbances compared to natural ecosystems (Fig. 4.A). 
The normalized betweenness centrality was the lowest in anthropic 
disturbances (OF, LR) (Fig. 4.A). 

As microbial communities interact with each other, cross domain 
networks allowed us to assess whether the addition of fungi to bacterial 
networks resulted in topological changes, thus reflecting changes in 
microbial interactions. The addition of fungi to the networks resulted in 
similar patterns between sites for betweenness centrality (Fig. 4.A) as 
compared to bacterial networks. However, addition of fungi resulted in 
OF having the same normalized degree as natural environments. 

We performed a stability analysis based on natural connectivity to 
test the network resistance. This allowed us to artificially observe how 
the network structure was impacted when nodes were removed, and 
thus determine if paths were redundant enough to be resistant to 

extinction (see Methods). Stability analysis revealed that in bacterial 
rhizosphere networks (Fig. 4.B), both Nat 1 and Nat 2 had the greatest 
stability (slope = − 0.00209 and − 0.002, respectively), whereas OF had 
the lowest stability (slope = − 0.00698), followed by LR (slope =
− 0.00462) and EB (slope = − 0.00392). An interesting pattern we noted 
here concerned the intermediate stability of EB and LR networks, which 
both contrasted with the sharp decrease of natural connectivity for OF. 
Moreover, the addition of fungi in cross domain networks (Fig. 4.B) 
resulted in EB having the highest stability (slope = − 0.00254), followed 
by natural environments (Nat 1 = − 0.00418; Nat 2 = − 0.00315), while 
OF and LR had the lowest stability (slope = − 0.00687, slope =
− 0.00869, respectively). Random based attacks are presented in SI 
(Fig. A5), where only anthropic disturbances (OF, LR) for both bacteria 
and cross domain networks, had a low network stability. This indicates 
that their network structure is vulnerable to failure, where redundancy 
of path is not sufficient enough to maintain network structure following 
random extinction. Disturbances also impacted the inter- and intra- 
kingdom positive and negative edge ratios (Fig. 4.C). Natural environ
ments (Nat 1, Nat 2) had a higher proportion of positive fungal links 
(12.7 % and 13.5 %, respectively) than disturbed environments (OF: 2.3 
%, EB: 4.7 %, LR: 4.8 %). The same pattern was noted for negative fungal 
links, i.e., proportionally twofold more abundant in natural ecosystems 
(Nat 1: 4.4 %, Nat 2: 5.1 %, OF: 1.0 %, EB: 2.1 %, LR: 2.3 %). Finally, 
positive bacterial links were more prevalent in EB (47.9 %) and OF 
(42.4 %) than in LR (33.9 %) and natural ecosystems (Nat 1: 34.2 %, Nat 
2: 29.8 %). 

3.4. Topological properties of nodes and keystones ASVs 

To identify potential keystone ASVs defined here as ASVs which, 
regardless of their relative abundance, had a fundamental network 
structure role (i.e., network or module hubs), and thus potentially in the 
ecosystem, nodes were classified according to their topological proper
ties (i.e., within-module connectivity Zi and among-module connectivity 
Pi). This classification revealed a strong pattern across sites, as overall 
network topology. For bacterial rhizosphere networks (Fig. 5.A), natural 

Fig. 1. Disturbance impact soil chemistry. Principal component analysis (PCA) of clr-transformed XRF soil parameters. Colors represent sites (Nat 1, Nat 2 = natural 
ecosystems; OF = old Farm; EB = evaporation basin; LR = land reclamation), and vectors are colored according to their contributions. Dimension 1 explains 58.6 % 
of the variance, while dimension 2 explains 13.4 %. 
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environments (Nat 1, Nat 2) and EB exhibited one module hub with a 
relatively steady proportion of connectors and peripheral nodes. 
Otherwise, OF and LR exhibited several network hubs and a higher 
proportion of connectors (Supplementary file 7). As for the node degree 
and betweenness centrality distribution, the addition of fungi generated 
results similar to those of bacteria only networks, with the exception of 
Nat 2 which had no module hubs or network hubs (Fig. 5.B). Actino
bacteriota were the most common bacterial network hubs (taxonomical 
information and network properties of node are detailed in Supple
mentary file 6). Another interesting feature concerned the systematic 
low relative abundance of all ASVs classified as networks or module 
hubs (Fig. A8). 

4. Discussion 

Soil microbial communities play key roles in ecosystem functioning 
(Wagg et al., 2019) while markedly responding to disturbances (Her
nandez et al., 2021). However, the impact on microbial co-occurrence 
patterns in response to different land uses and the effects of anthropic 
versus natural disturbances on microbiome resilience have yet to be 
studied in detail. In the present study, both disturbances were found to 
be linked to specific hydric regimes, characterized by wetting- 
desiccation successions occurring infrequently over a long-time span 
in the evaporation basin, while more frequently over a shorter time span 
on a former agricultural site. Indeed, a previous disturbance can induce 
a legacy effect on the soil microorganism composition (Meisner et al., 
2018), which may increase microbiome resistance to subsequent 
disturbance. For example, Evans and Wallenstein (2014) showed that an 
increased frequency of drying-rewetting stress in an experimental field 
resulted in a greater proportion of tolerant bacterial taxa, suggesting 
bacterial life strategy adaptation to stress over time. The findings of our 
study, which was carried out in a natural arid environment, suggested 
that these disturbances were due to a temporally driven hydric 

constraint (wetting-desiccation succession), as water is known to be a 
direct (e.g. seasonal rainfall, aridity) and indirect (e.g. salinity, plant 
cover, pH) driver of arid soil microbiome composition and functionality 
(Maestre et al., 2015; Shen et al., 2021). In this study, we showed that 
the response of bacteria and fungi differed in magnitude across the five 
sites and that that the microbial network, topology, structure and sta
bility driven by a naturally occurring disturbance was closer to that 
found in a natural environment than in one impacted by anthropic 
disturbance. This suggests that the temporal context of a disturbance is a 
key driver of microbial co-occurrence stability, with short-term distur
bances inducing less stability than long-term disturbances. However, as 
our study includes few or no site replication, and as natural environ
ments are variable and subject to different constraints, it is important to 
remember that these results will need to be consolidated by other 
studies. 

4.1. Lower microbial diversity only in the natural disturbance conditions 

The alpha and beta diversity responses were not consistently sig
nificant throughout the land uses. This was also noted by Xu et al. (2022) 
and Yu et al. (2022) who found no impact of land use type on bacterial 
and fungal alpha diversity. Moreover, Banerjee et al. (2019) showed that 
agricultural intensification under both organic and conventional 
farming conditions had no effect on alpha diversity, but the structure of 
the networks, especially their connectivity, was higher under organic 
farming—a topology characteristic of higher resistance (Santolini and 
Barabási, 2018). These results contrast with those of other studies that 
showed a significant effect of land use types on soil microbial diversity 
(Jiao et al., 2021; Karimi et al., 2019; Turley et al., 2020). Overall, these 
contrasted results shed light on microbial diversity as an insufficient 
proxy of microbiome response to disturbance. 

Fig. 2. Microbial community composition and diversity is impacted by disturbances. Chao and Shannon diversity indexes for bacteria (A) and fungi (B) in the 
rhizosphere across sites (Nat 1, Nat 2 = natural ecosystems; OF = old farm; EB = evaporation basin; LR = land reclamation). Analyses were performed on rarefied 
ASV matrices at 5000 reads for samples with at least 5000 reads. Significance levels of the Wilcoxon tests are represented between each site by stars for significantly 
different paired groups (* = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001). Non-metric multidimensional scaling (NMDS) of samples according to 
compartment and sites for bacteria (C) and fungi (D) across sites and compartments. Samples with <3000 reads were discarded. Analyses were performed on Bray- 
Curtis distances on Hellinger transformed matrices. Stress values are 0.16 for 16S (k = 2) and 0.19 for ITS (k = 3). 
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4.2. Microbial network structure and stability is context dependent when 
impacted by disturbance 

Stable networks are characterized by high modularity, where species 
interact more within their module than with other groups (Olesen et al., 
2007). This enables communities to withstand disturbances by limiting 

extinction or decrease in ASV abundance to spread to different modules, 
as they share fewer links with the former (Baldassano and Bassett, 2016; 
Stouffer and Bascompte, 2011). In our study, network modularity was 
correlated with the stability analysis findings (in both bacteria and 
bacteria-fungi networks: Spearman's ρ = 1, p = 0.01667). Hence, past 
short-term anthropic disturbances, is characterized by low modularity 

Fig. 3. Network topology between natural environments and natural disturbance is distinct from anthropic disturbance. (A) Bacterial rhizosphere SPIEC-EASI 
networks across sites. Different node colors represent different phyla and the node size is exponentially proportional to the degree (exponential spline in Gephi). 
Green edges represent positive covariance between nodes, while red edges represent negative covariance. Networks were constructed using ASVs with a sum >50 and 
prevalence >20 %. Samples with <5000 reads were discarded. SPIEC-EASI was run with neighborhood selection (MB) with 999 cross-validation permutations, and 
the stability approach to regularization selection (StARS) was used to construct the most stable network along a lambda path of 99 iterations per permutation, with a 
lambda min ratio of 0.01 (A). Cross domain SPIEC-EASI co-variance networks across sites. Different node colors represent different kingdoms. The network con
struction parameters were the same as single domain networks. (B) Topological features of the co-occurrence networks (bacteria only and bacteria + fungi). 
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and the lowest stability in comparison to natural environments and long- 
term natural disturbance. Natural environments and disturbance also 
exhibited a higher average path length, correlated with the higher sta
bility (again, in both bacteria and bacteria + fungi networks: Spearman's 
ρ = 1, p = 0.01667). One underlying mechanism could involve mitiga
tion of the disturbance to spread from one node to others in the network, 
induced by positive feedbacks loops (Coyte et al., 2015). Whether these 
modular structures represent biotic interactions among ASVs or niche 
partitioning has yet to be confirmed. Yet this may indicate that local 
microbial communities coping with long-term stress in the evaporation 
basin were able to gradually adapt to edaphic and hydric constraints, 
while past agronomic activities prompted drastic reorganization of mi
crobial communities. Although beyond the scope of this study, 

adaptation and interactions are known to be interrelated in complex 
biological communities where biotic interactions could modify species' 
evolutionary responses (Barraclough, 2015; Turcotte et al., 2012). 
Lower stability in disturbed sites may reflect the fact that some mal
adapted microbial communities were undergoing evolutionary adapta
tion to new niche requirements, known to be instable in the first step 
(Hillesland and Stahl, 2010). Shedding light on evolutionary responses 
and mechanisms of microbiomes coping with disturbances in an inter
action framework could generate valuable information on microbial 
stress assembly in the future. 

Fig. 4. Bacterial network stability is higher in natural environments than both natural and anthropic disturbances and fungi stabilize cross-domain networks in the 
natural disturbance. (A) Boxplots of normalized node degree and normalized betweenness centrality per site for bacterial rhizospheric soil networks and cross domain 
networks (bacteria + fungi). Different letters represent significant differences between sites according to the Tukey honest significant differences test performed on 
ANOVA results. (B) Changes in network stability based on natural connectivity changes along iterative removal of nodes, up to 50 %, in each network. The slope is 
indicated with associated R2. The higher the slope value, the greater the stability. (C) Edge number and proportion for each bacteria + fungi networks according to 
site. Edges are separated by positive or negative covariance values (+, − ) and by inter- and intra-kingdom links (B = bacteria, F = fungi). 
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4.3. Fungi mediate bacterial interactions and network stability 

In the evaporation basin, cross domain networks displayed higher 
stability compared to bacterial networks. This reflects the high resis
tance of fungi in microbial networks impacted by hydric constraints, 
particularly with regard to wetting-desiccation successions. The resis
tance of fungal communities to desiccation has been reported by Bar
nard et al. (2013), who showed that fungi had a high degree of resistance 
to desiccation-rewetting in a simulated rainfall experiment in a Medi
terranean grassland in California. In some cases, fungi can even improve 
bacterial resistance to hydric stress, as shown by Hestrin et al. (2022), 
where R. irregularis and S. bescii endomycorrhizal fungi inoculation had 
a protective effect on several hyphosphere bacterial phyla under water 
limiting conditions. We also found a signature preferential inter- 
kingdom relationship between fungi and bacteria at all of our sites, 
where fungi predominantly coexisted though inter- rather than intra- 
kingdom relationships. Yu et al. (2022) hypothesized that this phe
nomenon reflected environmental-related filtration process, while 
noting a similar pattern in a floodplain ecosystem. This highlights the 
importance of fungi in microbial food webs, and their relation with other 
microbial kingdoms, particularly in nutrient and water depleted desert 
ecosystems. 

4.4. Bacterial interactions support the stress-gradient hypothesis 

The stress-gradient hypothesis (Bertness and Callaway, 1994) is an 
ecological framework which stipulates that increased stress leads to 
increased positive interactions. Our results were in line with this hy
pothesis with regard to bacterial interactions as the disturbed ecosys
tems had more positive bacteria-to-bacteria interactions. This was not 
the case for positive fungi-to-fungi or bacteria-to-fungi interactions, as 
confirmed by the high response of the bacterial microbiome to distur
bances, contrary to the fungal microbiome (Barnard et al., 2013; Gao 
et al., 2022; Sun et al., 2017). An increase in negative microbial in
teractions in former agricultural sites could be explained by environ
mental filtering, where land use changes on old farms could result in 
divergent niche requirements following the abandonment of irrigation 
and agricultural practices. This transitional state of microbial 

populations following the abandonment of agricultural practices could 
prompt microbial populations to shift from being copiotrophs to being 
oligotrophs, as is often the case in secondary successions following 
disturbances (Barnard et al., 2013; Sun et al., 2017). 

5. Conclusion and perspectives 

Our study provides the first evidence that natural disturbance, 
occurring over a long-time span, exhibited a similar microbial network 
structure and stability as in natural environments, suggesting an adap
tation of microbial interactions upon exposure to repeated long-term 
stress. Conversely, the anthropic disturbance characterized in our 
study by past agricultural activity had detrimental effects on network 
stability, even after natural recovery. We also highlighted the mitigating 
effect of fungal communities regarding the stability of inter-kingdom 
networks in a naturally occurring disturbance setting, thereby high
lighting the relevance of fungal-bacterial interactions in soil microbiome 
stress alleviation. The relative evolutionary rate has been found to be 
habitat-dependent, with microbial communities evolving faster in 
extreme environments (Li et al., 2014), but future research is needed to 
assess the evolutionary trajectories of microbial communities coping 
with abiotic stress in a complex natural environment, and to determine 
the extent to which interactions modulate this evolutionary adaptation 
and temporality. 
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