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ABSTRACT11

The management of food fermentation is still largely based on empirical knowledge, as12

the dynamics of microbial communities and the underlying metabolic networks that13

produce safe and nutritious products remain beyond our understanding. Although these14

closed ecosystems contain relatively few taxa, they have not yet been thoroughly15

characterized with respect to how their microbial communities interact and dynamically16

evolve. However, with the increased availability of metataxonomic datasets on different17

fermented vegetables, it is now possible to gain a comprehensive understanding of the18

microbial relationships that structure plant fermentation.19
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In this study, we present a bioinformatics approach that integrates public20

metataxonomic 16S datasets targeting fermented vegetables. Specifically, we developed a21

method for exploring, comparing, and combining public 16S datasets in order to perform22

meta-analyses of microbiota. The workflow includes steps for searching and selecting23

public time-series datasets and constructing association networks of amplicon sequence24

variants (ASVs) based on co-abundance metrics. Networks for individual datasets are25

then integrated into a core network of significant associations. Microbial communities are26

identified based on the comparison and clustering of ASV networks using the “stochastic27

block model” method. When we applied this method to 10 public datasets (including a28

total of 931 samples), we found that it was able to shed light on the dynamics of vegetable29

fermentation by characterizing the processes of community succession among different30

bacterial assemblages.31

IMPORTANCE32

Within the growing body of research on the bacterial communities involved in the33

fermentation of vegetables, there is particular interest in discovering the species or34

consortia that drive different fermentation steps. This integrative analysis demonstrates35

that the reuse and integration of public microbiome datasets can provide new insights36

into a little-known biotope. Our most important finding is the recurrent but transient37

appearance, at the beginning of vegetable fermentation, of ASVs belonging to38

Enterobacterales and their associations with ASVs belonging to Lactobacillales. These39

findings could be applied in the design of new fermented products.40

INTRODUCTION41

Over the last 20 years, the development of low-cost sequencing technologies has led to42

the creation of a large number of microbiome datasets, mainly generated using43

metataxonomic analyses based on 16S rRNA metabarcoding technology. For example, the44

number of papers using metataxonomic or metagenomic approaches to study the45
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microbial communities of food increased six-fold between 2015 and 2021, and currently46

exceeds 600 [1]; similarly, within the NCBI database, the Taxonomy ID "Food47

metagenome" (NCBI:txid870726) is associated with 770 BioProjects. In keeping with the48

principles of Open Science, most of these publication-associated datasets are available in49

public repositories such as SRA (the Sequence Read Archive of NCBI), ENA (the European50

Nucleotide Archive of EBI), or DDBJ (the DNA Data Bank of Japan). To promote the reuse51

of certain kinds of datasets, specialized databases have been developed, such as MGNIFY52

for microbiome data [2]. The availability of such vast amounts of metataxonomic data53

provides an unprecedented opportunity to develop new integrative tools for comparing54

and better understanding various microbial ecosystems. However, these efforts face55

numerous challenges related to data reusability (e.g., data availability, metadata quality,56

data preprocessing) and the most appropriate ways of identifying biologically informative57

features in a collection of metataxonomic studies. In this work, we address these58

challenges by developing a method for exploring public datasets related to the microbiota59

of fermented vegetables and performing meta-analyses of previous research (i.e., reusing60

independent datasets, integrating them into a larger analysis to generate new knowledge).61

Our choice of ecosystem was motivated by current interest in the bacterial62

communities involved in the fermentation of vegetables [3, 4, 5]. Plant-based fermented63

foods diversify human diets and possess interesting properties in terms of sustainability64

and nutritional quality. These products require little energy to produce and preserve, and65

their consumption confers several benefits on human health [6, 7]. With this study, we66

wanted to assess whether public datasets that are already available for fermented67

vegetables could help to improve our knowledge on the ecological dynamics taking place68

in these products. Fermented vegetables are created through the (usually spontaneous)69

activity of heterofermentative and homofermentative lactic acid bacteria (LAB) naturally70

present on the raw material [8]. In Europe, the most popular example of this kind of food71

is sauerkraut, for which the use of pre-selected starter strains remains uncommon even for72

large-scale production [9]. A combination of low pH and the anaerobic conditions73

resulting from the fermentation process are the main factors that select for the beneficial74

anaerobic LAB essential in the production of good-quality fermented vegetables [3].75
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These bacteria are a broad and diverse group of species classified in phylum Firmicutes,76

class Bacilli, and order Lactobacillales, and include representatives from the families77

Lactobacillaceae, Streptococcaceae, Enterococcaceae, Carnobacteriaceae, and Aerococcaceae [10].78

It should be noted that, to date, most studies have focused on describing the microbial79

communities present at the end of the fermentation process [4, 5], while the dynamic80

succession of various microbial populations during fermentation has received little81

attention. This represents an important gap in knowledge, especially when compared, for82

example, to research on cheese microbial communities which has revealed that the proper83

succession of microbial populations is important to the quality of the final product [11, 12].84

Two separate metataxonomic analyses that have revealed important changes in microbial85

dynamics during vegetable fermentation. A study on carrot juice reported a succession86

process involving Enterobacteriaceae, Leuconostoc, and Lactobacillus, while work on Suan Cai87

(Chinese pickles) showed that the dominant species changed from early stages of88

fermentation (Leuconostoc mesenteroides) to later ones (Lactiplantibacillus plantarum) Wuyts89

et al. [13], Yang et al. [14]. The little information that can be gathered on the subject does90

not allow us to identify species or consortia that might be responsible for controlling91

various stages of fermentation among different vegetables. In this context, the use of92

metataxonomic data to carry out meta-analysis could prove illuminating.93

The use and comparison of amplicon data (such as the 16S-based data considered in94

the present work) raises certain difficulties. First, sequencing technology may vary among95

studies, as may the region amplified or PCR primers employed. Second, taxonomic96

assignment based on the 16S variable region is considered valid only to the genus level,97

limiting species-level interpretations [4]. There are therefore two possibilities for carrying98

out a comparative study of multiple datasets: comparing genus-level taxonomic profiles99

or comparing exact sequences, specifically, amplicon sequence variants (ASVs). The100

advantages of the first approach include the ability to compare different sequenced101

regions and to reduce the sparsity of the count matrices, while the use of ASVs enables102

intra-genus diversity to be taken into account [15, 16]. In both cases, the aim of this type103

of meta-analysis is often to identify core taxa based on criteria of abundance and104

prevalence [17].105
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The analytical design of such a study is also important. One promising approach for106

meta-analysis is the construction of microbial association networks, which provide107

additional and complementary information to classic analyses of alpha- and108

beta-diversity [18]. Association networks enable the identification of hub species [19, 20],109

taxa clusters [21], and core networks, the last of which corresponds to the intersection of110

several microbial association networks and can be used to identify taxa and associations111

shared by most networks [22]. Association networks were originally designed for112

macroscopic ecosystems and have only recently been adapted for the investigation of113

interactions within microbial assemblages [21]. They are constructed using count data114

from the sequenced environment, which are compositional [23], high-dimensional, and in115

the form of sparse matrices, thus increasing the difficulty of analysis [21]. However,116

compared to networks from other assemblages, the association networks in fermented117

ecosystems appear to be significantly smaller [16], making them easier to construct,118

visualize, and compare. According to Chen et al. [24], association networks can be119

divided into four categories, which are built using different approaches: correlation120

networks (CoNet [25], SparCC [26]), conditional correlation networks (SPIEC-EASI [27]),121

mixture networks (MixMPLN [28]), and differential networks (DCDTr). Due to the122

complexity of microbial interactions, all these approaches have important limitations, and123

no method has yet managed to capture all of the aspects of interest. Indeed, studies have124

even shown that classical measures such as Pearson and Spearman correlations can125

perform just as well as computationally time-consuming methods based on more126

sophisticated statistical models [29, 30].127

This study presents an integrative bioinformatics approach for the meta-analysis of128

public amplicon datasets. The workflow includes steps designed to search for and select129

public time-series datasets and construct ASV association networks based on130

co-abundance metrics. Microbial communities are then analyzed by comparing and131

clustering the ASV networks. We applied this workflow to 10 publicly available datasets132

on the microbial assemblages of fermented vegetables. Here, we describe the value of this133

approach for discovering core bacterial taxa and core associations shared by different134

vegetables during the process of fermentation.135
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RESULTS136

Design of a bioinformatics workflow for integration of metataxonomic datasets137

Figure 1 depicts the main steps of the bioinformatics workflow designed to analyze138

and integrate the amplicon datasets. The first step involved the careful selection of public139

datasets focused on the microbial communities of fermented vegetables. Next, ASV count140

tables were constructed for each of the selected studies. Using these count tables, we then141

produced ASV association networks for each study that were based on four sensitive and142

computationally efficient metrics: Jaccard distance, Pearson and Spearman correlations143

between relative abundances, and a proportionality measure calculated from144

clr-transformed abundances. The purpose of the networks was to help visualize how145

microbial communities interact and evolve dynamically. Finally, the various networks146

were integrated together. A core network was constructed that identified which bacterial147

ASVs were common to most fermentations and which associations between ASVs were148

significantly shared among networks. In addition, a multiple SBM clustering method was149

used to identify a set of ASVs that were associated with each other across the different150

networks.151

Selection of metataxonomic studies on fermented vegetables152

Ten datasets meeting our selection criteria (see Materials and Methods section) were153

obtained out of 1443 studies from SRA (NCBI), 10 studies from MGnify (ENA), and 3154

studies from FoodMicrobioNet. All datasets contained sequences of the V3–V4 or V4155

hypervariable region, enabling ASV comparison. The selected datasets originated from156

studies on five different varieties of vegetables (cucumber, carrot, cabbage, pepper, radish,157

used alone or in a mixture) and comprised between 18 and 310 samples each, for a total of158

931 samples (Table 1). The time scales that were examined varied among studies, as the159

datasets included between 2 and 12 time points. Depending on the study in question,160

monitoring began between 0 and 30 days after the beginning of fermentation and ended161

between 3 and 720 days after. All studies were conducted on spontaneous fermentations,162

with the exception of PRJNA751723 and PRJNA662831, which included samples from163
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spontaneous fermentations as well as samples inoculated with various LAB164

(Latilactobacillus curvatus, Leuconostoc gelidum, Latilactobacillus sakei, or Weissella koreensis).165

Dataset PRJEB15657 contained data from two sets of experiments (samples from a166

laboratory experiment and samples from a citizen science experiment), which we divided167

into two subsets.168

Visualization of microbial succession during fermentation through the construction of169

association networks170

Historically, bar graphs have been used to visualize changes in the taxonomic171

composition of bacterial communities between samples. However, this method does not172

reflect the evolution of ASV associations over time. Microbial association networks, on the173

other hand, highlight these temporal taxonomic associations and can visually present174

information that is complementary to bar graphs. For each of the 10 datasets, we built175

association networks, of which one is presented in Figures 2A and 2B (study176

PRJNA689239, paocai fermentation over 30 days, captured at six timepoints). This177

network appeared to be composed of two subnetworks: one containing a high diversity of178

ASVs (including Pseudomonadales and Enterobacterales) with a weighted mean age (WMA)179

between 0 and 10 days, and the other containing a lower diversity of ASVs belonging to180

Enterobacterales and Lactobacillales, with a higher WMA (between 8 and 30 days). These181

observations suggest that there is a shift during fermentation from a broad initial diversity182

of ASVs to an assemblage dominated by LAB. Interestingly, we observed the same183

patterns in the PRJNA564474 study (Fig. 2D; kimchi fermentation over 50 days and eight184

timepoints). However, a notable difference from the paocai study was that the first185

subnetwork was present at WMAs ranging from 0 to 50 days, and the second, composed186

only of Lactobacillales ASVs, appeared at 10 to 50 days. This structure suggests that some187

of the samples failed to ferment, as observed for sample SRR10127549 in the bar graph.188

A similar network pattern was observed for 8 of the 11 networks analyzed (Fig. S1).189

The overall pattern could be described as follows: samples initially contained a high190

diversity of ASVs (featuring Pseudomonadales in particular) with a low WMA; then, as the191

WMA increased, nodes corresponding to ASVs from Enterobacterales and then192
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Lactobacillales appeared, with numerous associations between them. However, we would193

like to emphasize a few points to keep in mind when interpreting these networks. The194

WMA of an ASV does not reflect the exact time point at which the ASV first appears.195

Indeed, during each of the vegetable fermentations, all ASVs were present from the196

beginning of the fermentation process. This measurement may also represent both living197

and dead bacterial populations because the DNA of dead bacteria may be recovered and198

sequenced as well. Hence, the use of WMA to organize an association network merely199

provides a general picture of the temporal dynamics of ASVs over a fermentation process,200

highlighting the main "peaks” of presence and potential species associations.201

We also analyzed the three networks that did not exhibit this succession of202

communities (PRJNA473189, PRJNA662831, PRJNA544161; see Fig. S1). A common203

feature of these three studies was a shift in timing compared to the others: more precisely,204

sampling did not start until three days after the onset of fermentation. Therefore, it is205

possible that the successional shift in microbial communities took place before the first206

sampling point. This hypothesis is supported by the observation that the taxonomic207

profile of the pepper and sauerkraut samples (PRJNA473189 and PRJNA662831) did not208

change over time. In the case of doubanjiang (PRJNA544161), a fermented product209

containing numerous ingredients (beans, soya, rice, spices), ASVs belonging to210

Enterobacterales appeared to proliferate relatively late, as observed on the bar graph (Fig.211

S1).212

Comparison of association networks to identify a core network of bacterial213

communities214

To integrate the 11 association networks, we constructed a core network, i.e., the215

intersection of several networks (Fig. 3). In Figure 3A, it can be seen that the 11 networks216

shared 3 vertices (ASVs) overall, and pairwise analyses revealed between 10 and 58217

vertices that were shared between a given pair of networks. Similarly, pairwise analyses218

detected between 3 and 296 edges that were shared by two networks, but no edges were219

shared by more than nine networks (Fig. 3B). To evaluate the statistical significance of the220

edge intersections, we compared them with a null model using a Kolmogorov-Smirnov221
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test; the results rejected the null hypothesis that our set of networks followed the same222

distribution as the null model for intersections between two, three, four, five, or six223

networks (p-value < 0.05 for 100 cases). This means that those network subsets share224

associations in a significant way.225

We then constructed core networks based on the intersections between two to six226

networks (all shown in Fig. S2). The core network built using microbial associations227

present in at least three networks (Fig. 3C) included 97 ASVs (out of a total of 975 used to228

construct the 11 networks). Among them, 13 were affiliated with order Pseudomonadales,229

17 with Enterobacterales, and 25 with Lactobacillales. In representing the core network, we230

used the scaled WMA on the x-axis. The rationale of the scaled WMA was to normalize231

time data and to establish a common time scale between the various studies. Indeed, the232

WMAs are not directly comparable between studies because the time points measured233

varied from one study to another.234

Analysis of the different significant core networks revealed that, despite all of the235

differences between experiments (type of sequencing, fermentation conditions, time236

scale), there appeared to be a common temporal structure in the microbial dynamics of237

fermented vegetables. In particular, after a mean scaled WMA of 0.5, Lactobacillales ASVs238

tended to predominate. Furthermore, we also observed a shift from the initial microbial239

population of vegetables to one dominated by Enterobacterales, and then a second shift to240

Lactobacillales.241

This observation was confirmed by a clear difference in scaled WMA among all ASVs242

corresponding to Pseudomonadales, Enterobacterales, and Lactobacillales, as shown in Figure243

3D. Figure 3E highlights this trend and also shows that the ASVs with the lowest and244

highest scaled WMAs were less often shared among studies (less than three graphs when245

WMA was lower than -1 or higher than 2) than those with median WMA values. This246

suggests that the initial flora, as well as the LAB present mainly at the end of fermentation,247

tended to be more specific to a given experiment than other ASVs. Moreover, the ASVs248

belonging to Enterobacterales were more likely to be shared between networks than those249

corresponding to Lactobacillales (non-parametric Wilcoxon-Mann-Whitney test, p-value =250
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0.02). In fact, of the three ASVs that were detected in all experiments, all belonged to the251

Enterobacterales (Klebsiella, Pectobacterium, and an unidentified Enterobacterales).252

Finally, we investigated distinctions between different genera within family253

Lactobacillaceae (following the new taxonomy of Zheng et al. [31]) based on the type of254

fermentation performed. In the core network, ASVs belonging to genera that perform255

hetero-lactic fermentation were more numerous than those belonging to genera that256

perform homo-lactic fermentation. Moreover, most members of the Lactobacillales were257

found in only one graph (143 out of 208, i.e., 69%), and among those shared by more than258

two graphs, 18 perform heterofermentation and 7 perform homofermentation. We can259

therefore conclude that LABs are generally highly specific to a fermentation process, and260

the ASVs that are shared among different processes are mostly heterofermentative. There261

was no significant difference between the scaled WMA of heterofermentative and262

homofermentative genera, but we did detect some expected successional shifts in genera263

(Fig. 3F: Leuconostoc and Lactiplantibacillus, p-value = 0.02).264

Multiple clustering to identify putative bacterial consortia shared among studies265

To identify sets of ASVs that were connected in similar ways across the 11 microbial266

association networks, we applied the multiplex stochastic block model (SBM) graph267

clustering method. Ten different clusters were identified, which varied in their size and268

the prevalence and taxonomy of their member ASVs. All ASVs within a cluster shared269

similar intra-cluster and inter-cluster connection patterns. Clusters 1 to 5 contained few270

ASVs (between 5 and 45) that were shared between two or more networks, while clusters271

6 to 10 contained many ASVs (between 94 and 463) that were mainly specific to one272

network (Fig. 4A). ASVs affiliated with Lactobacillales predominantly belonged to clusters273

5, 9, and 10; this last group contained most of the Lactobacillales ASVs and those274

corresponding to the diverse initial microflora, i.e., those that were specific to each275

experiment.276

Among the different clusters, clusters 1 and 5 were particularly interesting, as they277

included the majority of ASVs that were shared by more than five networks and they278
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were the predominant clusters in the core network (Fig. 4B). Moreover, ASVs in the two279

clusters differed significantly in their scaled WMA (p-value = 0.013). It is possible that the280

ASVs in these two clusters correspond to successive bacterial communities that are281

common in vegetable fermentation: cluster 1 appeared to be highly associated with ASVs282

in the orders Pseudomonadales and Enterobacterales, while cluster 5 represented an283

assemblage of Enterobacterales and Lactobacillales. This community of conserved ASVs284

could potentially represent a shared core-consortia of early fermentation; its detailed285

composition is shown in Table S1.286

DISCUSSION287

This work presents an integrative bioinformatics approach that utilizes association288

networks to combine different sets of publicly available data on the microbial dynamics of289

fermentation in vegetables. By combining ASV networks from different studies, we290

obtained valuable insights into bacterial community structure during different phases of291

fermentation. Historically, association networks have been used to detect potential292

inter-species interactions; here, we adapted this strategy to identify and visualize ASVs293

with similar temporal dynamics. To our knowledge, this work is the first to construct a294

core network representing the fermentation of different vegetables based on sequence295

data from multiple independent datasets. By integrating several public datasets together,296

we were able to characterize two successional shifts that were conserved among different297

fermentation ecosystems: the first from the initial microbial population of vegetables to298

Enterobacterales, and the second to an assemblage dominated by Lactobacillales. To test the299

significance of the core network we obtained, we used an approach based on comparison300

to a null model, which was similar to that developed by Röttjers et al. [22], with a301

sampling of random graphs similar to Doane et al. [32]. Indeed, the identification of core302

networks is a more challenging task than computation of the global intersection network303

[21]. With these tests, we determined that some intersections between networks would304

not be expected by random chance, and thus that some edges may correspond to genuine305

ASV dynamics shared among several studies. Finally, we complemented this approach by306

using the SBM method for ASV clustering, which is a technique applicable to multiplexes307
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(a type of multi-layer network) that does not require any a priori assumptions regarding308

connectivity patterns. The SBM model has been used for community detection in various309

fields, such as sociology. More recently, it has been applied to taxonomic profiling of the310

human microbiome in order to uncover patterns of community structure. Specifically, it311

was used as a bipartite model for clustering samples and taxa [33]. In another study, the312

simple SBM enabled the detection of OTU clusters based on their connectivity patterns in313

a co-occurrence network [34]. In the present work, we applied the multiplex version of314

this model to a collection of networks in order to identify clusters of ASVs that share315

similar patterns of associations across the different networks. We were able to identify 10316

clusters of ASVs, which could be used to guide the exploration and delineation of new317

bacterial consortia in fermented vegetables [35].318

With respect to the microbial ecology of fermented vegetables, our most important319

finding was the recurring and transient appearance, at the beginning of fermentation, of320

ASVs belonging to Enterobacterales and their association with ASVs affiliated with321

Lactobacillales. This raises the question of their ecological function in vegetable322

fermentation and their impact on the properties of the final product. The hypothesis of323

bacterial succession in vegetable fermentation, from Enterobacteria to heterolactic and324

homolactic acid bacteria, is not entirely new. However, due to the small number of studies325

carried out on the subject and the extensive variability in the methodologies used, most326

reports have not generated convincing conclusions on the impact of Enterobacterales and327

their possible interactions with LAB. Nevertheless, based on the existing literature,328

several hypotheses can be put forward. Enterobacterales may have fermentative properties,329

or they may participate in nutritional mutualism that is beneficial to the development of330

LAB. Indeed, certain trophic relationships between LAB and Enterobacteriaceae have331

already been described. For example, some LAB generate metabolic energy using an332

agmatine deiminase pathway that relies on agmatine produced by Enterobacteriaceae [36].333

In the wet coffee fermentation process, the first phase involves interactions between334

Enterobacteriaceae (with pectinolytic activity), acetic acid bacteria, and some yeasts [37].335

Enterobacteriaceae have also been found in two other studies on fermented vegetables336
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[38, 39], of which the former hypothesizes that the presence of Erwinia sp. may reflect its337

ability to invade compromised plant tissues or its potential ability to ferment sugar.338

The meta-analysis we designed is particularly well-suited to fermented vegetable339

ecosystems: since these ecosystems are closed, contain relatively few taxa, and undergo a340

temporal succession of communities, the representation of ASV association networks is341

fairly easy to visualize and interpret. This approach could be easily applied to amplicon342

or shotgun metagenomic data for other fermented foods characterized by closed343

ecosystems with community shifts. One limitation of the present meta-analysis is that it344

was carried out on a relatively small scale (on 10 independent datasets including a total of345

931 samples), due to the small number of reusable public metabarcoding datasets on346

fermented vegetables. This is mainly due to difficulties in accessing raw data (some347

samples are missing, some data are pre-processed, etc.) and metadata (sometimes348

incomplete and inconsistent, with manual extract from paper required). Indeed, these349

limitations were highlighted in a recent article [40], which recommended that data be350

deposited in public repositories together with assay metadata (technical features of the351

experiment) and biological metadata (environmental conditions of the biosamples). This,352

along with the adoption of other best practices, will enable wider reuse and integration of353

microbiome datasets on a broader scale.354

This study is based on 16S metataxonomic data, more specifically, the V4355

hypervariable region because it was used in the majority of the datasets found. This356

region is the most frequent target of studies focused on food ecosystems, along with the357

V3–V4 region of the 16S rRNA gene [1]. Unfortunately, this gene region has poor358

discriminatory power; it is able to provide reliable taxonomic assignment at the359

genus-level only and cannot be used to study species-level diversity (unlike, for instance,360

the V1–V3 region [41]). Therefore, although it is interesting to discover ASVs that are361

shared between different studies, this approach is ill-suited for characterizing the species-362

and strain-level diversity of Lactobacillales and Enterobacterales. Furthermore, the read363

count tables obtained for the different studies can be shaped by many biases, including364

differences in sample collection and storage, DNA extraction method and primer choice,365

variation in the number of rRNA operons [41, 42], amplification of extracellular DNA, and366
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errors in taxonomic affiliations. Therefore, the results of any individual ASV count table367

must be interpreted cautiously. However, in the context of our study, the use of ASVs368

enabled direct comparison of sequences between studies and reduced the influence of369

taxonomic misclassifications [43, 44]. In addition, integrating ASVs into association370

networks allowed comparisons of similar dynamics between ASVs in different studies,371

and limited the biases that might arise from direct comparison of relative abundances.372

This work demonstrates the effectiveness of using association networks for temporal373

meta-analysis. The approach we developed could easily be applied to new datasets or374

extended to incorporate new tools for association network inference, core network375

detection, and clustering. In the future, it could be interesting to integrate additional376

sample metadata (such as temperature, lactic acid concentration, pH, and/or salinity) if377

they were available in a standardized format and could be easily integrated to an378

association network. This approach could lead to the design of ideal consortia that could379

make vegetable fermentation safer [45] (Capozzi et al., 2017), more reproducible, and380

exploitable on a large scale [46].381

Finally, the taxonomic profile inferred from 16S rRNA is not able to provide insights382

into the functional profile of bacterial communities or into the part(s) played by other383

microorganisms (even if their presence is minor, e.g., less than 5% relative abundance for384

fungi and Archaea in brine food according to Leech et al. [4]). Ultimately, there is a need385

for complementary functional studies (shotgun metagenomics, metatranscriptomics) to386

improve our understanding of vegetable fermentation and assess the functional387

interactions taking place during this process.388

MATERIALS AND METHODS389

Study selection390

Datasets were obtained from three repositories: the MGnify database (on microbiome391

data), the FoodMicrobioNet database (on food ecosystems), and the NCBI SRA database.392

Studies focused on the microbial ecosystems in fermented vegetables were identified in393
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MGnify by selecting the biome “Food production” and filtering with the term "Fermented394

vegetables”, while in FoodMicrobionet, we used the spoilage filter "Fermented” from395

studies labeled with "Vegetables and vegetable products”. From NCBI/SRA, we retrieved396

studies with the Taxonomy IDs "Food metagenome" (870726), "Fermentation397

metagenome" (1326787), and "Food fermentation metagenome" (1154581). Of the resulting398

studies, the only ones that were considered were those whose "SRA Run Selector"399

metadata contained the words "day", "week", "month", "hour," or "time", and that had an400

associated publication on fermented vegetables.401

We included only studies that examined at least two time points, contained more than402

10 samples, and were associated with a publication (to ensure access to extensive403

metadata). Finally, we retained only studies that sequenced the V4 or V3–V4404

hypervariable region of the 16S rRNA gene to permit comparisons of ASVs. Raw405

sequencing data of the resulting selected studies were retrieved from the NCBI SRA406

repository using home-made scripts.407

Construction of ASV count tables408

Sequencing data from each study were processed using the dada2 pipeline [43] for409

read quality control, read filtering and trimming (with parameters truncLen = 240 or 220410

depending on read length, maxN = 0, maxEE = 2, truncQ = 2), error rate learning and ASV411

inference, paired read assembly (with parameter minOverlap = 3), chimera removal, and412

taxonomic assignment to kingdom, phylum, class, order, family, and genus (using Silva413

database nr 99 v 138. 1). For the five studies in which the V3–V4 region of the 16S rRNA414

gene was sequenced, only the V4 region was retained. The ASV count table for each415

sample, the ASV taxonomy table, and the sample metadata were combined into one416

phyloseq object [47] for each study. ASVs matching mitochondrial or chloroplast DNA417

and samples from negative fermentation controls were excluded from the count tables.418
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Inference of microbial association networks419

For each study a count table was filtered to create a microbial association network.420

Only non-control samples with more than 15,000 reads and ASVs found in at least three421

samples and with an average relative abundance greater than 1e-5 were included. We422

chose association metrics that take into account co-presence, with Jaccard distance, as well423

as co-abundance, with Pearson and Spearman correlations based on relative abundances.424

The proportionality measure proposed by Lovell et al. [48] (Φ(a, b) = var(clr(a)−clr(b))
var(clr(a)+clr(b)) ) was425

also used following centered log-ratio transformation, performed using the function426

aldex.clr from the package ALDEx2 Quinn et al. [49]. Edges were traced if at least one of427

these four measures reached a non-stringent threshold (0.4 for Jaccard distance and 0.5 for428

the three other measures). The thickness of each edge reflected the number of combined429

metrics supporting it. A force-driven algorithm (Fruchterman-Reingold) was used to430

calculate the layout of each association network. This layout was preserved on the y-axis,431

but the x-axis was modified: the position of each ASV was the mean age of the samples in432

which the ASV was present, weighted by its relative abundance (hereafter named WMA433

for weighted mean age).434

Core network construction435

The core network was constructed based on the intersections of the independent436

association networks created for each study. To account for the different sampling time437

points and fermentation rates among studies, the x-axis position of each ASV in the core438

network corresponded to the average of its centered and scaled positions in the original439

networks. A null-model statistical test was used to assess the significance of the core440

networks constructed from edges shared by a subset of networks or by all networks. First,441

we generated 100 sets of networks with the same nodes as the networks of interest but442

with random edges, using the “rewire” function of the igraph R package with prob = 1.443

Next, the distribution of edges shared by a given subset of networks or by all networks444

was compared between each null model and the studied set of networks with a445

Kolmogorov-Smirnov test.446
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SBM multiplex clustering447

Multiplex networks refer to a collection of networks involving the same sets of nodes448

but originating from different types of relationships. Here, each network corresponded to449

a specific study and each node corresponded to an ASV. SBM clustering was applied to450

multiplex networks to assign each ASV to a community (or block) according to its451

connection patterns. The estimateMultiplexSBM function from the R package sbm [50]452

was used with a Poisson model describing the relationship between the nodes. The453

number of blocks was chosen using a penalized likelihood criterion (ICL), and the454

likelihood maximization was obtained via a variational version of the455

Expectation-Maximization algorithm.456

Statistical analysis and figure construction457

To compare WMA or the prevalence among studies of ASVs belonging to different458

groups (taxonomic rank or SBM cluster), the non-parametric Wilcoxon-Mann-Whitney459

test was performed. To create figures, the R packages ggplot2, viridis, ggpubr, and460

ComplexHeatmap were used [51, 52].461
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Figures 9 

 10 

 11 

 12 
Figure 1: Meta-analysis approach for integrating amplicon datasets into microbial association 13 

networks to compare microbial communities of fermented vegetables. 14 

 15 
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 18 

Figure 2: Microbial association networks for studies PRJNA689239 and PRJNA564474 19 

highlight the dynamic evolution of microbial communities during fermentation.  20 

(A) and (C): Barplots depicting relative abundances in each sample for studies PRJNA689239 and 21 

PRJNA564474, respectively. Samples are ordered by age. Gray color indicates a taxonomic order 22 

other than Enterobacterales, Lactobacillales, and Pseudomonadales.  23 

(B) and (D): ASV association networks for studies PRJNA689239 and PRJNA564474, respectively. 24 

Each node represents an ASV; node size reflects its maximum relative abundance and color 25 

represents its taxonomic order. The x-axis corresponds to the weighted mean age (WMA) of the 26 

samples in which the ASV was detected, measured in days, and weighted by ASV relative 27 

abundance. An edge between two nodes indicates an association that was detected according to at 28 

least one metric. 29 
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 35 

Figure 3: Core network and succession of bacterial communities  36 

(A) Boxplot showing the number of vertices in the core networks built from the intersection of 2 to 11 37 

networks. The dotted gray line corresponds to three vertices.  38 

(B) Boxplot showing the number of edges in the core networks built from the intersection of 2 to 11 39 

networks 40 

(C) Core network built from ASV associations found in at least three networks. The line type of an 41 

edge represents the number of times the ASV association was found. The node position on the x-42 

axis is the mean scaled WMA. ASVs are colored by taxonomic order.  43 

(D) Boxplot showing the differences in mean scaled WMA between ASVs affiliated with the orders 44 

Pseudomonadales, Enterobacterales, and Lactobacillales. 45 

(E) Scatterplot of ASVs colored by taxonomic order, depicting their prevalence in relation to mean 46 

scaled WMA.  47 

(F) Boxplot showing the differences in mean scaled WMA among genera in family Lactobacillaceae. 48 

Each dot is an ASV. 49 
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 57 

Figure 4: Network clustering shows an association between highly prevalent ASVs from 58 

orders Lactobacillales and Enterobacterales. 59 

(A) Scatterplot of ASVs colored by cluster. The shape corresponds to the taxonomic order. 60 

(B) Core network built from ASV associations found in at least three networks, with ASVs colored by 61 

cluster. The shape corresponds to the taxonomic order. 62 
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